blob: 09b948c9c5e52538207788c755eaa2d92c07f0bf [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* Config Fch Gpp controller
*
* Init Gpp Controller features.
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: FCH
* @e \$Revision: 49456 $ @e \$Date: 2011-03-24 04:13:38 +0800 (Thu, 24 Mar 2011) $
*
*/
/*
*****************************************************************************
*
* Copyright (c) 2011, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
****************************************************************************
*/
#include "FchPlatform.h"
#include "Filecode.h"
#define FILECODE PROC_FCH_PCIE_GPPLATE_FILECODE
//
// Declaration of local functions
//
VOID FchGppSetAspm (IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader);
VOID FchGppSetEpAspm (IN UINT32 PciAddress, IN UINT8 LxState, IN AMD_CONFIG_PARAMS *StdHeader);
VOID FchGppValidateAspm (IN UINT32 PciAddress, IN UINT8 *LxState, IN AMD_CONFIG_PARAMS *StdHeader);
UINT8 FchFindPciCap (IN UINT32 PciAddress, IN UINT8 TargetCapId, IN AMD_CONFIG_PARAMS *StdHeader);
//
//-----------------------------------------------------------------------------------
// GPP initialization sequence:
//
// 1) Set port enable bit fields by current GPP link configuration mode
// 2) Deassert GPP reset and pull EP out of reset - Clear GPP_RESET (abcfg:0xC0[8] = 0)
// 3) Loop polling for the link status of all ports
// 4) Misc operations after link training:
// - (optional) Detect GFX device
// - Hide empty GPP configuration spaces (Disable empty GPP ports)
// - (optional) Power down unused GPP ports
// - (optional) Configure PCIE_P2P_Int_Map (abcfg:0xC4[7:0])
// 5) GPP init completed
//
//
// *) Gen2 vs Gen1
// Gen2 mode Gen1 mode
// ---------------------------------------------------------------
// STRAP_PHY_PLL_CLKF[6:0] 7'h32 7'h19
// STRAP_BIF_GEN2_EN 1 0
//
// PCIE_PHY_PLL clock locks @ 5GHz
//
//
/**
* FchInitLateGpp - Prepare Gpp controller to boot to OS.
*
* PcieGppLateInit
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
FchInitLateGpp (
IN VOID *FchDataPtr
)
{
UINT8 PortId;
UINT8 BusNum;
UINT8 AspmValue;
UINT8 PortAspmValue;
UINT8 AllowStrapControlByAB;
UINT8 FchGppPhyPllPowerDown;
FCH_GPP_PORT_CONFIG *PortCfg;
UINT32 PciAspmValue;
UINT32 AbValue;
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
//
// Disable hidden register decode and serial number capability
//
AbValue = ReadAlink (FCH_ABCFG_REG330 | (UINT32) (ABCFG << 29), StdHeader);
WriteAlink (FCH_ABCFG_REG330 | (UINT32) (ABCFG << 29), AbValue & ~(BIT26 + BIT10), StdHeader);
if (ReadAlink (FCH_ABCFG_REGC0 | (UINT32) (ABCFG << 29), StdHeader) & BIT8) {
