blob: b1a0684b8e1cf7286e97b389b4a253213518875f [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <pc80/mc146818rtc.h>
#include <spd.h>
#include <string.h>
#include <arch/io.h>
#include "raminit.h"
#include "i945.h"
#include <cbmem.h>
struct cbmem_entry *get_cbmem_toc(void)
{
return (struct cbmem_entry *)(get_top_of_ram() - HIGH_MEMORY_SIZE);
}
/* Debugging macros. */
#if CONFIG_DEBUG_RAM_SETUP
#define PRINTK_DEBUG(x...) printk(BIOS_DEBUG, x)
#else
#define PRINTK_DEBUG(x...)
#endif
#define RAM_INITIALIZATION_COMPLETE (1 << 19)
#define RAM_COMMAND_SELF_REFRESH (0x0 << 16)
#define RAM_COMMAND_NOP (0x1 << 16)
#define RAM_COMMAND_PRECHARGE (0x2 << 16)
#define RAM_COMMAND_MRS (0x3 << 16)
#define RAM_COMMAND_EMRS (0x4 << 16)
#define RAM_COMMAND_CBR (0x6 << 16)
#define RAM_COMMAND_NORMAL (0x7 << 16)
#define RAM_EMRS_1 (0x0 << 21)
#define RAM_EMRS_2 (0x1 << 21)
#define RAM_EMRS_3 (0x2 << 21)
static int get_dimm_spd_address(struct sys_info *sysinfo, int device)
{
if (sysinfo->spd_addresses)
return sysinfo->spd_addresses[device];
else
return DIMM0 + device;
}
static inline int spd_read_byte(unsigned device, unsigned address)
{
return smbus_read_byte(device, address);
}
static __attribute__((noinline)) void do_ram_command(u32 command)
{
u32 reg32;
reg32 = MCHBAR32(DCC);
reg32 &= ~( (3<<21) | (1<<20) | (1<<19) | (7 << 16) );
reg32 |= command;
/* Also set Init Complete */
if (command == RAM_COMMAND_NORMAL)
reg32 |= RAM_INITIALIZATION_COMPLETE;
PRINTK_DEBUG(" Sending RAM command 0x%08x", reg32);
MCHBAR32(DCC) = reg32; /* This is the actual magic */
PRINTK_DEBUG("...done\n");
udelay(1);
}
static void ram_read32(u32 offset)
{
PRINTK_DEBUG(" ram read: %08x\n", offset);
read32(offset);
}
#if CONFIG_DEBUG_RAM_SETUP
void sdram_dump_mchbar_registers(void)
{
int i;
printk(BIOS_DEBUG, "Dumping MCHBAR Registers\n");
for (i=0; i<0xfff; i+=4) {
if (MCHBAR32(i) == 0)
continue;
printk(BIOS_DEBUG, "0x%04x: 0x%08x\n", i, MCHBAR32(i));
}
}
#endif
static int memclk(void)
{
int offset = 0;
#if CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GM
offset++;
#endif
switch (((MCHBAR32(CLKCFG) >> 4) & 7) - offset) {
case 1: return 400;
case 2: return 533;
case 3: return 667;
default: printk(BIOS_DEBUG, "memclk: unknown register value %x\n", ((MCHBAR32(CLKCFG) >> 4) & 7) - offset);
}
return -1;
}
#if CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GM
static u16 fsbclk(void)
{
switch (MCHBAR32(CLKCFG) & 7) {
case 0: return 400;
case 1: return 533;
case 3: return 667;
default: printk(BIOS_DEBUG, "fsbclk: unknown register value %x\n", MCHBAR32(CLKCFG) & 7);
}
return 0xffff;
}
#elif CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GC
static u16 fsbclk(void)
{
switch (MCHBAR32(CLKCFG) & 7) {
case 0: return 1066;
case 1: return 533;
case 2: return 800;
default: printk(BIOS_DEBUG, "fsbclk: unknown register value %x\n", MCHBAR32(CLKCFG) & 7);
}
return 0xffff;
}
#endif
static int sdram_capabilities_max_supported_memory_frequency(void)
{
u32 reg32;
#if CONFIG_MAXIMUM_SUPPORTED_FREQUENCY
return CONFIG_MAXIMUM_SUPPORTED_FREQUENCY;
#endif
reg32 = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xe4); /* CAPID0 + 4 */
reg32 &= (7 << 0);
switch (reg32) {
case 4: return 400;
case 3: return 533;
case 2: return 667;
}
/* Newer revisions of this chipset rather support faster memory clocks,
* so if it's a reserved value, return the fastest memory clock that we
* know of and can handle
*/
return 667;
}
/**
* @brief determine whether chipset is capable of dual channel interleaved mode
*
* @return 1 if interleaving is supported, 0 otherwise
*/
static int sdram_capabilities_interleave(void)
{
u32 reg32;
reg32 = pci_read_config32(PCI_DEV(0, 0x00,0), 0xe4); /* CAPID0 + 4 */
reg32 >>= 25;
reg32 &= 1;
return (!reg32);
}
/**
* @brief determine whether chipset is capable of two memory channels
*
* @return 1 if dual channel operation is supported, 0 otherwise
*/
static int sdram_capabilities_dual_channel(void)
{
u32 reg32;
reg32 = pci_read_config32(PCI_DEV(0, 0x00,0), 0xe4); /* CAPID0 + 4 */
reg32 >>= 24;
reg32 &= 1;
return (!reg32);
}
static int sdram_capabilities_enhanced_addressing_xor(void)
{
u8 reg8;
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
reg8 &= (1 << 7);
return (!reg8);
}
static int sdram_capabilities_two_dimms_per_channel(void)
{
u8 reg8;
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe8); /* CAPID0 + 8 */
reg8 &= (1 << 0);
return (reg8 != 0);
}
// TODO check if we ever need this function
#if 0
static int sdram_capabilities_MEM4G_disable(void)
{
u8 reg8;
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
reg8 &= (1 << 0);
return (reg8 != 0);
}
#endif
#define GFX_FREQUENCY_CAP_166MHZ 0x04
#define GFX_FREQUENCY_CAP_200MHZ 0x03
#define GFX_FREQUENCY_CAP_250MHZ 0x02
#define GFX_FREQUENCY_CAP_ALL 0x00
static int sdram_capabilities_core_frequencies(void)
{
u8 reg8;
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
reg8 &= (1 << 3) | (1 << 2) | (1 << 1);
reg8 >>= 1;
return (reg8);
}
static void sdram_detect_errors(struct sys_info *sysinfo)
{
u8 reg8;
u8 do_reset = 0;
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
if (reg8 & ((1<<7)|(1<<2))) {
