blob: d154e2f2cc75501548d70a4e057b0dd8c74f90a9 [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mnphyor.c
*
* Northbridge Phy support for Orochi
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/NB/OR)
* @e \$Revision: 58126 $ @e \$Date: 2011-08-21 23:38:29 -0600 (Sun, 21 Aug 2011) $
*
**/
/*****************************************************************************
*
* Copyright (C) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "amdlib.h"
#include "Ids.h"
#include "mport.h"
#include "ma.h"
#include "mm.h"
#include "mn.h"
#include "mt.h"
#include "mu.h"
#include "OptionMemory.h" // need def for MEM_FEAT_BLOCK_NB
#include "mnor.h"
#include "cpuRegisters.h"
#include "PlatformMemoryConfiguration.h"
#include "F15PackageType.h"
#include "Filecode.h"
CODE_GROUP (G3_DXE)
RDATA_GROUP (G3_DXE)
#define FILECODE PROC_MEM_NB_OR_MNPHYOR_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
#define UNUSED_CLK 4
/// The structure of TxPrePN tables
typedef struct {
UINT32 Speed; ///< Applied memory speed
UINT16 TxPrePNVal[4]; ///< Table values
} TXPREPN_STRUCT;
/// The entry of individual TxPrePN tables
typedef struct {
UINT8 TxPrePNTblSize; ///< Total Table size
CONST TXPREPN_STRUCT *TxPrePNTblPtr; ///< Pointer to the table
} TXPREPN_ENTRY;
/// Type of an entry for processing phy init compensation for Orochi
typedef struct {
BIT_FIELD_NAME IndexBitField; ///< Bit field on which the value is decided
BIT_FIELD_NAME StartTargetBitField; ///< First bit field to be modified
BIT_FIELD_NAME EndTargetBitField; ///< Last bit field to be modified
UINT16 ExtraValue; ///< Extra value needed to be written to bit field
CONST TXPREPN_ENTRY *TxPrePN; ///< Pointer to slew rate table
} PHY_COMP_INIT_NB;
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/* -----------------------------------------------------------------------------*/
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function initializes the DDR phy compensation logic
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
MemNInitPhyCompOr (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
//
// Phy Predriver Calibration Codes for Data/DQS
//
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV15Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.5V
{DDR667 + DDR800, {0x924, 0x924, 0x924, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xFF6}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xFF6}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV135Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.35V
{DDR667 + DDR800, {0xFF6, 0xB6D, 0xB6D, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xFF6}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xFF6}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV125Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.25V
{DDR667 + DDR800, {0xFF6, 0xDAD, 0xDAD, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xFF6}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xFF6}}
};
CONST STATIC TXPREPN_ENTRY TxPrePNDataDqsOr[] = {
{GET_SIZE_OF (TxPrePNDataDqsV15Or), (TXPREPN_STRUCT *)&TxPrePNDataDqsV15Or},
{GET_SIZE_OF (TxPrePNDataDqsV135Or), (TXPREPN_STRUCT *)&TxPrePNDataDqsV135Or},
{GET_SIZE_OF (TxPrePNDataDqsV125Or), (TXPREPN_STRUCT *)&TxPrePNDataDqsV125Or}
};
//
// Phy Predriver Calibration Codes for Data/DQS
//
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV15OrB1[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.5V
{DDR667 + DDR800, {0xB6D, 0x6DB, 0x492, 0x492}},
{DDR1066 + DDR1333, {0xFFF, 0x924, 0x6DB, 0x6DB}},
