blob: 7e20815e185c18d51bcc6af84acadd420cb04d2e [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* marc32_3.c
*
* Memory Controller, registered dimms
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/Ardk)
* @e \$Revision: 35136 $ @e \$Date: 2010-07-16 11:29:48 +0800 (Fri, 16 Jul 2010) $
*
**/
/*
*****************************************************************************
*
* Copyright (c) 2011, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/
/* This file contains routine that add platform specific support AM3 */
#include "AGESA.h"
#include "ma.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "mu.h"
#include "Ids.h"
#include "cpuFamRegisters.h"
#include "Filecode.h"
CODE_GROUP (G2_PEI)
RDATA_GROUP (G2_PEI)
#define FILECODE PROC_MEM_ARDK_C32_MARC32_3_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*
*-----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
STATIC CONST UINT8 ROMDATA C32RDdr3CLKDis[] = {0xFF, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00};
// Even chip select maps to M[B,A]_CKE[0]
// Odd chip select maps to M[B,A]_CKE[1]
STATIC CONST UINT8 ROMDATA C32RDdr3CKETri[] = {0x55, 0xAA};
// 2 dimms per channel
// Dimm 0: BP_MEMODTx[2,0]
// Dimm 1: BP_MEMODTx[3,1]
STATIC CONST UINT8 ROMDATA C32RDdr3ODTTri2D[] = {0x03, 0x0C, 0x32, 0xC8};
// 3 dimms per channel
// Dimm 0: BP_MEMODTx[0]
// Dimm 1: BP_MEMODTx[3,1]
// Dimm 2: BP_MEMODTx[2]
STATIC CONST UINT8 ROMDATA C32RDdr3ODTTri3D[] = {0x03, 0x0C, 0x30, 0xC8};
// 4 dimms per channel
// Dimm 0: BP_MEMODTx[0]
// Dimm 1: BP_MEMODTx[1]
// Dimm 2: BP_MEMODTx[2]
// Dimm 3: BP_MEMODTx[3]
STATIC CONST UINT8 ROMDATA C32RDdr3ODTTri4D[] = {0x03, 0x0C, 0x30, 0xC0};
// BIOS must not tri-state chip select pin corresponding to the second chip
// select of a single rank registered dimm
STATIC CONST UINT8 ROMDATA C32RDdr3CSTri[] = {0x01, 0x03, 0x04, 0x0C, 0x10, 0x30, 0x40, 0xC0};
/* -----------------------------------------------------------------------------*/
/**
*
* This is function sets the platform specific settings for C32 DDR3 L1 system
*
* @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
* @param[in] SocketID Socket number
* @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
*
* @return AGESA_SUCCESS
* @return CurrentChannel->MemClkDisMap Points this pointer to C32 MemClkDis table
* @return CurrentChannel->ChipSelTriMap Points this pointer to C32 CS table
* @return CurrentChannel->CKETriMap Points this pointer to C32 ODT table
* @return CurrentChannel->ODTTriMap Points this pointer to C32 CKE table
* @return CurrentChannel->DctEccDQSLike Indicates the bytes that should be averaged for ECC
* @return CurrentChannel->DctEccDQSScale Indicates the scale that should be used for Averaging ECC byte
* @return CurrentChannel->DctAddrTmg Address Command Timing Settings for specified channel
* @return CurrentChannel->DctOdcCtl Drive Strength settings for specified channel
* @return CurrentChannel->SlowMode Slow Mode
*
*/
AGESA_STATUS
MemAGetPsCfgRC32_3 (
IN OUT MEM_DATA_STRUCT *MemData,
IN UINT8 SocketID,
IN OUT CH_DEF_STRUCT *CurrentChannel
)
{
//
// Address Timings and Drive Strengths for 1 DIMM per channel or 2 Dimms per Channel
//
// Code searches table for matching speed, then matches the current dimm
// population and # of dimms to current config and programs the Addr Timing and RC2/RC2
//
// RC2/RC8 Value - This field id dependent upon the number of Registers on the Dimm, as indicated
// in SPD Byte 63.