if (reg8 & (1<<2)) {
printk(BIOS_DEBUG, "SLP S4# Assertion Width Violation.\n");
/* Write back clears bit 2 */
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
do_reset = 1;
}
if (reg8 & (1<<7)) {
printk(BIOS_DEBUG, "DRAM initialization was interrupted.\n");
reg8 &= ~(1<<7);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
do_reset = 1;
}
/* Set SLP_S3# Assertion Stretch Enable */
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4); /* GEN_PMCON_3 */
reg8 |= (1 << 3);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8);
if (do_reset) {
printk(BIOS_DEBUG, "Reset required.\n");
outb(0x00, 0xcf9);
outb(0x0e, 0xcf9);
for (;;) asm("hlt"); /* Wait for reset! */
}
}
/* Set DRAM initialization bit in ICH7 */
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
reg8 |= (1<<7);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
/* clear self refresh status if check is disabled or not a resume */
if (!CONFIG_CHECK_SLFRCS_ON_RESUME || sysinfo->boot_path != BOOT_PATH_RESUME) {
MCHBAR8(SLFRCS) |= 3;
} else {
/* Validate self refresh config */
if (((sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED) ||
(sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)) &&
!(MCHBAR8(SLFRCS) & (1<<0))) {
do_reset = 1;
}
if (((sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED) ||
(sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)) &&
!(MCHBAR8(SLFRCS) & (1<<1))) {
do_reset = 1;
}
}
if (do_reset) {
printk(BIOS_DEBUG, "Reset required.\n");
outb(0x00, 0xcf9);
outb(0x0e, 0xcf9);
for (;;) asm("hlt"); /* Wait for reset! */
}
}
/**
* @brief Get generic DIMM parameters.
* @param sysinfo Central memory controller information structure
*
* This function gathers several pieces of information for each system DIMM:
* o DIMM width (x8 / x16)
* o DIMM sides (single sided / dual sided)
*
* Also, some non-supported scenarios are detected.
*/
static void sdram_get_dram_configuration(struct sys_info *sysinfo)
{
u32 dimm_mask = 0;
int i;
/**
* i945 supports two DIMMs, in two configurations:
*
* - single channel with two DIMMs
* - dual channel with one DIMM per channel
*
* In practice dual channel mainboards have their SPD at 0x50/0x52
* whereas single channel configurations have their SPD at 0x50/0x51.
*
* The capability register knows a lot about the channel configuration
* but for now we stick with the information we gather via SPD.
*/
if (sdram_capabilities_dual_channel()) {
sysinfo->dual_channel = 1;
printk(BIOS_DEBUG, "This mainboard supports Dual Channel Operation.\n");
} else {
sysinfo->dual_channel = 0;
printk(BIOS_DEBUG, "This mainboard supports only Single Channel Operation.\n");
}
/**
* Since we only support two DIMMs in total, there is a limited number
* of combinations. This function returns the type of DIMMs.
* return value:
* [0:7] lower DIMM population
* [8-15] higher DIMM population
* [16] dual channel?
*
* There are 5 different possible populations for a DIMM socket:
* 1. x16 double sided (X16DS)
* 2. x8 double sided (X8DS)
* 3. x16 single sided (X16SS)
* 4. x8 double stacked (X8DDS)
* 5. not populated (NC)
*
* For the return value we start counting at zero.
*
*/
for (i=0; i<(2 * DIMM_SOCKETS); i++) {
int device = get_dimm_spd_address(sysinfo, i);
u8 reg8;
/* Initialize the socket information with a sane value */
sysinfo->dimm[i] = SYSINFO_DIMM_NOT_POPULATED;
/* Dual Channel not supported, but Channel 1? Bail out */
if (!sdram_capabilities_dual_channel() && (i >> 1))
continue;
/* Two DIMMs per channel not supported, but odd DIMM number? */
if (!sdram_capabilities_two_dimms_per_channel() && (i& 1))
continue;
printk(BIOS_DEBUG, "DDR II Channel %d Socket %d: ", (i >> 1), (i & 1));
if (spd_read_byte(device, SPD_MEMORY_TYPE) != SPD_MEMORY_TYPE_SDRAM_DDR2) {
printk(BIOS_DEBUG, "N/A\n");
continue;
}
reg8 = spd_read_byte(device, SPD_DIMM_CONFIG_TYPE);
if (reg8 == ERROR_SCHEME_ECC)
die("Error: ECC memory not supported by this chipset\n");
reg8 = spd_read_byte(device, SPD_MODULE_ATTRIBUTES);
if (reg8 & MODULE_BUFFERED)
die("Error: Buffered memory not supported by this chipset\n");
if (reg8 & MODULE_REGISTERED)
die("Error: Registered memory not supported by this chipset\n");
switch (spd_read_byte(device, SPD_PRIMARY_SDRAM_WIDTH)) {
case 0x08:
switch (spd_read_byte(device, SPD_NUM_DIMM_BANKS) & 0x0f) {
case 1:
printk(BIOS_DEBUG, "x8DDS\n");
sysinfo->dimm[i] = SYSINFO_DIMM_X8DDS;
break;
case 0:
printk(BIOS_DEBUG, "x8DS\n");
sysinfo->dimm[i] = SYSINFO_DIMM_X8DS;
break;
default:
printk(BIOS_DEBUG, "Unsupported.\n");
}
break;
case 0x10:
switch (spd_read_byte(device, SPD_NUM_DIMM_BANKS) & 0x0f) {
case 1:
printk(BIOS_DEBUG, "x16DS\n");
sysinfo->dimm[i] = SYSINFO_DIMM_X16DS;
break;
case 0:
printk(BIOS_DEBUG, "x16SS\n");
sysinfo->dimm[i] = SYSINFO_DIMM_X16SS;
break;
default:
printk(BIOS_DEBUG, "Unsupported.\n");
}
break;
default:
die("Unsupported DDR-II memory width.\n");
}
dimm_mask |= (1 << i);
}
if (!dimm_mask) {
die("No memory installed.\n");
}
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
printk(BIOS_INFO, "Channel 0 has no memory populated.\n");
}
}
/**
* @brief determine if any DIMMs are stacked
*
* @param sysinfo central sysinfo data structure.
