blob: 720b3df55903be1250e9ece67fe30eba311c0782 [file] [log] [blame]
/**
* @file
*
* mauc32_3.c
*
* Platform specific settings for C32 DDR3 unbuffered dimms
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/Ardk)
* @e \$Revision: 44323 $ @e \$Date: 2010-12-22 01:24:58 -0700 (Wed, 22 Dec 2010) $
*
**/
/*****************************************************************************
*
* Copyright (c) 2011, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/
/* This file contains routine that add platform specific support AM3 */
#include "AGESA.h"
#include "mport.h"
#include "ma.h"
#include "Ids.h"
#include "cpuFamRegisters.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "mu.h"
#include "Filecode.h"
#define FILECODE PROC_MEM_ARDK_C32_MAUC32_3_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*
*-----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
STATIC CONST UINT8 ROMDATA C32UDdr3CLKDis[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
// Even chip select maps to M[B,A]_CKE[0]
// Odd chip select maps to M[B,A]_CKE[1]
STATIC CONST UINT8 ROMDATA C32UDdr3CKETri[] = {0x55, 0xAA};
// Bit 0: M[B,A]0_ODT[0]
// Bit 1: M[B,A]1_ODT[0]
// Bit 2: M[B,A]0_ODT[1]
// Bit 3: M[B,A]1_ODT[1]
STATIC CONST UINT8 ROMDATA C32UDdr3ODTTri2D[] = {0x01, 0x04, 0x02, 0x08};
// 3 dimms per channel
// Dimm 0: BP_MEMODTx[0]
// Dimm 1: BP_MEMODTx[3,1]
// Dimm 2: BP_MEMODTx[2]
STATIC CONST UINT8 ROMDATA C32UDdr3ODTTri3D[] = {0xFF, 0xFF, 0xFF, 0xFF};
// Bit 0: M[B,A]0_CS_H/L[0]
// Bit 1: M[B,A]0_CS_H/L[1]
// Bit 2: M[B,A]0_CS_H/L[2]
// Bit 3: M[B,A]0_CS_H/L[3]
STATIC CONST UINT8 ROMDATA C32UDdr3CSTri[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
/* -----------------------------------------------------------------------------*/
/**
*
* This is function sets the platform specific settings for C32 DDR3 unbuffered dimms
*
*
* @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
* @param[in] SocketID Socket number
* @param[in,out] *CurrentChannel Pointer to CH_DEF_STRUCT
*
* @return AGESA_SUCCESS
* @return CurrentChannel->MemClkDisMap Points this pointer to C32 MemClkDis table
* @return CurrentChannel->ChipSelTriMap Points this pointer to C32 CS table
* @return CurrentChannel->CKETriMap Points this pointer to C32 ODT table
* @return CurrentChannel->ODTTriMap Points this pointer to C32 CKE table
* @return CurrentChannel->DctEccDQSLike Indicates the bytes that should be averaged for ECC
* @return CurrentChannel->DctEccDQSScale Indicates the scale that should be used for Averaging ECC byte
* @return CurrentChannel->DctAddrTmg Address Command Timing Settings for specified channel
* @return CurrentChannel->DctOdcCtl Drive Strength settings for specified channel
* @return CurrentChannel->SlowMode Slow Mode
*
*
*/
AGESA_STATUS
MemAGetPsCfgUC32_3 (
IN OUT MEM_DATA_STRUCT *MemData,
IN UINT8 SocketID,
IN OUT CH_DEF_STRUCT *CurrentChannel
)
{
STATIC CONST PSCFG_ENTRY PSCfg[] = {
{DDR800_FREQUENCY, 0xFF, 0x00390039, 0x20223323},