return;
}
//
// Configure ASPM
//
AspmValue = (UINT8)LocalCfgPtr->Gpp.GppPortAspm;
FchGppPhyPllPowerDown = (UINT8) LocalCfgPtr->Gpp.GppPhyPllPowerDown;
AllowStrapControlByAB = 0x01;
for ( PortId = 0; PortId < MAX_GPP_PORTS; PortId++ ) {
//
// write pci_reg3d with 0x01 to fix yellow mark for GPP bridge under some OS
// when native PCIE is enabled but MSI is not available
// BIF/GPP allowing strap STRAP_BIF_INTERRUPT_PIN_SB controlled by AB reg
//
PortCfg = &LocalCfgPtr->Gpp.PortCfg[PortId];
if (PortCfg->PortHotPlug) {
RwPci (PCI_ADDRESS (0, 21, PortId, 0x04), AccessWidth8, 0xFE, 0x00, StdHeader); ///clear IO enable to fix possible hotplug hang
}
WritePci (PCI_ADDRESS (0, 21, PortId, 0x3d), AccessWidth8, &AllowStrapControlByAB, StdHeader);
ReadPci (PCI_ADDRESS (0, 21, PortId, 0x19), AccessWidth8, &BusNum, StdHeader);
if (BusNum != 0xFF) {
ReadPci (PCI_ADDRESS (BusNum, 0, 0, 0x00), AccessWidth32, &PciAspmValue, StdHeader);
if (PciAspmValue != 0xffffffff) {
PortAspmValue = AspmValue;
//
// Validate ASPM support on EP side
//
FchGppValidateAspm (PCI_ADDRESS (BusNum, 0, 0, 0), &PortAspmValue, StdHeader);
//
// Set ASPM on EP side
//
FchGppSetEpAspm (PCI_ADDRESS (BusNum, 0, 0, 0), PortAspmValue, StdHeader);
//
// Set ASPM on port side
//
FchGppSetAspm (PCI_ADDRESS (0, 21, PortId, 0), PortAspmValue, StdHeader);
}
}
RwAlink ((FCH_RCINDXP_REG02 | (UINT32) (RCINDXP << 29) | (PortId << 24) ), ~(BIT15), (BIT15), StdHeader);
}
RwAlink ((FCH_RCINDXC_REG02 | (UINT32) (RCINDXC << 29)), ~(BIT0), (BIT0), StdHeader);
//
// Configure Lock HWInit registers
//
AbValue = ReadAlink (FCH_ABCFG_REGC0 | (UINT32) (ABCFG << 29), StdHeader);
if (AbValue & 0xF0) {
AbValue = ReadAlink (FCH_RCINDXC_REG10 | (UINT32) (RCINDXC << 29), StdHeader);
WriteAlink (FCH_RCINDXC_REG10 | (UINT32) (RCINDXC << 29), AbValue | BIT0, StdHeader); /// Set HWINIT_WR_LOCK
if ( FchGppPhyPllPowerDown == TRUE ) {
//
// Power Saving Feature for GPP Lanes
//
// Set PCIE_P_CNTL in Alink PCIEIND space
//
AbValue = ReadAlink (RC_INDXC_REG40 | (UINT32) (RCINDXC << 29), StdHeader);
AbValue |= BIT12 + BIT3 + BIT0;
AbValue &= ~(BIT9 + BIT4);
WriteAlink (RC_INDXC_REG40 | (UINT32) (RCINDXC << 29), AbValue, StdHeader);
RwAlink (FCH_RCINDXC_REG02, ~(BIT8), (BIT8), StdHeader);
RwAlink (FCH_RCINDXC_REG02, ~(BIT3), (BIT3), StdHeader);
}
}
//
// Restore strap0 via override
//
if (LocalCfgPtr->Gpp.PcieAer) {
RwAlink (FCH_ABCFG_REG310 | (UINT32) (ABCFG << 29), 0xFFFFFFFF, BIT7, StdHeader);
RwAlink (RC_INDXC_REGC0, 0xFFFFFFFF, BIT9, StdHeader);
}
}
/**
* FchGppSetAspm - Set GPP ASPM
*
*
* @param[in] PciAddress PCI Address.
* @param[in] LxState Lane State.