{DDR1600 + DDR1866, {0xFFF, 0xFFF, 0xFFF, 0xB6D}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV135OrB1[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.35V
{DDR667 + DDR800, {0xFFF, 0x924, 0x6DB, 0x492}},
{DDR1066 + DDR1333, {0xFFF, 0xDB6, 0xB6D, 0x6DB}},
{DDR1600 + DDR1866, {0xFFF, 0xFFF, 0xFFF, 0xDB6}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNDataDqsV125OrB1[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.25V
{DDR667 + DDR800, {0xFFF, 0xB6D, 0x924, 0x6DB}},
{DDR1066 + DDR1333, {0xFFF, 0xFFF, 0xDB6, 0x924}},
{DDR1600 + DDR1866, {0xFFF, 0xFFF, 0xFFF, 0xFFF}}
};
CONST STATIC TXPREPN_ENTRY TxPrePNDataDqsOrB1[] = {
{GET_SIZE_OF (TxPrePNDataDqsV15OrB1), (TXPREPN_STRUCT *)&TxPrePNDataDqsV15OrB1},
{GET_SIZE_OF (TxPrePNDataDqsV135OrB1), (TXPREPN_STRUCT *)&TxPrePNDataDqsV135OrB1},
{GET_SIZE_OF (TxPrePNDataDqsV125OrB1), (TXPREPN_STRUCT *)&TxPrePNDataDqsV125OrB1}
};
//
// Phy Predriver Calibration Codes for Cmd/Addr
//
CONST STATIC TXPREPN_STRUCT TxPrePNCmdAddrV15Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.5V
{DDR667 + DDR800, {0x492, 0x492, 0x492, 0x492}},
{DDR1066 + DDR1333, {0x6DB, 0x6DB, 0x6DB, 0x6DB}},
{DDR1600 + DDR1866, {0xB6D, 0xB6D, 0xB6D, 0xB6D}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNCmdAddrV135Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.35V
{DDR667 + DDR800, {0x492, 0x492, 0x492, 0x492}},
{DDR1066 + DDR1333, {0x924, 0x6DB, 0x6DB, 0x6DB}},
{DDR1600 + DDR1866, {0xB6D, 0xB6D, 0x924, 0x924}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNCmdAddrV125Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.25V
{DDR667 + DDR800, {0x492, 0x492, 0x492, 0x492}},
{DDR1066 + DDR1333, {0xDAD, 0x924, 0x6DB, 0x492}},
{DDR1600 + DDR1866, {0xFF6, 0xDAD, 0xB64, 0xB64}}
};
CONST STATIC TXPREPN_ENTRY TxPrePNCmdAddrOr[] = {
{GET_SIZE_OF (TxPrePNCmdAddrV15Or), (TXPREPN_STRUCT *)&TxPrePNCmdAddrV15Or},
{GET_SIZE_OF (TxPrePNCmdAddrV135Or), (TXPREPN_STRUCT *)&TxPrePNCmdAddrV135Or},
{GET_SIZE_OF (TxPrePNCmdAddrV125Or), (TXPREPN_STRUCT *)&TxPrePNCmdAddrV125Or}
};
//
// Phy Predriver Calibration Codes for Clock
//
CONST STATIC TXPREPN_STRUCT TxPrePNClockV15Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.5V
{DDR667 + DDR800, {0x924, 0x924, 0x924, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xB6D}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xFF6}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNClockV135Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.35V
{DDR667 + DDR800, {0xDAD, 0xDAD, 0x924, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xDAD}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xDAD}}
};
CONST STATIC TXPREPN_STRUCT TxPrePNClockV125Or[] = {
//{TxPreP, TxPreN}[Speed][Drive Strength] at 1.25V
{DDR667 + DDR800, {0xDAD, 0xDAD, 0x924, 0x924}},
{DDR1066 + DDR1333, {0xFF6, 0xFF6, 0xFF6, 0xFF6}},
{DDR1600 + DDR1866, {0xFF6, 0xFF6, 0xFF6, 0xFF6}}
};
CONST STATIC TXPREPN_ENTRY TxPrePNClockOr[] = {
{GET_SIZE_OF (TxPrePNClockV15Or), (TXPREPN_STRUCT *)&TxPrePNClockV15Or},
{GET_SIZE_OF (TxPrePNClockV135Or), (TXPREPN_STRUCT *)&TxPrePNClockV135Or},
{GET_SIZE_OF (TxPrePNClockV125Or), (TXPREPN_STRUCT *)&TxPrePNClockV125Or}
};
//
// Tables to describe the relationship between drive strength bit fields, PreDriver Calibration bit fields and also
// the extra value that needs to be written to specific PreDriver bit fields
//
CONST PHY_COMP_INIT_NB PhyCompInitBitFieldOr[] = {
// 3. Program TxPreP/TxPreN for Data and DQS according toTable 46 if VDDIO is 1.5V or Table 47 if 1.35V.