// Bits 15-12 RC2 if One register
// Bits 11-8 RC8 if One register
// Bits 7-4 RC2 for more than one register
// Bits 3-0 RC8 for more than one register
//
// Frequency, Dimm Config ,
// Address Timing Value(F2x[1, 0]9C_x04), RC2/RC8 Value, # Dimms to match
//
STATIC CONST ADV_R_PSCFG_ENTRY PSCfg2DIMMs[] = {
{DDR667_FREQUENCY, ANY_DIMM0 + ANY_DIMM1, \
0x00000000, 0x4004, 2},
{DDR800_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x00000000, 0x0000, 1},
{DDR800_FREQUENCY, QR_DIMM1, \
0x00000000, 0x0040, 1},
{DDR800_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x00000000, 0x4004, 2},
{DDR800_FREQUENCY, QR_DIMM0 + ANY_DIMM1, \
0x00000000, 0x4004, 2},
{DDR800_FREQUENCY, ANY_DIMM0 + QR_DIMM1, \
0x00000000, 0x4004, 2},
{DDR1066_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x003C3C3C, 0x0000,1},
{DDR1066_FREQUENCY, QR_DIMM0 + QR_DIMM1, \
0x003C3C3C, 0x0040, 1},
{DDR1066_FREQUENCY, ANY_DIMM0 + ANY_DIMM1, \
0x003A3C3A, 0x4004, 2},
{DDR1333_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x003A3A3A, 0x0000, 1},
{DDR1333_FREQUENCY, QR_DIMM0 + QR_DIMM1, \
0x003A3A3A, 0x0040, 1},
{DDR1333_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x00383A38, 0x4040, 2},
};
//
// Address Timings and Drive Strengths for 3 DIMMs per channel
//
// Code searches table for matching speed, then matches the current dimm
// population and # of dimms to current config and programs the Addr Timing and RC2/RC2
//
// RC2/RC8 Value - This field id dependent upon the number of Registers on the Dimm, as indicated
// in SPD Byte 63.
// Bits 15-12 RC2 if One register
// Bits 11-8 RC8 if One register
// Bits 7-4 RC2 for more than one register
// Bits 3-0 RC8 for more than one register
//
// Frequency, Dimm Config ,
// Address Timing Value(F2x[1, 0]9C_x04), RC2/RC8 Value, # Dimms to match
//
STATIC CONST ADV_R_PSCFG_ENTRY PSCfg3DIMMs[] = {
{DDR667_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x0000, 1},
{DDR667_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x4040, 2},
{DDR667_FREQUENCY, QR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x4004, 2},
{DDR667_FREQUENCY, SR_DIMM0 + DR_DIMM0 + ANY_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00380038, 0x4004, 3},
{DDR800_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x0000, 1},
{DDR800_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x4040, 2},
{DDR800_FREQUENCY, QR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x4004, 2},
{DDR800_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x00380038, 0x4004, 3},
{DDR800_FREQUENCY, QR_DIMM1, \
0x00000000, 0x0040, 1},
{DDR1066_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x003C3C3C, 0x0000, 1},
{DDR1066_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, \
0x003A3C3A, 0x4040, 2},
{DDR1066_FREQUENCY, SR_DIMM0 + SR_DIMM1 + SR_DIMM2, \
0x00373C37, 0x4040, 3},