*/
static void sdram_verify_package_type(struct sys_info * sysinfo)
{
int i;
/* Assume no stacked DIMMs are available until we find one */
sysinfo->package = 0;
for (i=0; i<2*DIMM_SOCKETS; i++) {
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
/* Is the current DIMM a stacked DIMM? */
if (spd_read_byte(get_dimm_spd_address(sysinfo, i), SPD_NUM_DIMM_BANKS) & (1 << 4))
sysinfo->package = 1;
}
}
static u8 sdram_possible_cas_latencies(struct sys_info * sysinfo)
{
int i;
u8 cas_mask;
/* Setup CAS mask with all supported CAS Latencies */
cas_mask = SPD_CAS_LATENCY_DDR2_3 |
SPD_CAS_LATENCY_DDR2_4 |
SPD_CAS_LATENCY_DDR2_5;
for (i=0; i<2*DIMM_SOCKETS; i++) {
if (sysinfo->dimm[i] != SYSINFO_DIMM_NOT_POPULATED)
cas_mask &= spd_read_byte(get_dimm_spd_address(sysinfo, i),
SPD_ACCEPTABLE_CAS_LATENCIES);
}
if(!cas_mask) {
die("No DDR-II modules with accepted CAS latencies found.\n");
}
return cas_mask;
}
static void sdram_detect_cas_latency_and_ram_speed(struct sys_info * sysinfo, u8 cas_mask)
{
int i, j, idx;
int lowest_common_cas = 0;
int max_ram_speed = 0;
const u8 ddr2_speeds_table[] = {
0x50, 0x60, /* DDR2 400: tCLK = 5.0ns tAC = 0.6ns */
0x3d, 0x50, /* DDR2 533: tCLK = 3.75ns tAC = 0.5ns */
0x30, 0x45, /* DDR2 667: tCLK = 3.0ns tAC = 0.45ns */
};
const u8 spd_lookup_table[] = {
SPD_MIN_CYCLE_TIME_AT_CAS_MAX, SPD_ACCESS_TIME_FROM_CLOCK,
SPD_SDRAM_CYCLE_TIME_2ND, SPD_ACCESS_TIME_FROM_CLOCK_2ND,
SPD_SDRAM_CYCLE_TIME_3RD, SPD_ACCESS_TIME_FROM_CLOCK_3RD
};
switch (sdram_capabilities_max_supported_memory_frequency()) {
case 400: max_ram_speed = 0; break;
case 533: max_ram_speed = 1; break;
case 667: max_ram_speed = 2; break;
}
if (fsbclk() == 533)
max_ram_speed = 1;
sysinfo->memory_frequency = 0;
sysinfo->cas = 0;
if (cas_mask & SPD_CAS_LATENCY_DDR2_3) {
lowest_common_cas = 3;
} else if (cas_mask & SPD_CAS_LATENCY_DDR2_4) {
lowest_common_cas = 4;
} else if (cas_mask & SPD_CAS_LATENCY_DDR2_5) {
lowest_common_cas = 5;
}
PRINTK_DEBUG("lowest common cas = %d\n", lowest_common_cas);
for (j = max_ram_speed; j>=0; j--) {
int freq_cas_mask = cas_mask;
PRINTK_DEBUG("Probing Speed %d\n", j);
for (i=0; i<2*DIMM_SOCKETS; i++) {
int device = get_dimm_spd_address(sysinfo, i);
int current_cas_mask;
PRINTK_DEBUG(" DIMM: %d\n", i);
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) {
continue;
}
current_cas_mask = spd_read_byte(device, SPD_ACCEPTABLE_CAS_LATENCIES);
while (current_cas_mask) {
int highest_supported_cas = 0, current_cas = 0;
PRINTK_DEBUG(" Current CAS mask: %04x; ", current_cas_mask);
if (current_cas_mask & SPD_CAS_LATENCY_DDR2_5) {
highest_supported_cas = 5;
} else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_4) {
highest_supported_cas = 4;
} else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_3) {
highest_supported_cas = 3;
} else {
die("Invalid max. CAS.\n");
}
if (current_cas_mask & SPD_CAS_LATENCY_DDR2_3) {
current_cas = 3;
} else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_4) {
current_cas = 4;
} else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_5) {
current_cas = 5;
} else {
die("Invalid CAS.\n");
}
idx = highest_supported_cas - current_cas;
PRINTK_DEBUG("idx=%d, ", idx);
PRINTK_DEBUG("tCLK=%x, ", spd_read_byte(device, spd_lookup_table[2*idx]));
PRINTK_DEBUG("tAC=%x", spd_read_byte(device, spd_lookup_table[(2*idx)+1]));
if (spd_read_byte(device, spd_lookup_table[2*idx]) <= ddr2_speeds_table[2*j] &&
spd_read_byte(device, spd_lookup_table[(2*idx)+1]) <= ddr2_speeds_table[(2*j)+1]) {
PRINTK_DEBUG(": OK\n");
break;
}
PRINTK_DEBUG(": Not fast enough!\n");
current_cas_mask &= ~(1 << (current_cas));
}
freq_cas_mask &= current_cas_mask;
if (!current_cas_mask) {
PRINTK_DEBUG(" No valid CAS for this speed on DIMM %d\n", i);
break;
}
}
PRINTK_DEBUG(" freq_cas_mask for speed %d: %04x\n", j, freq_cas_mask);
if (freq_cas_mask) {
switch (j) {
case 0: sysinfo->memory_frequency = 400; break;
case 1: sysinfo->memory_frequency = 533; break;
case 2: sysinfo->memory_frequency = 667; break;
}
if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_3) {
sysinfo->cas = 3;
} else if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_4) {
sysinfo->cas = 4;
} else if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_5) {
sysinfo->cas = 5;
}
break;
}
}
if (sysinfo->memory_frequency && sysinfo->cas) {
printk(BIOS_DEBUG, "Memory will be driven at %dMHz with CAS=%d clocks\n",
sysinfo->memory_frequency, sysinfo->cas);
} else {
die("Could not find common memory frequency and CAS\n");
}
}