{DDR1066_FREQUENCY, 0xFF, 0x00350037, 0x20223323},
{DDR1333_FREQUENCY, 0xFF, 0x00000035, 0x20223323},
{DDR1600_FREQUENCY, 0xFF, 0x00000033, 0x20223323}
};
STATIC CONST ADV_PSCFG_ODT_ENTRY PSCfg2DIMMsODT[] = {
{SR_DIMM0, 0x00000000, 0x00000000, 0x00000001, 0x00000000, 1},
{DR_DIMM0, 0x00000000, 0x00000000, 0x00000104, 0x00000000, 1},
{SR_DIMM1, 0x00000000,0x00000000,0x00020000, 0x00000000, 1},
{DR_DIMM1, 0x00000000,0x00000000,0x02080000, 0x00000000, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, 0x01010202,0x00000000,0x09030603, 0x00000000, 2},
};
STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY PSCfg2DIMMsWlODT[] = {
{SR_DIMM0, {0x01, 0x00, 0x00, 0x00}, 1},
{DR_DIMM0, {0x04, 0x00, 0x00, 0x00}, 1},
{SR_DIMM1, {0x00, 0x02, 0x00, 0x00}, 1},
{DR_DIMM1, {0x00, 0x08, 0x00, 0x00}, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, {0x03, 0x03, 0x00, 0x00}, 2}
};
STATIC CONST ADV_PSCFG_ODT_ENTRY PSCfg3DIMMsODT[] = {
{SR_DIMM2 + DR_DIMM2, 0x00000000, 0x00000000, 0x00000000, 0x00000404, 1},
//{SR_DIMM0 + DR_DIMM0, 0x00000000, 0x00000000, 0x00000101, 0x00000000, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, 0x00000404, 0x00000101, 0x00000405, 0x00000105, 2},
//{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, 0x05050606, 0x00000303, 0x0D070607, 0x00000307, 3},
};
STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY PSCfg3DIMMsWlODT[] = {
{SR_DIMM2 + DR_DIMM2, {0x00, 0x00, 0x04, 0x00}, 1},
//{SR_DIMM0 + DR_DIMM0, {0x01, 0x02, 0x00, 0x00}, 1},
{SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, {0x05, 0x00, 0x05, 0x00}, 2},
//{SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x07, 0x07, 0x07, 0x00}, 3},
};
UINT16 i;
UINT16 j;
UINT8 MaxDimmPerCH;
UINT8 Loads;
UINT8 Dimms;
UINT16 Speed;
UINT16 DIMMRankType;
UINT16 _DIMMRankType;
UINT32 AddrTmgCTL;
UINT32 DctOdcCtl;
UINT32 PhyRODTCSLow;
UINT32 PhyRODTCSHigh;
UINT32 PhyWODTCSLow;
UINT32 PhyWODTCSHigh;
UINT8 PhyWLODT[4];
UINT8 PSCfgODTSize;
UINT8 PSCfgWlODTSize;
BOOLEAN SlowMode;
UINT8 DimmTpMatch;
CONST ADV_PSCFG_ODT_ENTRY *PSCfgODTPtr;
CONST ADV_R_PSCFG_WL_ODT_ENTRY *PSCfgWlODTPtr;
UINT8 *DimmsPerChPtr;
ASSERT (MemData != NULL);
ASSERT (CurrentChannel != NULL);
AddrTmgCTL = 0;
DctOdcCtl = 0;
PhyRODTCSLow = 0;
PhyRODTCSHigh = 0;
PhyWODTCSLow = 0;
PhyWODTCSHigh = 0;
PhyWLODT[0] = 0x0F;
PhyWLODT[1] = 0x0F;
PhyWLODT[2] = 0x0F;
PhyWLODT[3] = 0x0F;
if ((CurrentChannel->MCTPtr->LogicalCpuid.Family & AMD_FAMILY_10_C32) == 0) {
return AGESA_UNSUPPORTED;
}
if (CurrentChannel->TechType != DDR3_TECHNOLOGY) {
return AGESA_UNSUPPORTED;
}
if (CurrentChannel->RegDimmPresent) {
return AGESA_UNSUPPORTED;
}
// Prepare inputs
DimmsPerChPtr = FindPSOverrideEntry (MemData->ParameterListPtr->PlatformMemoryConfiguration, PSO_MAX_DIMMS, SocketID, CurrentChannel->ChannelID);
if (DimmsPerChPtr != NULL) {
MaxDimmPerCH = *DimmsPerChPtr;
} else {
MaxDimmPerCH = 2;
}
Loads = CurrentChannel->Loads;
Dimms = CurrentChannel->Dimms;
Speed = CurrentChannel->DCTPtr->Timings.Speed;
