blob: eb898fd62ee8ba598ed99c6e01d96ba5038af3ad [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mrtthrcSeedTrain.c
*
* Phy assisted DQS receiver enable training
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Proc/Recovery/Mem)
* @e \$Revision: 44324 $ @e \$Date: 2010-12-22 03:16:51 -0600 (Wed, 22 Dec 2010) $
*
**/
/*****************************************************************************
*
* Copyright (c) 2011, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "OptionMemory.h"
#include "amdlib.h"
#include "Ids.h"
#include "mm.h"
#include "mn.h"
#include "mru.h"
#include "mt.h"
#include "PlatformMemoryConfiguration.h"
#include "Filecode.h"
CODE_GROUP (G2_PEI)
RDATA_GROUP (G2_PEI)
#define FILECODE PROC_RECOVERY_MEM_TECH_MRTTHRCSEEDTRAIN_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
#define MAX_BYTELANES 8 /* Max Bytelanes per channel */
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
VOID
STATIC
MemRecTPrepareRcvrEnDlySeed (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
);
UINT16
STATIC
MemRecTProgramRcvrEnDly (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
);
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/* -----------------------------------------------------------------------------*/
/**
*
* This function executes Phy assisted receiver enable training without
* needing a correct seed.
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
*
* @pre Auto refresh and ZQCL must be disabled
*
*/
VOID
MemRecTTrainRcvrEnHwSeedless (
IN OUT MEM_TECH_BLOCK *TechPtr
)
{
UINT8 TempBuffer[64];
UINT8 Count;
UINT32 TestAddrRJ16;
UINT8 ChipSel;
UINT16 MaxRcvrDly;
UINT8 PassMask;
UINT8 PrevTest;
UINT8 CurTest;
UINT8 ByteLane;
UINT32 OrgReg;
MEM_NB_BLOCK *NBPtr;
NBPtr = TechPtr->NBPtr;
IDS_HDT_CONSOLE (MEM_STATUS, "\nStart HW RxEn training\n");
AGESA_TESTPOINT (TpProcMemReceiverEnableTraining , &(NBPtr->MemPtr->StdHeader));
// Disable auto refresh by configuring F2x[1, 0]8C[DisAutoRefresh] = 1.
NBPtr->SetBitField (NBPtr, BFDisAutoRefresh, 1);
// Disable ZQ calibration short command by configuring F2x[1, 0]94[ZqcsInterval] = 00b.
NBPtr->SetBitField (NBPtr, BFZqcsInterval, 0);
// Set environment settings before training
MemRecTBeginTraining (TechPtr);
ChipSel = NBPtr->DimmToBeUsed << 1;
TechPtr->ChipSel = ChipSel;
TestAddrRJ16 = 1 << 21;
// 1.Prepare the DIMMs for training
NBPtr->SetBitField (NBPtr, BFTrDimmSel, ChipSel >> 1);
// 2.Prepare the phy for DQS receiver enable training.
MemRecTPrepareRcvrEnDlySeed (TechPtr, ChipSel);
// 3.BIOS initiates the phy assisted receiver enable training
NBPtr->SetBitField (NBPtr, BFDqsRcvTrEn, 1);
// 4.BIOS begins sending out of back-to-back reads to create
// a continuous stream of DQS edges on the DDR interface.
for (Count = 0; Count < 3; Count++) {
NBPtr->ReadPattern (NBPtr, TempBuffer, TestAddrRJ16, 64);
}
// 6.Wait 200 MEMCLKs.
MemRecUWait10ns (200, NBPtr->MemPtr);
// 7.Program [DqsRcvTrEn]=0 to stop the DQS receive enable training.
NBPtr->SetBitField (NBPtr, BFDqsRcvTrEn, 0);
// 8.Get the gross and fine delay values.