static void sdram_detect_smallest_tRAS(struct sys_info * sysinfo)
{
int i;
int tRAS_time;
int tRAS_cycles;
int freq_multiplier = 0;
switch (sysinfo->memory_frequency) {
case 400: freq_multiplier = 0x14; break; /* 5ns */
case 533: freq_multiplier = 0x0f; break; /* 3.75ns */
case 667: freq_multiplier = 0x0c; break; /* 3ns */
}
tRAS_cycles = 4; /* 4 clocks minimum */
tRAS_time = tRAS_cycles * freq_multiplier;
for (i=0; i<2*DIMM_SOCKETS; i++) {
u8 reg8;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
reg8 = spd_read_byte(get_dimm_spd_address(sysinfo, i), SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
if (!reg8) {
die("Invalid tRAS value.\n");
}
while ((tRAS_time >> 2) < reg8) {
tRAS_time += freq_multiplier;
tRAS_cycles++;
}
}
if(tRAS_cycles > 0x18) {
die("DDR-II Module does not support this frequency (tRAS error)\n");
}
printk(BIOS_DEBUG, "tRAS = %d cycles\n", tRAS_cycles);
sysinfo->tras = tRAS_cycles;
}
static void sdram_detect_smallest_tRP(struct sys_info * sysinfo)
{
int i;
int tRP_time;
int tRP_cycles;
int freq_multiplier = 0;
switch (sysinfo->memory_frequency) {
case 400: freq_multiplier = 0x14; break; /* 5ns */
case 533: freq_multiplier = 0x0f; break; /* 3.75ns */
case 667: freq_multiplier = 0x0c; break; /* 3ns */
}
tRP_cycles = 2; /* 2 clocks minimum */
tRP_time = tRP_cycles * freq_multiplier;
for (i=0; i<2*DIMM_SOCKETS; i++) {
u8 reg8;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
reg8 = spd_read_byte(get_dimm_spd_address(sysinfo, i), SPD_MIN_ROW_PRECHARGE_TIME);
if (!reg8) {
die("Invalid tRP value.\n");
}
while (tRP_time < reg8) {
tRP_time += freq_multiplier;
tRP_cycles++;
}
}
if(tRP_cycles > 6) {
die("DDR-II Module does not support this frequency (tRP error)\n");
}
printk(BIOS_DEBUG, "tRP = %d cycles\n", tRP_cycles);
sysinfo->trp = tRP_cycles;
}
static void sdram_detect_smallest_tRCD(struct sys_info * sysinfo)
{
int i;
int tRCD_time;
int tRCD_cycles;
int freq_multiplier = 0;
switch (sysinfo->memory_frequency) {
case 400: freq_multiplier = 0x14; break; /* 5ns */
case 533: freq_multiplier = 0x0f; break; /* 3.75ns */
case 667: freq_multiplier = 0x0c; break; /* 3ns */
}
tRCD_cycles = 2; /* 2 clocks minimum */
tRCD_time = tRCD_cycles * freq_multiplier;
for (i=0; i<2*DIMM_SOCKETS; i++) {
u8 reg8;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
reg8 = spd_read_byte(get_dimm_spd_address(sysinfo, i), SPD_MIN_RAS_TO_CAS_DELAY);
if (!reg8) {
die("Invalid tRCD value.\n");
}
while (tRCD_time < reg8) {
tRCD_time += freq_multiplier;
tRCD_cycles++;
}
}
if(tRCD_cycles > 6) {
die("DDR-II Module does not support this frequency (tRCD error)\n");
}
printk(BIOS_DEBUG, "tRCD = %d cycles\n", tRCD_cycles);
sysinfo->trcd = tRCD_cycles;
}
static void sdram_detect_smallest_tWR(struct sys_info * sysinfo)
{
int i;
int tWR_time;
int tWR_cycles;
int freq_multiplier = 0;
switch (sysinfo->memory_frequency) {
case 400: freq_multiplier = 0x14; break; /* 5ns */
case 533: freq_multiplier = 0x0f; break; /* 3.75ns */
case 667: freq_multiplier = 0x0c; break; /* 3ns */
}
tWR_cycles = 2; /* 2 clocks minimum */
tWR_time = tWR_cycles * freq_multiplier;
for (i=0; i<2*DIMM_SOCKETS; i++) {
u8 reg8;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
reg8 = spd_read_byte(get_dimm_spd_address(sysinfo, i), SPD_WRITE_RECOVERY_TIME);
if (!reg8) {
die("Invalid tWR value.\n");
}
while (tWR_time < reg8) {
tWR_time += freq_multiplier;
tWR_cycles++;
}
}
if(tWR_cycles > 5) {
die("DDR-II Module does not support this frequency (tWR error)\n");
}
printk(BIOS_DEBUG, "tWR = %d cycles\n", tWR_cycles);
sysinfo->twr = tWR_cycles;
}
static void sdram_detect_smallest_tRFC(struct sys_info * sysinfo)
{
int i, index = 0;
const u8 tRFC_cycles[] = {
/* 75 105 127.5 */
15, 21, 26, /* DDR2-400 */
20, 28, 34, /* DDR2-533 */
25, 35, 43 /* DDR2-667 */
};
for (i=0; i<2*DIMM_SOCKETS; i++) {
u8 reg8;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
reg8 = sysinfo->banksize[i*2];
switch (reg8) {
case 0x04: reg8 = 0; break;
case 0x08: reg8 = 1; break;
case 0x10: reg8 = 2; break;
case 0x20: reg8 = 3; break;
}
if (sysinfo->dimm[i] == SYSINFO_DIMM_X16DS || sysinfo->dimm[i] == SYSINFO_DIMM_X16SS)
reg8++;
if (reg8 > 3) {
/* Can this happen? Go back to 127.5ns just to be sure
* we don't run out of the array. This may be wrong
*/
printk(BIOS_DEBUG, "DIMM %d is 1Gb x16.. Please report.\n", i);
reg8 = 3;
}
if (reg8 > index)
index = reg8;
}
index--;
switch (sysinfo->memory_frequency) {
case 667: index += 3; /* Fallthrough */
case 533: index += 3; /* Fallthrough */
case 400: break;