{DDR1333_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x003A3A3A, 0x0000, 1},
{DDR1333_FREQUENCY, SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, \
0x00383A38, 0x4040, 2},
};
//
// DIMM ODT Pattern (1 or 2 DIMMs per channel)
//
// Dimm Config ,
// Fn2_9C 180, Fn2_9C 181, Fn2_9C 182, Fn2_9C 183, # Dimms to match
//
STATIC CONST ADV_PSCFG_ODT_ENTRY PSCfg2DIMMsODT[] = {
{SR_DIMM0, \
0x00000000, 0x00000000, 0x00000001, 0x00000000, 1},
{DR_DIMM0, \
0x00000000, 0x00000000, 0x00000104, 0x00000000, 1},
{QR_DIMM0, \
0x00000000, 0x00000000, 0x00000505, 0x00000505, 1},
{SR_DIMM1, \
0x00000000, 0x00000000, 0x00020000, 0x00000000, 1},
{DR_DIMM1, \
0x00000000, 0x00000000, 0x02080000, 0x00000000, 1},
{QR_DIMM1, \
0x00000000, 0x00000000, 0x0A0A0000, 0x0A0A0000, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x01010202, 0x00000000, 0x09030603, 0x00000000, 2},
{SR_DIMM0 + DR_DIMM0 + QR_DIMM1, \
0x01010A0A, 0x01010000, 0x01030E0B, 0x01090000, 2},
{QR_DIMM0 + SR_DIMM1 + DR_DIMM1, \
0x05050202, 0x00000202, 0x0D070203, 0x00000206, 2},
{QR_DIMM0 + QR_DIMM1, \
0x05050A0A, 0x05050A0A, 0x05070A0B, 0x050D0A0E, 2}
};
// DIMM ODT Pattern (3 DIMMs per channel)
//
// Dimm Config ,
// Fn2_9C 180, Fn2_9C 181, Fn2_9C 182, Fn2_9C 183, # Dimms to match
//
STATIC CONST ADV_PSCFG_ODT_ENTRY PSCfg3DIMMsODT[] = {
{SR_DIMM2 + DR_DIMM2, \
0x00000000, 0x00000000, 0x00000000, 0x00000404, 1},
{SR_DIMM0 + DR_DIMM0, \
0x00000000, 0x00000000, 0x00000101, 0x00000000, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, \
0x00000404, 0x00000101, 0x00000405, 0x00000105, 2},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x05050606, 0x00000303, 0x0D070607, 0x00000307, 3},
{QR_DIMM1, \
0x00000000, 0x00000000, 0x080A0000, 0x020A0000, 1},
{QR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x04040000, 0x04040A0A, 0x04060000, 0x040C0A0E, 2},
{SR_DIMM0 + DR_DIMM0 + QR_DIMM1, \
0x01010A0A, 0x01010000, 0x01030A0B, 0x01090000, 2},
{SR_DIMM0 + DR_DIMM0 + QR_DIMM1 + SR_DIMM2 + DR_DIMM2, \
0x05050E0E, 0x05050B0B, 0x05070E0F, 0x050D0B0F, 3}
};
//
// DIMM ODT Pattern (4 DIMMs per channel)
//
// Dimm Config ,
// Fn2_9C 180, Fn2_9C 181, Fn2_9C 182, Fn2_9C 183, # Dimms to match
//
STATIC CONST ADV_PSCFG_ODT_ENTRY PSCfg4DIMMsODT[] = {
{ANY_DIMM3, \
0x00000000, 0x00000000, 0x00000000, 0x08080000, 1},
{ANY_DIMM2 + ANY_DIMM3, \
0x00000000, 0x04040808, 0x00000000, 0x0C0C0C0C, 2},
{ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, \
0x0C0C0000, 0x06060A0A, 0x0E0E0000, 0x0E0E0E0E, 3},
{ANY_DIMM0 + ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, \
0x0D0D0E0E, 0x07070B0B, 0x0F0F0F0F, 0x0F0F0F0F, 4}
};
//
// DIMM Write Leveling ODT Pattern 1 or 2 Dimms Per Channel
//
// Dimm Config, WrLvOdt (Fn2_9C_0x08[11:8]) Value for each Dimm, # Dimms to match
//
STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY PSCfg2DIMMsWlODT[] = {
{SR_DIMM0, {0x01, 0x00, 0x00, 0x00}, 1},
