blob: ef7934cce149eaad4c35d95c9f43e12597b24468 [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mnotor.c
*
* Northbridge Non-SPD timings for Orochi
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/NB/OR)
* @e \$Revision: 51485 $ @e \$Date: 2011-04-23 15:12:38 -0600 (Sat, 23 Apr 2011) $
*
**/
/*****************************************************************************
*
* Copyright (C) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "Ids.h"
#include "mm.h"
#include "mn.h"
#include "OptionMemory.h" // need def for MEM_FEAT_BLOCK_NB
#include "mnor.h"
#include "mu.h"
#include "Filecode.h"
CODE_GROUP (G3_DXE)
RDATA_GROUP (G3_DXE)
#define FILECODE PROC_MEM_NB_OR_MNOTOR_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
VOID
STATIC
MemNSetOtherTimingOR (
IN OUT MEM_NB_BLOCK *NBPtr
);
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
extern BUILD_OPT_CFG UserOptions;
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function sets the non-SPD timings
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return TRUE - No fatal error occurs.
* @return FALSE - Fatal error occurs.
*/
BOOLEAN
MemNOtherTimingOr (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 Dct;
IDS_HDT_CONSOLE (MEM_STATUS, "\nStart Programming of Non-SPD Timings.\n");
for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
MemNSwitchDCTNb (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctDimmValid > 0) {
MemNSetOtherTimingOR (NBPtr);
}
}
return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}
/*----------------------------------------------------------------------------
* LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function sets the non-SPD timings in PCI registers
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
STATIC
MemNSetOtherTimingOR (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
INT8 ROD;
INT8 WOD;
INT8 LD;
INT8 WrEarly;
BOOLEAN FourRankRDimms;
INT8 CDDTrdrdSdDc;
INT8 CDDTrdrdDd;
INT8 CDDTwrwrDd;
INT8 CDDTwrwrSdDc;
INT8 CDDTrwtTO;
INT8 CDDTwrrd;
UINT8 TrdrdSdDc;
UINT8 TrdrdDd;
UINT8 TwrwrSdDc;
UINT8 TwrwrDd;
UINT8 TrdrdSdSc;
UINT8 TwrwrSdSc;
UINT8 Twrrd;
UINT8 TrwtTO;
UINT8 BufDatDelay;
CH_DEF_STRUCT *ChannelPtr;
ChannelPtr = NBPtr->ChannelPtr;
//
// Latency Difference (LD) = Tcl - Tcwl
//
LD = (INT8) (MemNGetBitFieldNb (NBPtr, BFTcl)) - (INT8) (MemNGetBitFieldNb (NBPtr, BFTcwl));
//
// Read ODT Delay (ROD) = MAX ( 0, (RdOdtOnDuration - 6))
//
ROD = MAX (0, (INT8) (MemNGetBitFieldNb (NBPtr, BFRdOdtOnDuration) - 6));
//
// Write ODT Delay (WOD) = MAX (0, (WrOdtOnDuration - 6))
//
WOD = MAX (0, (INT8) (MemNGetBitFieldNb (NBPtr, BFWrOdtOnDuration) - 6));
//
// WrEarly = ABS (WrDqDqsEarly) - This is in half clocks to preserve precision. Must be converted to whole clocks when used in equations below.
//
WrEarly = (INT8) MemNGetBitFieldNb (NBPtr, BFWrDqDqsEarly);
//
// BufDatDelay = IF LRDIMM [LRDIMM Module Delay Time SPD Bytes] ELSE 0 ENDIF.
//
BufDatDelay = (NBPtr->MCTPtr->Status[SbLrdimms]) ? (UINT8) MemNCalBufDatDelaySkewOr (NBPtr, GetBufDatDly): 0;
//
// FourRankRDimms
//
FourRankRDimms = ((MemNGetBitFieldNb (NBPtr, BFFourRankRDimm1) == 1) ||
(MemNGetBitFieldNb (NBPtr, BFFourRankRDimm0) == 1)) ? TRUE : FALSE;
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tLD: %d ROD: %d WOD: %d WrEarly: %d\n\n", LD, ROD, WOD, WrEarly);
//
// Read to Read Timing (TrdrdSdSc, TrdrdScDc, TrdrdDd)
//
// TrdrdSdSc = 1.
// TrdrdSdDc = MAX(TrdrdSdSc, 3 + (IF (D18F2x94_dct[1:0][FourRankRDimm1] | D18F2x94_dct[1:0][FourRankRDimm0])
// THEN (CEIL(CDDTrdrdSdDc / 2 ) + 0.5) ELSE 0 ENDIF.))
// TrdrdDd = MAX(TrdrdSdDc, CEIL(MAX(ROD + 3, CDDTrdrdDd / 2 + 3.5))).
TrdrdSdSc = 1;
CDDTrdrdSdDc = (INT8) MemNCalcCDDNb (NBPtr, AccessRcvEnDly, AccessRcvEnDly, TRUE, FALSE);
TrdrdSdDc = MAX (TrdrdSdSc, (FourRankRDimms ? (CDDTrdrdSdDc + 7 + 1) / 2 : 3));
CDDTrdrdDd = (INT8) MemNCalcCDDNb (NBPtr, AccessRcvEnDly, AccessRcvEnDly, FALSE, TRUE);
TrdrdDd = (UINT8) MAX (TrdrdSdDc, MAX (ROD + 3, (CDDTrdrdDd + 7 + 1) / 2 ));
MemNSetBitFieldNb (NBPtr, BFTrdrdDd, (UINT32) TrdrdDd);
MemNSetBitFieldNb (NBPtr, BFTrdrdSdDc, (UINT32) TrdrdSdDc);
MemNSetBitFieldNb (NBPtr, BFTrdrdSdSc, (UINT32) TrdrdSdSc);
//
// Write to Write Timing (TwrwrSdSc, TwrwrScDc, TwrwrDd
//
// TwrwrSdSc = 1.