}
sysinfo->trfc = tRFC_cycles[index];
printk(BIOS_DEBUG, "tRFC = %d cycles\n", tRFC_cycles[index]);
}
static void sdram_detect_smallest_refresh(struct sys_info * sysinfo)
{
int i;
sysinfo->refresh = 0;
for (i=0; i<2*DIMM_SOCKETS; i++) {
int refresh;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
refresh = spd_read_byte(get_dimm_spd_address(sysinfo, i),
SPD_REFRESH) & ~(1 << 7);
/* 15.6us */
if (!refresh)
continue;
/* Refresh is slower than 15.6us, use 15.6us */
if (refresh > 2)
continue;
if (refresh == 2) {
sysinfo->refresh = 1;
break;
}
die("DDR-II module has unsupported refresh value\n");
}
printk(BIOS_DEBUG, "Refresh: %s\n", sysinfo->refresh?"7.8us":"15.6us");
}
static void sdram_verify_burst_length(struct sys_info * sysinfo)
{
int i;
for (i=0; i<2*DIMM_SOCKETS; i++) {
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
if (!(spd_read_byte(get_dimm_spd_address(sysinfo, i),
SPD_SUPPORTED_BURST_LENGTHS) & SPD_BURST_LENGTH_8))
die("Only DDR-II RAM with burst length 8 is supported by this chipset.\n");
}
}
static void sdram_program_dram_width(struct sys_info * sysinfo)
{
u16 c0dramw=0, c1dramw=0;
int idx;
if (sysinfo->dual_channel)
idx = 2;
else
idx = 1;
switch (sysinfo->dimm[0]) {
case 0: c0dramw = 0x0000; break; /* x16DS */
case 1: c0dramw = 0x0001; break; /* x8DS */
case 2: c0dramw = 0x0000; break; /* x16SS */
case 3: c0dramw = 0x0005; break; /* x8DDS */
case 4: c0dramw = 0x0000; break; /* NC */
}
switch (sysinfo->dimm[idx]) {
case 0: c1dramw = 0x0000; break; /* x16DS */
case 1: c1dramw = 0x0010; break; /* x8DS */
case 2: c1dramw = 0x0000; break; /* x16SS */
case 3: c1dramw = 0x0050; break; /* x8DDS */
case 4: c1dramw = 0x0000; break; /* NC */
}
if ( !sdram_capabilities_dual_channel() ) {
/* Single Channel */
c0dramw |= c1dramw;
c1dramw = 0;
}
MCHBAR16(C0DRAMW) = c0dramw;
MCHBAR16(C1DRAMW) = c1dramw;
}
static void sdram_write_slew_rates(u32 offset, const u32 *slew_rate_table)
{
int i;
for (i=0; i<16; i++)
MCHBAR32(offset+(i*4)) = slew_rate_table[i];
}
static const u32 dq2030[] = {
0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e,
0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d,
0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f,
0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531
};
static const u32 dq2330[] = {
0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e,
0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d,
0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f,
0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531
};
static const u32 cmd2710[] = {
0x07060605, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b,
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f,
0x1110100f, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b,
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f
};
static const u32 cmd3210[] = {
0x0f0d0b0a, 0x17151311, 0x1f1d1b19, 0x1f1f1f1f,
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f,
0x18171615, 0x1f1f1c1a, 0x1f1f1f1f, 0x1f1f1f1f,
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f
};
static const u32 clk2030[] = {
0x0e0d0d0c, 0x100f0f0e, 0x100f0e0d, 0x15131211,
0x1d1b1917, 0x2523211f, 0x2a282927, 0x32302e2c,
0x17161514, 0x1b1a1918, 0x1f1e1d1c, 0x23222120,
0x27262524, 0x2d2b2928, 0x3533312f, 0x3d3b3937
};
static const u32 ctl3215[] = {
0x01010000, 0x03020101, 0x07060504, 0x0b0a0908,
0x100f0e0d, 0x14131211, 0x18171615, 0x1c1b1a19,
0x05040403, 0x07060605, 0x0a090807, 0x0f0d0c0b,
0x14131211, 0x18171615, 0x1c1b1a19, 0x201f1e1d
};
static const u32 ctl3220[] = {
0x05040403, 0x07060505, 0x0e0c0a08, 0x1a171411,
0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e,
0x09080807, 0x0b0a0a09, 0x0f0d0c0b, 0x1b171311,
0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e
};
static const u32 nc[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000
};
enum {
DQ2030,
DQ2330,
CMD2710,
CMD3210,
CLK2030,
CTL3215,
CTL3220,
NC,
};
static const u8 dual_channel_slew_group_lookup[] = {
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710,
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710,
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710,
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710,
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, NC, NC,
NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
NC, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
NC, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD2710
};
static const u8 single_channel_slew_group_lookup[] = {