// A. Program D18F2x9C_x0D0F_0[F,8:0]0[A,6]_dct[1:0]={0000b, TxPreP, TxPreN}.
// B. Program D18F2x9C_x0D0F_0[F,8:0]0[A,6]_dct[1:0]={0000b, TxPreP, TxPreN}.
{BFDqsDrvStren, BFDataByteTxPreDriverCal2Pad1, BFDataByteTxPreDriverCal2Pad1, 0, TxPrePNDataDqsOr},
{BFDataDrvStren, BFDataByteTxPreDriverCal2Pad2, BFDataByteTxPreDriverCal2Pad2, 0, TxPrePNDataDqsOr},
{BFDataDrvStren, BFDataByteTxPreDriverCal, BFDataByteTxPreDriverCal, 8, TxPrePNDataDqsOr},
// 4. Program TxPreP/TxPreN for Cmd/Addr according to Table 49 if VDDIO is 1.5V or Table 50 if 1.35V.
// A. Program D18F2x9C_x0D0F_[C,8][1:0][12,0E,0A,06]_dct[1:0]={0000b, TxPreP, TxPreN}.
// B. Program D18F2x9C_x0D0F_[C,8][1:0]02_dct[1:0]={1000b, TxPreP, TxPreN}.
{BFCsOdtDrvStren, BFCmdAddr0TxPreDriverCal2Pad1, BFCmdAddr0TxPreDriverCal2Pad2, 0, TxPrePNCmdAddrOr},
{BFAddrCmdDrvStren, BFCmdAddr1TxPreDriverCal2Pad1, BFAddrTxPreDriverCal2Pad4, 0, TxPrePNCmdAddrOr},
{BFCsOdtDrvStren, BFCmdAddr0TxPreDriverCalPad0, BFCmdAddr0TxPreDriverCalPad0, 8, TxPrePNCmdAddrOr},
{BFCkeDrvStren, BFAddrTxPreDriverCalPad0, BFAddrTxPreDriverCalPad0, 8, TxPrePNCmdAddrOr},
{BFAddrCmdDrvStren, BFCmdAddr1TxPreDriverCalPad0, BFCmdAddr1TxPreDriverCalPad0, 8, TxPrePNCmdAddrOr},
// 5. Program TxPreP/TxPreN for Clock according to Table 52 if VDDIO is 1.5V or Table 53 if 1.35V.
// A. Program D18F2x9C_x0D0F_2[2:0]02_dct[1:0]={1000b, TxPreP, TxPreN}.
{BFClkDrvStren, BFClock0TxPreDriverCalPad0, BFClock2TxPreDriverCalPad0, 8, TxPrePNClockOr}
};
BIT_FIELD_NAME CurrentBitField;
UINT16 SpeedMask;
UINT8 SizeOfTable;
UINT8 Voltage;
UINT8 i;
UINT8 j;
UINT8 k;
UINT8 Dct;
CONST TXPREPN_STRUCT *TblPtr;
Dct = NBPtr->Dct;
NBPtr->SwitchDCT (NBPtr, 0);
// 1. Program D18F2x[1,0]9C_x0D0F_E003[DisAutoComp, DisablePreDriverCal] = {1b, 1b}.
MemNSetBitFieldNb (NBPtr, BFDisablePredriverCal, 0x6000);
NBPtr->SwitchDCT (NBPtr, Dct);
SpeedMask = (UINT16) 1 << (NBPtr->DCTPtr->Timings.Speed / 66);
Voltage = (UINT8) CONVERT_VDDIO_TO_ENCODED (NBPtr->RefPtr->DDR3Voltage);
for (j = 0; j < GET_SIZE_OF (PhyCompInitBitFieldOr); j ++) {
i = (UINT8) MemNGetBitFieldNb (NBPtr, PhyCompInitBitFieldOr[j].IndexBitField);
TblPtr = (PhyCompInitBitFieldOr[j].TxPrePN[Voltage]).TxPrePNTblPtr;
SizeOfTable = (PhyCompInitBitFieldOr[j].TxPrePN[Voltage]).TxPrePNTblSize;
// Uses different TxPrePNDataDqsOr table for OR B1 and later
if (((NBPtr->MCTPtr->LogicalCpuid.Revision & AMD_F15_OR_LT_B1) == 0) &&
(PhyCompInitBitFieldOr[j].TxPrePN == TxPrePNDataDqsOr)) {
ASSERT (Voltage < sizeof (TxPrePNDataDqsOrB1) / sizeof (TxPrePNDataDqsOrB1[0]));
TblPtr = TxPrePNDataDqsOrB1[Voltage].TxPrePNTblPtr;
SizeOfTable = TxPrePNDataDqsOrB1[Voltage].TxPrePNTblSize;
}
for (k = 0; k < SizeOfTable; k++, TblPtr++) {
if ((TblPtr->Speed & SpeedMask) != 0) {
for (CurrentBitField = PhyCompInitBitFieldOr[j].StartTargetBitField; CurrentBitField <= PhyCompInitBitFieldOr[j].EndTargetBitField; CurrentBitField ++) {
MemNSetBitFieldNb (NBPtr, CurrentBitField, ((PhyCompInitBitFieldOr[j].ExtraValue << 12) | TblPtr->TxPrePNVal[i]));
}
break;
}
}
// Asserting if no table is found corresponding to current memory speed.