{DR_DIMM0, {0x04, 0x00, 0x00, 0x00}, 1},
{QR_DIMM0, {0x05, 0x00, 0x00, 0x00}, 1},
{SR_DIMM1, {0x00, 0x02, 0x00, 0x00}, 1},
{DR_DIMM1, {0x00, 0x08, 0x00, 0x00}, 1},
{QR_DIMM1, {0x00, 0x0A, 0x00, 0x00}, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, {0x03, 0x03, 0x00, 0x00}, 2},
{SR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
{DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
{QR_DIMM0 + SR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
{QR_DIMM0 + DR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
{QR_DIMM0 + QR_DIMM1, {0x0B, 0x07, 0x0E, 0x0D}, 2}
};
//
// DIMM Write Leveling ODT Pattern 3 Dimms Per Channel
//
// Dimm Config, WrLvOdt (Fn2_9C_0x08[11:8]) Value for each Dimm, # Dimms to match
//
STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY PSCfg3DIMMsWlODT[] = {
{SR_DIMM2 + DR_DIMM2, {0x00, 0x00, 0x04, 0x00}, 1},
{SR_DIMM0 + DR_DIMM0, {0x01, 0x02, 0x00, 0x00}, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, {0x05, 0x00, 0x05, 0x00}, 2},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x07, 0x07, 0x07, 0x00}, 3},
{QR_DIMM1, {0x00, 0x0A, 0x00, 0x0A}, 1},
{QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x00, 0x06, 0x0E, 0x0C}, 2},
{SR_DIMM0 + DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
{SR_DIMM0 + DR_DIMM0 + QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x0F, 0x07, 0x0F, 0x0D}, 3}
};
//
// DIMM Write Leveling ODT Pattern 4 Dimms Per Channel
//
// Dimm Config, WrLvOdt (Fn2_9C_0x08[11:8]) Value for each Dimm, # Dimms to match
//
STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY PSCfg4DIMMsWlODT[] = {
{ANY_DIMM3, {0x00, 0x00, 0x00, 0x08}, 1},
{ANY_DIMM2 + ANY_DIMM3, {0x00, 0x00, 0x0C, 0x0C}, 2},
{ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x00, 0x0E, 0x0E, 0x0E}, 3},
{ANY_DIMM0 + ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x0F, 0x0F, 0x0F, 0x0F}, 4}
};
UINT16 i;
UINT16 j;
UINT8 MaxDimmPerCH;
UINT8 Dimms;
UINT16 Speed;
UINT16 DIMMRankType;
UINT16 _DIMMRankType;
UINT8 DimmTpMatch;
UINT32 AddrTmgCTL;
UINT32 DctOdcCtl;
UINT16 RC2RC8;
UINT32 PhyRODTCSLow;
UINT32 PhyRODTCSHigh;
UINT32 PhyWODTCSLow;
UINT32 PhyWODTCSHigh;
BOOLEAN SlowMode;
UINT8 PSCfgSize;
UINT8 PSCfgODTSize;
UINT8 PSCfgWlODTSize;
UINT8 PhyWLODT[4];
CONST ADV_R_PSCFG_ENTRY *PSCfgPtr;
CONST ADV_PSCFG_ODT_ENTRY *PSCfgODTPtr;
CONST ADV_R_PSCFG_WL_ODT_ENTRY *PSCfgWlODTPtr;
UINT8 *DimmsPerChPtr;
ASSERT (MemData != NULL);
ASSERT (CurrentChannel != NULL);
AddrTmgCTL = 0;
DctOdcCtl = 0;
RC2RC8 = 0;
PhyRODTCSLow = 0;
PhyRODTCSHigh = 0;
PhyWODTCSLow = 0;
PhyWODTCSHigh = 0;
SlowMode = FALSE;
PhyWLODT[0] = 0x0F;
PhyWLODT[1] = 0x0F;
PhyWLODT[2] = 0x0F;
PhyWLODT[3] = 0x0F;
if ((CurrentChannel->MCTPtr->LogicalCpuid.Family & AMD_FAMILY_10_C32) == 0) {
return AGESA_UNSUPPORTED;
}
if (CurrentChannel->TechType != DDR3_TECHNOLOGY) {
return AGESA_UNSUPPORTED;
}