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
DQ2330, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
DQ2330, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD3210
};
static const u32 *slew_group_lookup(int dual_channel, int index)
{
const u8 *slew_group;
/* Dual Channel needs different tables. */
if (dual_channel)
slew_group = dual_channel_slew_group_lookup;
else
slew_group = single_channel_slew_group_lookup;
switch (slew_group[index]) {
case DQ2030: return dq2030;
case DQ2330: return dq2330;
case CMD2710: return cmd2710;
case CMD3210: return cmd3210;
case CLK2030: return clk2030;
case CTL3215: return ctl3215;
case CTL3220: return ctl3220;
case NC: return nc;
}
return nc;
}
#if CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GM
/* Strength multiplier tables */
static const u8 dual_channel_strength_multiplier[] = {
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22,
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22,
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22,
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22,
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
0x00, 0x00, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x44, 0x22
};
static const u8 single_channel_strength_multiplier[] = {
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
0x33, 0x00, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
0x33, 0x00, 0x11, 0x00, 0x44, 0x44, 0x33, 0x11
};
#elif CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GC
static const u8 dual_channel_strength_multiplier[] = {
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33
};
static const u8 single_channel_strength_multiplier[] = {
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00
};
#endif
static void sdram_rcomp_buffer_strength_and_slew(struct sys_info *sysinfo)
{
const u8 * strength_multiplier;
int idx, dual_channel;
/* Set Strength Multipliers */
/* Dual Channel needs different tables. */
if (sdram_capabilities_dual_channel()) {
printk(BIOS_DEBUG, "Programming Dual Channel RCOMP\n");
strength_multiplier = dual_channel_strength_multiplier;
dual_channel = 1;
idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[2];
} else {
printk(BIOS_DEBUG, "Programming Single Channel RCOMP\n");
strength_multiplier = single_channel_strength_multiplier;
dual_channel = 0;
idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[1];
}
printk(BIOS_DEBUG, "Table Index: %d\n", idx);
MCHBAR8(G1SC) = strength_multiplier[idx * 8 + 0];
MCHBAR8(G2SC) = strength_multiplier[idx * 8 + 1];
MCHBAR8(G3SC) = strength_multiplier[idx * 8 + 2];
MCHBAR8(G4SC) = strength_multiplier[idx * 8 + 3];
MCHBAR8(G5SC) = strength_multiplier[idx * 8 + 4];
MCHBAR8(G6SC) = strength_multiplier[idx * 8 + 5];
MCHBAR8(G7SC) = strength_multiplier[idx * 8 + 6];
MCHBAR8(G8SC) = strength_multiplier[idx * 8 + 7];
/* Channel 0 */
sdram_write_slew_rates(G1SRPUT, slew_group_lookup(dual_channel, idx * 8 + 0));
sdram_write_slew_rates(G2SRPUT, slew_group_lookup(dual_channel, idx * 8 + 1));
if ((slew_group_lookup(dual_channel, idx * 8 + 2) != nc) && (sysinfo->package == SYSINFO_PACKAGE_STACKED)) {
sdram_write_slew_rates(G3SRPUT, ctl3220);
} else {
sdram_write_slew_rates(G3SRPUT, slew_group_lookup(dual_channel, idx * 8 + 2));
}
sdram_write_slew_rates(G4SRPUT, slew_group_lookup(dual_channel, idx * 8 + 3));
sdram_write_slew_rates(G5SRPUT, slew_group_lookup(dual_channel, idx * 8 + 4));
sdram_write_slew_rates(G6SRPUT, slew_group_lookup(dual_channel, idx * 8 + 5));
/* Channel 1 */
if (sysinfo->dual_channel) {
sdram_write_slew_rates(G7SRPUT, slew_group_lookup(dual_channel, idx * 8 + 6));
sdram_write_slew_rates(G8SRPUT, slew_group_lookup(dual_channel, idx * 8 + 7));
} else {
sdram_write_slew_rates(G7SRPUT, nc);
sdram_write_slew_rates(G8SRPUT, nc);
}
}
static void sdram_enable_rcomp(void)
{
u32 reg32;
/* Enable Global Periodic RCOMP */
udelay(300);
reg32 = MCHBAR32(GBRCOMPCTL);
reg32 &= ~(1 << 23);
MCHBAR32(GBRCOMPCTL) = reg32;
}
static void sdram_program_dll_timings(struct sys_info *sysinfo)
{
u32 chan0dll = 0, chan1dll = 0;
int i;
printk(BIOS_DEBUG, "Programming DLL Timings... \n");
MCHBAR16(DQSMT) &= ~( (3 << 12) | (1 << 10) | ( 0xf << 0) );
MCHBAR16(DQSMT) |= (1 << 13) | (0xc << 0);
/* We drive both channels with the same speed */
switch (sysinfo->memory_frequency) {
case 400: chan0dll = 0x26262626; chan1dll=0x26262626; break; /* 400MHz */
case 533: chan0dll = 0x22222222; chan1dll=0x22222222; break; /* 533MHz */
case 667: chan0dll = 0x11111111; chan1dll=0x11111111; break; /* 667MHz */