ASSERT (k < SizeOfTable);
}
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This is a general purpose function that executes before DRAM training
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
MemNBeforeDQSTrainingOr (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 Dct;
UINT32 PackageType;
for (Dct = 0; Dct < MAX_DCTS_PER_NODE_OR; Dct++) {
MemNSwitchDCTNb (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
//
// 2.10.6.8.2 - BIOS should program D18F2x210_dct[1:0]_nbp[3:0][MaxRdLatency] to 55h.
//
MemNSetBitFieldNb (NBPtr, BFMaxLatency, 0x55);
}
MemNSetBitFieldNb (NBPtr, BFTraceModeEn, 0);
}
// DisDatMsk: Reset: 0. BIOS: IF (G34r1 || C32r1) THEN 1 ELSE 0 ENDIF.
PackageType = LibAmdGetPackageType (&(NBPtr->MemPtr->StdHeader));
if (PackageType != PACKAGE_TYPE_AM3r2) {
MemNSetBitFieldNb (NBPtr, BFDisDatMsk, 1);
}
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This is a function that executes after DRAM training for Orochi
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
MemNAfterDQSTrainingOr (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 Dct;
UINT8 Dimm;
UINT8 Byte;
UINT16 Dly;
BOOLEAN DllShutDownEn;
DllShutDownEn = TRUE;
IDS_OPTION_HOOK (IDS_DLL_SHUT_DOWN, &DllShutDownEn, &(NBPtr->MemPtr->StdHeader));
for (Dct = 0; Dct < MAX_DCTS_PER_NODE_OR; Dct++) {
MemNSwitchDCTNb (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
//
// 2.10.6.6 DCT Training Specific Configuration
//
MemNSetBitFieldNb (NBPtr, BFAddrCmdTriEn, 1);
MemNSetBitFieldNb (NBPtr, BFDisAutoRefresh, 0);
if (DllShutDownEn && NBPtr->IsSupported[SetDllShutDown]) {
MemNSetBitFieldNb (NBPtr, BFDisDllShutdownSR, 0);
}
MemNSetBitFieldNb (NBPtr , BFForceAutoPchg, 0);
MemNSetBitFieldNb (NBPtr , BFDynPageCloseEn, 0);
if (NBPtr->RefPtr->EnableBankSwizzle) {
MemNSetBitFieldNb (NBPtr, BFBankSwizzleMode, 1);
}
MemNSetBitFieldNb (NBPtr, BFDcqBypassMax, 0x0F);
MemNPowerDownCtlOr (NBPtr);
MemNSetBitFieldNb (NBPtr, BFDisSimulRdWr, 0);
MemNSetBitFieldNb (NBPtr, BFZqcsInterval, 2);
//
// Post Training values for BFRxMaxDurDllNoLock, BFTxMaxDurDllNoLock,
// and BFEnRxPadStandby are handled by Power savings code
//
// BFBwCapEn and BFODTSEn are handled by OnDimmThermal Code
//
// BFDctSelIntLvEn is programmed by Interleaving feature
//
// BFL3Scrub, BFDramScrub, and DramScrubReDirEn are programmed by ECC Feature code
//
//
MemNSetBitFieldNb (NBPtr, BFL3ScrbRedirDis, 0);
// Doing DataTxFifoWrDly override for NB PState 0
MemNDataTxFifoWrDlyOverrideOr (NBPtr, NBPtr);
}
}
//
// Synch RdDqs__Dly to RdDqsDly for S3 Save/Restore
//
for (Dct = 0; Dct < MAX_DCTS_PER_NODE_OR; Dct++) {