if (CurrentChannel->RegDimmPresent == 0) {
return AGESA_UNSUPPORTED;
}
// Prepare inputs
Dimms = CurrentChannel->Dimms;
Speed = CurrentChannel->DCTPtr->Timings.Speed;
DimmsPerChPtr = FindPSOverrideEntry (MemData->ParameterListPtr->PlatformMemoryConfiguration, PSO_MAX_DIMMS, SocketID, CurrentChannel->ChannelID);
if (DimmsPerChPtr != NULL) {
MaxDimmPerCH = *DimmsPerChPtr;
} else {
MaxDimmPerCH = 2;
}
DIMMRankType = MemAGetPsRankType (CurrentChannel);
if (MaxDimmPerCH == 4) {
PSCfgPtr = NULL;
PSCfgSize = NULL;
PSCfgODTPtr = PSCfg4DIMMsODT;
PSCfgWlODTPtr = PSCfg4DIMMsWlODT;
PSCfgODTSize = sizeof (PSCfg4DIMMsODT) / sizeof (ADV_PSCFG_ODT_ENTRY);
PSCfgWlODTSize = sizeof (PSCfg4DIMMsWlODT) / sizeof (ADV_R_PSCFG_WL_ODT_ENTRY);
} else if (MaxDimmPerCH == 3) {
PSCfgPtr = PSCfg3DIMMs;
PSCfgSize = sizeof (PSCfg3DIMMs) / sizeof (ADV_R_PSCFG_ENTRY);
PSCfgODTPtr = PSCfg3DIMMsODT;
PSCfgWlODTPtr = PSCfg3DIMMsWlODT;
PSCfgODTSize = sizeof (PSCfg3DIMMsODT) / sizeof (ADV_PSCFG_ODT_ENTRY);
PSCfgWlODTSize = sizeof (PSCfg3DIMMsWlODT) / sizeof (ADV_R_PSCFG_WL_ODT_ENTRY);
} else {
PSCfgPtr = PSCfg2DIMMs;
PSCfgSize = sizeof (PSCfg2DIMMs) / sizeof (ADV_R_PSCFG_ENTRY);
PSCfgODTPtr = PSCfg2DIMMsODT;
PSCfgWlODTPtr = PSCfg2DIMMsWlODT;
PSCfgODTSize = sizeof (PSCfg2DIMMsODT) / sizeof (ADV_PSCFG_ODT_ENTRY);
PSCfgWlODTSize = sizeof (PSCfg2DIMMsWlODT) / sizeof (ADV_R_PSCFG_WL_ODT_ENTRY);
}
// AddrTmgCTL and DctOdcCtl
if (MaxDimmPerCH != 4) {
for (i = 0; i < PSCfgSize; i++, PSCfgPtr++) {
if ((Speed != PSCfgPtr->Speed) || (Dimms != PSCfgPtr->Dimms)) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & PSCfgPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == PSCfgPtr->Dimms) {
AddrTmgCTL = PSCfgPtr->AddrTmg;
DctOdcCtl = 0x00223222;
RC2RC8 = PSCfgPtr->RC2RC8;
break;
}
}
}
//
// Overrides and/or exceptions
//
//
// Count slots with SR/DR poulated.
//
DimmTpMatch = 0;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((DIMMRankType & (UINT16) 0x03 << (j << 2)) != 0) {
DimmTpMatch++;
}
}
//
// DimmTpMatch is equal to the count of slot that have either an SR or DR
// installed.
//
if (MaxDimmPerCH == 4) {
//
// Any SR/DR in 4 DPCH
//
if (DimmTpMatch > 0) {
DctOdcCtl = 0x00223222;
if ((Speed == DDR800_FREQUENCY) && (DimmTpMatch == 1)) {
DctOdcCtl = 0x00113222;
}
}
//
// At Least 3 SR/DR in 4 DPCH
//
if (DimmTpMatch >= 3) {
AddrTmgCTL |= 0x002F0000;
}
// At Least 2 SR/DR in 4 DPCH
if (DimmTpMatch >= 2) {
RC2RC8 = 0x4040;
}
} else {
//
// Less than 4 DPCH
//
//
// Only 1 Dimm Populated and its a SR or DR OR
// 3 Dimms Populated and Frequency is 800 MHz
//
if (((Dimms == 1) && (DimmTpMatch == 1)) ||
((Dimms == 3) && ((Speed == DDR800_FREQUENCY) ||
(Speed == DDR1066_FREQUENCY)))) {
DctOdcCtl = 0x00113222;
}
}
//RC2 and RC8
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
// CtrlWrd02(s) will contain the info. of SPD byte 63 after MemTDIMMPresence3 execution.