// TwrwrSdDc = MAX(TwrwrSdSc, CEIL(MAX(WOD + 3, CDDTwrwrSdDc / 2 +
// (IF (D18F2x94_dct[1:0][FourRankRDimm1] | D18F2x94_dct[1:0][FourRankRDimm0])
// THEN 3.5 ELSE 3 ENDIF)))).
// TwrwrDd = MAX(TwrwrSdDc, CEIL(MAX(WOD + 3, CDDTwrwrDd / 2 + 3.5))).
//
TwrwrSdSc = 1;
CDDTwrwrSdDc = (INT8) MemNCalcCDDNb (NBPtr, AccessWrDqsDly, AccessWrDqsDly, TRUE, FALSE);
TwrwrSdDc = (UINT8) MAX (WOD + 3, (CDDTwrwrSdDc + (FourRankRDimms ? 7 : 6) + 1 ) / 2) ;
CDDTwrwrDd = (INT8) MemNCalcCDDNb (NBPtr, AccessWrDqsDly, AccessWrDqsDly, FALSE, TRUE);
TwrwrDd = MAX ( TwrwrSdDc, MAX ((UINT8) (WOD + 3), (CDDTwrwrDd + 7 + 1) / 2));
MemNSetBitFieldNb (NBPtr, BFTwrwrDd, (UINT32) TwrwrDd);
MemNSetBitFieldNb (NBPtr, BFTwrwrSdDc, (UINT32) TwrwrSdDc);
MemNSetBitFieldNb (NBPtr, BFTwrwrSdSc, (UINT32) TwrwrSdSc);
//
// Write to Read DIMM Termination Turn-around
//
// IF (LRDIMM) THEN
// Twrrd (in MEMCLKs) = MAX(1, CEIL(MAX(WOD - BufDatDelay, CDDTwrrd / 2 + 0.5 - WrEarly, (DdrRate >= 1866 ? 1 : 0)) - LD + 3))
// ELSE
// Twrrd = MAX ( 1, CEIL (MAX (WOD, (CDDTwrrd / 2) + 0.5 - WrEarly) - LD + 3))
CDDTwrrd = (INT8) MemNCalcCDDNb (NBPtr, AccessWrDqsDly, AccessRcvEnDly, FALSE, TRUE);
if (NBPtr->MCTPtr->Status[SbLrdimms]) {
Twrrd = MAX (1, MAX (WOD - BufDatDelay, MAX ((CDDTwrrd + 1 + 1 - WrEarly) / 2, (NBPtr->DCTPtr->Timings.Speed >= DDR1866_FREQUENCY ? 1 : 0))) - LD + 3);
} else {
Twrrd = MAX (1, MAX (WOD, (CDDTwrrd + 1 + 1 - WrEarly) / 2) - LD + 3);
}
MemNSetBitFieldNb (NBPtr, BFTwrrd, (UINT32) Twrrd);
//
// Read to Write Turnaround for Data, DQS Contention
//
// TrwtTO = CEIL (MAX (ROD, (CDDTrwtTO / 2) - 0.5 + WrEarly) + LD + 3)
//
CDDTrwtTO = (INT8) MemNCalcCDDNb (NBPtr, AccessRcvEnDly, AccessWrDqsDly, TRUE, TRUE);
TrwtTO = MAX ( (ChannelPtr->Dimms == 1 ? 0 : ROD + BufDatDelay) , ((CDDTrwtTO - 1 + 1 + WrEarly) / 2) ) + LD + 3;
MemNSetBitFieldNb (NBPtr, BFTrwtTO, (UINT32) TrwtTO);
//
// Read to Write Turnaround for opportunistic Write Bursting
//
// TrwtWB = TrwtTO + 1
//
MemNSetBitFieldNb (NBPtr, BFTrwtWB, (UINT32) TrwtTO + 1);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t TrdrdSdSc : %02x\n", TrdrdSdSc);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTrdrdSdDc : %02x TrdrdSdDc : %02x\n", CDDTrdrdSdDc, TrdrdSdDc);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTrdrdDd : %02x TrdrdDd : %02x\n\n", CDDTrdrdDd, TrdrdDd);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t TwrwrSdSc : %02x\n", TwrwrSdSc);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTwrwrSdDc : %02x TwrwrSdDc : %02x\n", CDDTwrwrSdDc, TwrwrSdDc );
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTwrwrDd : %02x TwrwrDd : %02x\n\n", CDDTwrwrDd, TwrwrDd);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t TrwtWB : %02x\n", TrwtTO + 1);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTwrrd : %02x Twrrd : %02x\n", (UINT8) CDDTwrrd, (UINT8) Twrrd );
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tCDDTrwtTO : %02x TrwtTO : %02x\n\n", (UINT8) CDDTrwtTO, (UINT8) TrwtTO );
}