DIMMRankType = MemAGetPsRankType (CurrentChannel);
if ((Speed == DDR1333_FREQUENCY || Speed == DDR1600_FREQUENCY) && (Dimms == 2)) {
SlowMode = TRUE; // 2T
} else {
SlowMode = FALSE; // 1T
}
for (i = 0; i < GET_SIZE_OF (PSCfg); i++) {
if (Speed == PSCfg[i].Speed) {
if (Loads <= PSCfg[i].Loads) {
AddrTmgCTL = PSCfg[i].AddrTmg;
DctOdcCtl = PSCfg[i].Odc;
break;
}
}
}
ASSERT (i < GET_SIZE_OF (PSCfg));
if (MaxDimmPerCH == 3) {
PSCfgODTPtr = PSCfg3DIMMsODT;
PSCfgWlODTPtr = PSCfg3DIMMsWlODT;
PSCfgODTSize = sizeof (PSCfg3DIMMsODT) / sizeof (ADV_PSCFG_ODT_ENTRY);
PSCfgWlODTSize = sizeof (PSCfg3DIMMsWlODT) / sizeof (ADV_R_PSCFG_WL_ODT_ENTRY);
} else {
PSCfgODTPtr = PSCfg2DIMMsODT;
PSCfgWlODTPtr = PSCfg2DIMMsWlODT;
PSCfgODTSize = sizeof (PSCfg2DIMMsODT) / sizeof (ADV_PSCFG_ODT_ENTRY);
PSCfgWlODTSize = sizeof (PSCfg2DIMMsWlODT) / sizeof (ADV_R_PSCFG_WL_ODT_ENTRY);
}
// Programmable ODT
for (i = 0; i < PSCfgODTSize; i++, PSCfgODTPtr++) {
if (Dimms != PSCfgODTPtr->Dimms) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & PSCfgODTPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == PSCfgODTPtr->Dimms) {
PhyRODTCSLow = PSCfgODTPtr->PhyRODTCSLow;
PhyRODTCSHigh = PSCfgODTPtr->PhyRODTCSHigh;
PhyWODTCSLow = PSCfgODTPtr->PhyWODTCSLow;
PhyWODTCSHigh = PSCfgODTPtr->PhyWODTCSHigh;
break;
}
}
// WL ODT
for (i = 0; i < PSCfgWlODTSize; i++, PSCfgWlODTPtr++) {
if (Dimms != PSCfgWlODTPtr->Dimms) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & PSCfgWlODTPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == PSCfgWlODTPtr->Dimms) {
PhyWLODT[0] = PSCfgWlODTPtr->PhyWrLvOdt[0];
PhyWLODT[1] = PSCfgWlODTPtr->PhyWrLvOdt[1];
PhyWLODT[2] = PSCfgWlODTPtr->PhyWrLvOdt[2];
PhyWLODT[3] = PSCfgWlODTPtr->PhyWrLvOdt[3];
break;
}
}
//
// Overrides and/or exceptions
//
if (Dimms == 1) {
if (Loads >= 16) {
if (Speed == DDR800_FREQUENCY) {
AddrTmgCTL = 0x003B0000;
} else if (Speed == DDR1066_FREQUENCY) {
AddrTmgCTL = 0x00380000;
} else if (Speed == DDR1333_FREQUENCY) {
AddrTmgCTL = 0x00360000;
} else {
AddrTmgCTL = 0x00340000;
SlowMode = TRUE;
}
} else {
AddrTmgCTL = 0;
}
DctOdcCtl = 0x20113222;
}
CurrentChannel->MemClkDisMap = (UINT8 *) C32UDdr3CLKDis;
CurrentChannel->CKETriMap = (UINT8 *) C32UDdr3CKETri;
CurrentChannel->ChipSelTriMap = (UINT8 *) C32UDdr3CSTri;
switch (MaxDimmPerCH) {
case 3:
CurrentChannel->ODTTriMap = (UINT8 *) C32UDdr3ODTTri3D;
break;
default:
CurrentChannel->ODTTriMap = (UINT8 *) C32UDdr3ODTTri2D; // Most conservative
}
CurrentChannel->DctEccDqsLike = 0x0403;
CurrentChannel->DctEccDqsScale = 0x70;
CurrentChannel->DctAddrTmg = AddrTmgCTL;
CurrentChannel->DctOdcCtl = DctOdcCtl;
CurrentChannel->PhyRODTCSLow = PhyRODTCSLow;
CurrentChannel->PhyRODTCSHigh = PhyRODTCSHigh;
CurrentChannel->PhyWODTCSLow = PhyWODTCSLow;
CurrentChannel->PhyWODTCSHigh = PhyWODTCSHigh;
for (i = 0; i < sizeof (CurrentChannel->PhyWLODT); i++) {
CurrentChannel->PhyWLODT[i] = PhyWLODT[i];
}
CurrentChannel->SlowMode = SlowMode;
return AGESA_SUCCESS;
}