* @param[in] StdHeader
*
*/
VOID
FchGppSetAspm (
IN UINT32 PciAddress,
IN UINT8 LxState,
IN AMD_CONFIG_PARAMS *StdHeader
)
{
UINT8 PcieCapOffset;
UINT8 DeviceType;
PcieCapOffset = FchFindPciCap (PciAddress, PCIE_CAP_ID, StdHeader);
if (PcieCapOffset) {
//
// Read link capabilities register (0x0C[11:10] - ASPM support)
//
ReadPci (PciAddress + PcieCapOffset + 0x0D, AccessWidth8, &DeviceType, StdHeader);
if (DeviceType & BIT2) {
DeviceType = (DeviceType >> 2) & (BIT1 + BIT0);
//
// Set ASPM state in link control register
//
RwPci (PciAddress + PcieCapOffset + 0x10, AccessWidth8, 0xffffffff, LxState & DeviceType, StdHeader);
}
}
}
/**
* FchGppSetEpAspm - Set EP ASPM
*
*
* @param[in] PciAddress PCI Address.
* @param[in] LxState Lane State.
* @param[in] StdHeader
*
*/
VOID
FchGppSetEpAspm (
IN UINT32 PciAddress,
IN UINT8 LxState,
IN AMD_CONFIG_PARAMS *StdHeader
)
{
UINT8 DeviceType;
UINT8 MaxFuncs;
UINT32 DevBDF;
MaxFuncs = 1;
ReadPci (PciAddress + 0x0E, AccessWidth8, &DeviceType, StdHeader);
if (DeviceType & BIT7) {
MaxFuncs = 8; /// multi-function device
}
while (MaxFuncs != 0) {
DevBDF = PciAddress + (UINT32) ((MaxFuncs - 1) << 16);
FchGppSetAspm (DevBDF, LxState, StdHeader);
MaxFuncs--;
}
}
/**
* FchGppValidateAspm - Validate EndPoint support for GPP ASPM
*
*
* @param[in] PciAddress PCI Address.
* @param[in] LxState Lane State.
* @param[in] StdHeader
*
*/
VOID
FchGppValidateAspm (
IN UINT32 PciAddress,
IN UINT8 *LxState,
IN AMD_CONFIG_PARAMS *StdHeader
)
{
UINT8 PcieCapOffset;
UINT8 DeviceType;
UINT8 MaxFuncs;
UINT32 DevBDF;
MaxFuncs = 1;
ReadPci (PciAddress + 0x0E, AccessWidth8, &DeviceType, StdHeader);
if (DeviceType & BIT7) {
MaxFuncs = 8; /// multi-function device
}
while (MaxFuncs != 0) {
DevBDF = PciAddress + (UINT32) ((MaxFuncs - 1) << 16);
PcieCapOffset = FchFindPciCap (DevBDF, PCIE_CAP_ID, StdHeader);
if (PcieCapOffset) {
//
// Read link capabilities register (0x0C[11:10] - ASPM support)
//
ReadPci (DevBDF + PcieCapOffset + 0x0D, AccessWidth8, &DeviceType, StdHeader);
if (DeviceType & BIT2) {
DeviceType = (DeviceType >> 2) & (BIT1 + BIT0);
//
// Update ASPM state as what endpoint support
//
*LxState &= DeviceType;
}
}
MaxFuncs--;
}
}
/**
* FchFindPciCap - Find PCI Cap
*
*
* @param[in] PciAddress PCI Address.
* @param[in] TargetCapId Target Cap ID.
* @param[in] StdHeader
*
*/
UINT8
FchFindPciCap (
IN UINT32 PciAddress,
IN UINT8 TargetCapId,
IN AMD_CONFIG_PARAMS *StdHeader
)
{
UINT8 NextCapPtr;
UINT8 CapId;
NextCapPtr = 0x34;
while (NextCapPtr != 0) {
ReadPci (PciAddress + NextCapPtr, AccessWidth8, &NextCapPtr, StdHeader);
if (NextCapPtr == 0xff) {
return 0;
}
if (NextCapPtr != 0) {
ReadPci (PciAddress + NextCapPtr, AccessWidth8, &CapId, StdHeader);
if (CapId == TargetCapId) {
break;
} else {
NextCapPtr++;
}
}
}
return NextCapPtr;
}