MemNSwitchDCTNb (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
if (!(NBPtr->DctCachePtr->Is__x4)) {
// Only synch when 1D training has been performed or training with x8 DIMMs
for (Dimm = 0; Dimm < 4; Dimm++) {
for (Byte = 0; Byte < 9; Byte++) {
Dly = (UINT16) MemNGetTrainDlyNb (NBPtr, AccessRdDqsDly, DIMM_BYTE_ACCESS (Dimm, Byte));
MemNSetTrainDlyNb (NBPtr, AccessRdDqs__Dly, DIMM_NBBL_ACCESS (Dimm, Byte * 2), Dly);
MemNSetTrainDlyNb (NBPtr, AccessRdDqs__Dly, DIMM_NBBL_ACCESS (Dimm, (Byte * 2) + 1), Dly);
NBPtr->ChannelPtr->RdDqs__Dlys[(Dimm * MAX_NUMBER_LANES) + (Byte * 2)] = (UINT8) Dly;
NBPtr->ChannelPtr->RdDqs__Dlys[(Dimm * MAX_NUMBER_LANES) + (Byte * 2) + 1] = (UINT8) Dly;
}
}
}
}
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the seed for hardware based RcvEn training of Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *SeedPtr - Pointer to the seed value.
*
* @return TRUE
*/
BOOLEAN
MemNOverrideRcvEnSeedOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *SeedPtr
)
{
UINT16 *SeedPointer;
SeedPointer = (UINT16*) SeedPtr;
//
// Get seed value saved in PS block
//
*SeedPointer = NBPtr->PsPtr->HWRxENSeedVal;
*SeedPointer -= (0x20 * (UINT16) MemNGetBitFieldNb (NBPtr, BFWrDqDqsEarly));
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the seed for Pass N hardware based RcvEn training of Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *SeedTotal - Pointer to the SeedTotal
*
* @return TRUE
*/
BOOLEAN
MemNOverrideRcvEnSeedPassNOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *SeedTotal
)
{
UINT16 RegisterDelay;
UINT16 SeedTotalPreScaling;
UINT8 *SpdBufferPtr;
if (NBPtr->MCTPtr->Status[SbLrdimms]) {
// LRDIMMs
NBPtr->TechPtr->GetDimmSpdBuffer (NBPtr->TechPtr, &SpdBufferPtr, (NBPtr->TechPtr->ChipSel >> 1));
RegisterDelay = 0x10 + (((SpdBufferPtr[67] & 1) == 0) ? (0x30 - (SpdBufferPtr[70] & 7)): 0x30);
} else if (NBPtr->MCTPtr->Status[SbRegistered]) {
// Registered
RegisterDelay = ((NBPtr->ChannelPtr->CtrlWrd02[(NBPtr->TechPtr->ChipSel >> 1)] & BIT0) == 0) ? 0x20: 0x30;
} else {
// UDIMMs
RegisterDelay = 0;
}
if (NBPtr->TechPtr->PrevPassRcvEnDly[NBPtr->TechPtr->Bytelane] < (0x20 + RegisterDelay)) {
SeedTotalPreScaling = 0x20 + RegisterDelay;
} else {
SeedTotalPreScaling = NBPtr->TechPtr->PrevPassRcvEnDly[NBPtr->TechPtr->Bytelane] - 0x20 - RegisterDelay;
}
*(UINT16*) SeedTotal = ((UINT16) (((UINT32) SeedTotalPreScaling * NBPtr->DCTPtr->Timings.Speed) / NBPtr->TechPtr->PrevSpeed)) + RegisterDelay;
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the seed for write leveing training of Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *SeedPtr - Pointer to the seed value.