if (CurrentChannel->CtrlWrd02[j] > 0) {
if (CurrentChannel->CtrlWrd02[j] == 1) {
// Store real RC2 and RC8 value (High byte) into CtrlWrd02(s) and CtrlWrd08(s).
CurrentChannel->CtrlWrd02[j] = (UINT8) (RC2RC8 >> 12) & 0x000F;
CurrentChannel->CtrlWrd08[j] = (UINT8) (RC2RC8 >> 8) & 0x000F;
} else {
// Store real RC2 and RC8 value (low byte) into CtrlWrd02(s) and CtrlWrd08(s).
CurrentChannel->CtrlWrd02[j] = (UINT8) (RC2RC8 >> 4) & 0x000F;
CurrentChannel->CtrlWrd08[j] = (UINT8) RC2RC8 & 0x000F;
}
}
}
//Programmable ODT
for (i = 0; i < PSCfgODTSize; i++, PSCfgODTPtr++) {
if (Dimms != PSCfgODTPtr->Dimms) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & PSCfgODTPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == PSCfgODTPtr->Dimms) {
PhyRODTCSLow = PSCfgODTPtr->PhyRODTCSLow;
PhyRODTCSHigh = PSCfgODTPtr->PhyRODTCSHigh;
PhyWODTCSLow = PSCfgODTPtr->PhyWODTCSLow;
PhyWODTCSHigh = PSCfgODTPtr->PhyWODTCSHigh;
break;
}
}
//WLODT
for (i = 0; i < PSCfgWlODTSize; i++, PSCfgWlODTPtr++) {
if (Dimms != PSCfgWlODTPtr->Dimms) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & PSCfgWlODTPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == PSCfgWlODTPtr->Dimms) {
PhyWLODT[0] = PSCfgWlODTPtr->PhyWrLvOdt[0];
PhyWLODT[1] = PSCfgWlODTPtr->PhyWrLvOdt[1];
PhyWLODT[2] = PSCfgWlODTPtr->PhyWrLvOdt[2];
PhyWLODT[3] = PSCfgWlODTPtr->PhyWrLvOdt[3];
break;
}
}
// Set ProcODT
DctOdcCtl |= 0x20000000;
CurrentChannel->MemClkDisMap = (UINT8 *) C32RDdr3CLKDis;
CurrentChannel->CKETriMap = (UINT8 *) C32RDdr3CKETri;
CurrentChannel->ChipSelTriMap = (UINT8 *) C32RDdr3CSTri;
switch (MaxDimmPerCH) {
case 3:
CurrentChannel->ODTTriMap = (UINT8 *) C32RDdr3ODTTri3D;
break;
case 4:
CurrentChannel->ODTTriMap = (UINT8 *) C32RDdr3ODTTri4D;
break;
default:
CurrentChannel->ODTTriMap = (UINT8 *) C32RDdr3ODTTri2D; // Most conservative
}
CurrentChannel->DctAddrTmg = AddrTmgCTL;
CurrentChannel->DctOdcCtl = DctOdcCtl;
CurrentChannel->PhyRODTCSLow = PhyRODTCSLow;
CurrentChannel->PhyRODTCSHigh = PhyRODTCSHigh;
CurrentChannel->PhyWODTCSLow = PhyWODTCSLow;
CurrentChannel->PhyWODTCSHigh = PhyWODTCSHigh;
for (i = 0; i < sizeof (CurrentChannel->PhyWLODT); i++) {
CurrentChannel->PhyWLODT[i] = PhyWLODT[i];
}
CurrentChannel->SlowMode = SlowMode;
return AGESA_SUCCESS;
}