}
for (i=0; i < 4; i++) {
MCHBAR32(C0R0B00DQST + (i * 0x10) + 0) = chan0dll;
MCHBAR32(C0R0B00DQST + (i * 0x10) + 4) = chan0dll;
MCHBAR32(C1R0B00DQST + (i * 0x10) + 0) = chan1dll;
MCHBAR32(C1R0B00DQST + (i * 0x10) + 4) = chan1dll;
}
}
static void sdram_force_rcomp(void)
{
u32 reg32;
u8 reg8;
reg32 = MCHBAR32(ODTC);
reg32 |= (1 << 28);
MCHBAR32(ODTC) = reg32;
reg32 = MCHBAR32(SMSRCTL);
reg32 |= (1 << 0);
MCHBAR32(SMSRCTL) = reg32;
/* Start initial RCOMP */
reg32 = MCHBAR32(GBRCOMPCTL);
reg32 |= (1 << 8);
MCHBAR32(GBRCOMPCTL) = reg32;
reg8 = i945_silicon_revision();
if ((reg8 == 0 && (MCHBAR32(DCC) & (3 << 0)) == 0) || (reg8 == 1)) {
reg32 = MCHBAR32(GBRCOMPCTL);
reg32 |= (3 << 5);
MCHBAR32(GBRCOMPCTL) = reg32;
}
}
static void sdram_initialize_system_memory_io(struct sys_info *sysinfo)
{
u8 reg8;
u32 reg32;
printk(BIOS_DEBUG, "Initializing System Memory IO... \n");
/* Enable Data Half Clock Pushout */
reg8 = MCHBAR8(C0HCTC);
reg8 &= ~0x1f;
reg8 |= ( 1 << 0);
MCHBAR8(C0HCTC) = reg8;
reg8 = MCHBAR8(C1HCTC);
reg8 &= ~0x1f;
reg8 |= ( 1 << 0);
MCHBAR8(C1HCTC) = reg8;
MCHBAR16(WDLLBYPMODE) &= ~( (1 << 9) | (1 << 6) | (1 << 4) | (1 << 3) | (1 << 1) );
MCHBAR16(WDLLBYPMODE) |= (1 << 8) | (1 << 7) | (1 << 5) | (1 << 2) | (1 << 0);
MCHBAR8(C0WDLLCMC) = 0;
MCHBAR8(C1WDLLCMC) = 0;
/* Program RCOMP Settings */
sdram_program_dram_width(sysinfo);
sdram_rcomp_buffer_strength_and_slew(sysinfo);
/* Indicate that RCOMP programming is done */
reg32 = MCHBAR32(GBRCOMPCTL);
reg32 &= ~( (1 << 29) | (1 << 26) | (3 << 21) | (3 << 2) );
reg32 |= (3 << 27) | (3 << 0);
MCHBAR32(GBRCOMPCTL) = reg32;
MCHBAR32(GBRCOMPCTL) |= (1 << 10);
/* Program DLL Timings */
sdram_program_dll_timings(sysinfo);
/* Force RCOMP cycle */
sdram_force_rcomp();
}
static void sdram_enable_system_memory_io(struct sys_info *sysinfo)
{
u32 reg32;
printk(BIOS_DEBUG, "Enabling System Memory IO... \n");
reg32 = MCHBAR32(RCVENMT);
reg32 &= ~(0x3f << 6);
MCHBAR32(RCVENMT) = reg32; /* [11:6] = 0 */
reg32 |= (1 << 11) | (1 << 9);
MCHBAR32(RCVENMT) = reg32;
reg32 = MCHBAR32(DRTST);
reg32 |= (1 << 3) | (1 << 2);
MCHBAR32(DRTST) = reg32;
reg32 = MCHBAR32(DRTST);
reg32 |= (1 << 6) | (1 << 4);
MCHBAR32(DRTST) = reg32;
asm volatile ("nop; nop;" ::: "memory");
reg32 = MCHBAR32(DRTST);
/* Is channel 0 populated? */
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)
reg32 |= (1 << 7) | (1 << 5);
else
reg32 |= (1 << 31);
/* Is channel 1 populated? */
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)
reg32 |= (1 << 9) | (1 << 8);
else
reg32 |= (1 << 30);
MCHBAR32(DRTST) = reg32;
/* Activate DRAM Channel IO Buffers */
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) {
reg32 = MCHBAR32(C0DRC1);
reg32 |= (1 << 8);
MCHBAR32(C0DRC1) = reg32;
}
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED) {
reg32 = MCHBAR32(C1DRC1);
reg32 |= (1 << 8);
MCHBAR32(C1DRC1) = reg32;
}
}
struct dimm_size {
unsigned long side1;
unsigned long side2;
};
static struct dimm_size sdram_get_dimm_size(struct sys_info *sysinfo, u16 dimmno)
{
/* Calculate the log base 2 size of a DIMM in bits */
struct dimm_size sz;
int value, low, rows, columns, device;
device = get_dimm_spd_address(sysinfo, dimmno);
sz.side1 = 0;
sz.side2 = 0;
rows = spd_read_byte(device, SPD_NUM_ROWS); /* rows */
if (rows < 0) goto hw_err;
if ((rows & 0xf) == 0) goto val_err;
sz.side1 += rows & 0xf;
columns = spd_read_byte(device, SPD_NUM_COLUMNS); /* columns */
if (columns < 0) goto hw_err;
if ((columns & 0xf) == 0) goto val_err;
sz.side1 += columns & 0xf;
value = spd_read_byte(device, SPD_NUM_BANKS_PER_SDRAM); /* banks */
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
sz.side1 += log2(value & 0xff);
/* Get the module data width and convert it to a power of two */
value = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_MSB); /* (high byte) */
if (value < 0) goto hw_err;
value &= 0xff;
value <<= 8;
low = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB); /* (low byte) */
if (low < 0) goto hw_err;
value = value | (low & 0xff);
if ((value != 72) && (value != 64)) goto val_err;
sz.side1 += log2(value);
/* side 2 */
value = spd_read_byte(device, SPD_NUM_DIMM_BANKS); /* number of physical banks */
if (value < 0) goto hw_err;
value &= 7;
value++;
if (value == 1) goto out;
if (value != 2) goto val_err;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
if ((rows & 0xf0) == 0) goto out; /* If symmetrical we are done */
/* Don't die here, I have not come across any of these to test what
* actually happens.