*
* @return TRUE
*/
BOOLEAN
MemNOverrideWLSeedOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *SeedPtr
)
{
DIE_STRUCT *MCTPtr;
CH_DEF_STRUCT *ChannelPtr;
UINT8 RCW2;
MCTPtr = NBPtr->MCTPtr;
ChannelPtr = NBPtr->ChannelPtr;
RCW2 = ChannelPtr->CtrlWrd02[NBPtr->TechPtr->TargetDIMM];
//
// Get the default value of seed
//
if (ChannelPtr->SODimmPresent != 0) {
//
// SODIMMM
//
*(UINT8*) SeedPtr = 0x12;
} else {
//
// Get seed value saved in PS block
//
*(UINT8*) SeedPtr = NBPtr->PsPtr->WLSeedVal;
if (MCTPtr->Status[SbRegistered]) {
*(UINT8*) SeedPtr += ((RCW2 & BIT0) == 0) ? 0 : 0x10;
}
}
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function enables nibble based training for Write Levelization for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *Dimm - Pointer to DIMM to be trained
*
* @return TRUE
*/
BOOLEAN
MemNTrainWlPerNibbleOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *Dimm
)
{
UINT8 ByteLane;
if ((NBPtr->ChannelPtr->Dimmx4Present & (1 << *(UINT16*) Dimm)) != 0) {
if (NBPtr->TechPtr->TrnNibble <= NIBBLE_1) {
//For x4 DIMMs, BIOS trains both nibbles of a byte lane by programming
//D18F2x9C_x0000_0008_dct[1:0][TrNibbleSel] to specify the nibble. BIOS repeats steps 3 through
//5 and uses the average of the trained values for the delay setting.
if (NBPtr->TechPtr->TrnNibble == NIBBLE_1) {
NBPtr->SetBitField (NBPtr, BFTrNibbleSel, NBPtr->TechPtr->TrnNibble);
}
return FALSE;
} else {
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrDqs: ");
for (ByteLane = 0; ByteLane < (NBPtr->MCTPtr->Status[SbEccDimms] ? 9 : 8) ; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%02x ", NBPtr->TechPtr->WlNibbleDly[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble AVG\n\n");
return FALSE;
}
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function adjusts the WL DQS Delay based on nibble traning results for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *Delay - Pointer to Wr Dqs Delay
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainWlPerNibbleAdjustWLDlyOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *Delay
)
{
MEM_TECH_BLOCK *TechPtr;
UINT8 Bytelane;
TechPtr = NBPtr->TechPtr;
Bytelane = TechPtr->Bytelane;
if ((NBPtr->ChannelPtr->DimmNibbleAccess & (1 << TechPtr->TargetDIMM)) != 0) {
if (TechPtr->TrnNibble == NIBBLE_1) {
*(UINT8*) Delay = (TechPtr->WlNibbleDly[Bytelane] + *(UINT8*) Delay + 1) / 2;
if (Bytelane == (NBPtr->MCTPtr->Status[SbEccDimms] ? 8 : 7)) {
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble 1");
}
} else {
if (Bytelane == (NBPtr->MCTPtr->Status[SbEccDimms] ? 8 : 7)) {
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble 0");
}
}
TechPtr->WlNibbleDly[Bytelane] = *(UINT8*) Delay;
return FALSE;
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function sets the correct seed for Nibble based Write Levelization.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *WrDqsDly - Pointer to WrDqs value
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainWlPerNibbleSeedOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *WrDqsDly
)
{
if (NBPtr->TechPtr->TrnNibble == NIBBLE_0) {
NBPtr->TechPtr->WlNibble0Seed[NBPtr->TechPtr->Bytelane] = *(UINT16*) WrDqsDly;
} else {
*(UINT16*) WrDqsDly = NBPtr->TechPtr->WlNibble0Seed[NBPtr->TechPtr->Bytelane];
}
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function initializes nibble based Receiver Enable Training for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *OptParam - Optional paramater
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNInitPerNibbleTrnOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *OptParam
)
{
// Program D18F2x9C_x0000_0008_dct[1:0][TrNibbleSel]=0
NBPtr->TechPtr->TrnNibble = NIBBLE_0;
NBPtr->SetBitField (NBPtr, BFTrNibbleSel, NIBBLE_0);
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function enables nibble based Receiver Enable Training for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *ChipSel - Pointer to ChipSel to be trained
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainRxEnPerNibbleOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *ChipSel
)
{
if ((NBPtr->ChannelPtr->DimmNibbleAccess & (1 << (*(UINT16*) ChipSel >> 1))) != 0) {
if (NBPtr->TechPtr->TrnNibble == NIBBLE_1) {
// For x4 DIMMs, BIOS trains both nibbles of a byte lane by programming
// D18F2x9C_x0000_0008_dct[1:0][TrNibbleSel] to specify the nibble. BIOS repeats steps 2 through
// 7 and uses the average of the trained values for the delay setting.