// 9.Calculate the corresponding final delay values
MaxRcvrDly = MemRecTProgramRcvrEnDly (TechPtr, ChipSel);
//
// SEEDLESS TRAINING
// Sweep RxEn even gross delays to find the correct RxEn delays
//
OrgReg = MemRecNGetBitFieldNb (NBPtr, BFBlockRxDqsLock);
NBPtr->SetBitField (NBPtr, BFBlockRxDqsLock, OrgReg | 0x0100);
PassMask = 0;
PrevTest = 0;
// Use 3 CL pattern since recovery mode uses conservative settings and is not expected to work with long burst
NBPtr->WritePattern (NBPtr, TestAddrRJ16, TempBuffer, 3);
while (PassMask != 0xFF) {
NBPtr->SetMaxLatency (NBPtr, MaxRcvrDly);
NBPtr->ReadPattern (NBPtr, TempBuffer, TestAddrRJ16, 3);
CurTest = (UINT8) NBPtr->CompareTestPattern (NBPtr, TempBuffer, TempBuffer, 3);
// Mark pass when transition from P to F
PassMask |= (PrevTest & (~CurTest));
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, " %02x", TechPtr->RcvrEnDlyOpt[ByteLane]);
if ((CurTest & (1 << ByteLane)) == 0) {
IDS_HDT_CONSOLE (MEM_FLOW, " .\n");
} else {
IDS_HDT_CONSOLE (MEM_FLOW, " P\n");
}
if ((PassMask & (1 << ByteLane)) == 0) {
// For byte lanes that has not passed, increase by 2 UIs
TechPtr->RcvrEnDlyOpt[ByteLane] += 0x40;
NBPtr->SetTrainDly (NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS ((ChipSel >> 1), ByteLane), TechPtr->RcvrEnDlyOpt[ByteLane]);
if (TechPtr->RcvrEnDlyOpt[ByteLane] > MaxRcvrDly) {
MaxRcvrDly = TechPtr->RcvrEnDlyOpt[ByteLane];
}
} else {
// For byte lanes that has passed, decrease 5/2 UI to get back to the middle of preamble
NBPtr->SetTrainDly (NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS ((ChipSel >> 1), ByteLane), TechPtr->RcvrEnDlyOpt[ByteLane] - 0x50);
}
}
PrevTest = CurTest;
}
NBPtr->SetBitField (NBPtr, BFBlockRxDqsLock, OrgReg);
// Set final MaxRdLat
NBPtr->SetMaxLatency (NBPtr, MaxRcvrDly - 0x50);
// Restore environment settings after training
MemRecTEndTraining (TechPtr);
// 13.Program F2x[1, 0]8C[DisAutoRefresh] = 0.
NBPtr->SetBitField (NBPtr, BFDisAutoRefresh, 0);
// 14.Program F2x[1, 0]94[ZqcsInterval] to the proper interval for the current memory configuration.
NBPtr->SetBitField (NBPtr, BFZqcsInterval, 2);
IDS_HDT_CONSOLE (MEM_FLOW, "End HW RxEn training\n\n");
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function calculates RcvEn seed value for each rank
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
* @param[in] ChipSel - rank to be trained
*
*/
VOID
STATIC
MemRecTPrepareRcvrEnDlySeed (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
)
{
MEM_NB_BLOCK *NBPtr;
UINT8 ByteLane;
NBPtr = TechPtr->NBPtr;
// Program a seed of 0x20 to make the result falls in (0,40) range
IDS_HDT_CONSOLE (MEM_FLOW, "Seeds: 20\n");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
NBPtr->SetTrainDly (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (ChipSel >> 1, ByteLane), 0x20);
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function calculates final RcvrEnDly for each rank
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
* @param[in] ChipSel - Rank to be trained
*
* @return MaxDly - The largest delay value
*
*/
UINT16
STATIC
MemRecTProgramRcvrEnDly (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
)
{
MEM_NB_BLOCK *NBPtr;
CH_DEF_STRUCT *ChannelPtr;
UINT8 ByteLane;
UINT16 RcvEnDly;
UINT16 MaxDly;
NBPtr = TechPtr->NBPtr;
ChannelPtr = TechPtr->NBPtr->ChannelPtr;
MaxDly = 0;
IDS_HDT_CONSOLE (MEM_FLOW, " PRE RxEn\n");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
// Read PRE
RcvEnDly = (UINT8) NBPtr->GetTrainDly (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (ChipSel >> 1, ByteLane));
IDS_HDT_CONSOLE (MEM_FLOW, " %02x ", RcvEnDly);
// Add 1 UI to get to the midpoint of preamble
RcvEnDly += 0x20;
// And add 1/2 UI to start seedless training
RcvEnDly += 0x10;
// Record Max RxEn for MaxRdLat calculation
if (RcvEnDly > MaxDly) {
MaxDly = RcvEnDly;
}
// Write RxEn delays
NBPtr->SetTrainDly (NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS ((ChipSel >> 1), ByteLane), RcvEnDly);
TechPtr->RcvrEnDlyOpt[ByteLane] = RcvEnDly;
IDS_HDT_CONSOLE (MEM_FLOW, " %02x\n", RcvEnDly);
}
return MaxDly;
}