NBPtr->SetBitField (NBPtr, BFTrNibbleSel, NBPtr->TechPtr->TrnNibble);
}
return FALSE;
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function adjusts the RxEn Delay based on nibble traning results for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *RcvEnDly - Pointer to RcvEn Dqs Delay
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainRxEnAdjustDlyPerNibbleOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *RcvEnDly
)
{
MEM_TECH_BLOCK *TechPtr;
UINT8 Bytelane;
TechPtr = NBPtr->TechPtr;
Bytelane = TechPtr->Bytelane;
if ((NBPtr->ChannelPtr->DimmNibbleAccess & (1 << (TechPtr->ChipSel >> 1))) != 0) {
if (TechPtr->TrnNibble == NIBBLE_1) {
*(UINT16*) RcvEnDly = (TechPtr->RxEnNibbleDly[Bytelane] + *(UINT16*) RcvEnDly + 1) / 2;
if (Bytelane == (NBPtr->MCTPtr->Status[SbEccDimms] ? 8 : 7)) {
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble 1");
}
TechPtr->RxEnNibbleDly[Bytelane] = *(UINT16*) RcvEnDly;
return TRUE;
} else {
if (Bytelane == (NBPtr->MCTPtr->Status[SbEccDimms] ? 8 : 7)) {
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble 0");
}
TechPtr->RxEnNibbleDly[Bytelane] = *(UINT16*) RcvEnDly;
return FALSE;
}
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function calculates the average nibble based Receiver Enable Training for Orochi.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *OptParam - Optional parameter
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainRxEnGetAvgDlyPerNibbleOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *OptParam
)
{
UINT8 ByteLane;
if ((NBPtr->ChannelPtr->DimmNibbleAccess & (1 << (NBPtr->TechPtr->ChipSel >> 1))) != 0) {
if (NBPtr->TechPtr->TrnNibble == NIBBLE_1) {
IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t RxEn: ");
for (ByteLane = 0; ByteLane < (NBPtr->MCTPtr->Status[SbEccDimms] ? 9 : 8) ; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", NBPtr->TechPtr->RxEnNibbleDly[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, " <<< Nibble AVG\n\n");
return TRUE;
} else {
return FALSE;
}
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function returns false if nibble training is being used and nibble 1
* is being trained.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *ChipSel - Pointer to ChipSel to be trained
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNTrainingNibbleZeroOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *ChipSel
)
{
if (((NBPtr->ChannelPtr->DimmNibbleAccess & (1 << (NBPtr->TechPtr->ChipSel >> 1))) != 0) &&
(NBPtr->TechPtr->TrnNibble == NIBBLE_1)) {
return FALSE;
} else {
return TRUE;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function adjusts Avg PRE value of Phy fence training for OR.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *Value16 - Pointer to the value that we want to adjust
*
*/
VOID
MemNPFenceAdjustOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT INT16 *Value16
)
{
*Value16 += 2; //The Avg PRE value is subtracted by 6 only.
if (*Value16 < 0) {
*Value16 = 0;
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function adjusts WrDqsBias before seed scaling
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in,out] *WrDqsBias - Pointer to WrDqsBias
*
* @return FALSE - Supported
* @return TRUE - Not supported
*/
BOOLEAN
MemNAdjustWrDqsBeforeSeedScalingOr (
IN OUT MEM_NB_BLOCK *NBPtr,
IN OUT VOID *WrDqsBias
)
{
// Subtract (0x20 * WrDqDqsEarly) since it is a non-scalable component
* (INT16 *) WrDqsBias = (INT16) (0x20 * MemNGetBitFieldNb (NBPtr, BFWrDqDqsEarly));
return TRUE;
}