*/
printk(BIOS_ERR, "Assymetric DIMMs are not supported by this chipset\n");
sz.side2 -= (rows & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((rows >> 4) & 0x0f); /* Add in rows on side 2 */
sz.side2 -= (columns & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((columns >> 4) & 0x0f); /* Add in columns on side 2 */
goto out;
val_err:
die("Bad SPD value\n");
hw_err:
/* If a hardware error occurs the spd rom probably does not exist.
* In this case report that there is no memory
*/
sz.side1 = 0;
sz.side2 = 0;
out:
return sz;
}
static void sdram_detect_dimm_size(struct sys_info * sysinfo)
{
int i;
for(i = 0; i < 2 * DIMM_SOCKETS; i++) {
struct dimm_size sz;
sysinfo->banksize[i * 2] = 0;
sysinfo->banksize[(i * 2) + 1] = 0;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
sz = sdram_get_dimm_size(sysinfo, i);
sysinfo->banks[i] = spd_read_byte(get_dimm_spd_address(sysinfo, i),
SPD_NUM_BANKS_PER_SDRAM); /* banks */
if (sz.side1 < 30)
die("DDR-II rank size smaller than 128MB is not supported.\n");
sysinfo->banksize[i * 2] = 1 << (sz.side1 - 28);
printk(BIOS_DEBUG, "DIMM %d side 0 = %d MB\n", i, sysinfo->banksize[i * 2] * 32 );
if (!sz.side2)
continue;
/* If there is a second side, it has to have at least 128M, too */
if (sz.side2 < 30)
die("DDR-II rank size smaller than 128MB is not supported.\n");
sysinfo->banksize[(i * 2) + 1] = 1 << (sz.side2 - 28);
printk(BIOS_DEBUG, "DIMM %d side 1 = %d MB\n", i, sysinfo->banksize[(i * 2) + 1] * 32);
}
}
static int sdram_program_row_boundaries(struct sys_info *sysinfo)
{
int i;
int cum0, cum1, tolud, tom;
printk(BIOS_DEBUG, "Setting RAM size... \n");
cum0 = 0;
for(i = 0; i < 2 * DIMM_SOCKETS; i++) {
cum0 += sysinfo->banksize[i];
MCHBAR8(C0DRB0+i) = cum0;
}
/* Assume we continue in Channel 1 where we stopped in Channel 0 */
cum1 = cum0;
/* Exception: Interleaved starts from the beginning */
if (sysinfo->interleaved)
cum1 = 0;
#if 0
/* Exception: Channel 1 is not populated. C1DRB stays zero */
if (sysinfo->dimm[2] == SYSINFO_DIMM_NOT_POPULATED &&
sysinfo->dimm[3] == SYSINFO_DIMM_NOT_POPULATED)
cum1 = 0;
#endif
for(i = 0; i < 2 * DIMM_SOCKETS; i++) {
cum1 += sysinfo->banksize[i + 4];
MCHBAR8(C1DRB0+i) = cum1;
}
/* Set TOLUD Top Of Low Usable DRAM */
if (sysinfo->interleaved)
tolud = (cum0 + cum1) << 1;
else
tolud = (cum1 ? cum1 : cum0) << 1;
/* The TOM register has a different format */
tom = tolud >> 3;
/* Limit the value of TOLUD to leave some space for PCI memory. */
if (tolud > 0xd0)
tolud = 0xd0; /* 3.25GB : 0.75GB */
pci_write_config8(PCI_DEV(0,0,0), TOLUD, tolud);
printk(BIOS_DEBUG, "C0DRB = 0x%08x\n", MCHBAR32(C0DRB0));
printk(BIOS_DEBUG, "C1DRB = 0x%08x\n", MCHBAR32(C1DRB0));
printk(BIOS_DEBUG, "TOLUD = 0x%04x\n", pci_read_config8(PCI_DEV(0,0,0), TOLUD));
pci_write_config16(PCI_DEV(0,0,0), TOM, tom);
return 0;
}
static int sdram_set_row_attributes(struct sys_info *sysinfo)
{
int i, value;
u16 dra0=0, dra1=0, dra = 0;
printk(BIOS_DEBUG, "Setting row attributes... \n");
for(i=0; i < 2 * DIMM_SOCKETS; i++) {
u16 device;
u8 columnsrows;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) {
continue;
}
device = get_dimm_spd_address(sysinfo, i);
value = spd_read_byte(device, SPD_NUM_ROWS); /* rows */
columnsrows = (value & 0x0f);
value = spd_read_byte(device, SPD_NUM_COLUMNS); /* columns */
columnsrows |= (value & 0xf) << 4;
switch (columnsrows) {
case 0x9d: dra = 2; break;
case 0xad: dra = 3; break;
case 0xbd: dra = 4; break;
case 0xae: dra = 3; break;
case 0xbe: dra = 4; break;
default: die("Unsupported Rows/Columns. (DRA)");
}
/* Double Sided DIMMs? */
if (sysinfo->banksize[(2 * i) + 1] != 0) {
dra = (dra << 4) | dra;
}
if (i < DIMM_SOCKETS)
dra0 |= (dra << (i*8));
else
dra1 |= (dra << ((i - DIMM_SOCKETS)*8));
}
MCHBAR16(C0DRA0) = dra0;
MCHBAR16(C1DRA0) = dra1;
printk(BIOS_DEBUG, "C0DRA = 0x%04x\n", dra0);
printk(BIOS_DEBUG, "C1DRA = 0x%04x\n", dra1);
return 0;
}
static void sdram_set_bank_architecture(struct sys_info *sysinfo)
{
u32 off32;
int i;
MCHBAR16(C1BNKARC) &= 0xff00;
MCHBAR16(C0BNKARC) &= 0xff00;
off32 = C0BNKARC;
for (i=0; i < 2 * DIMM_SOCKETS; i++) {
/* Switch to second channel */
if (i == DIMM_SOCKETS)
off32 = C1BNKARC;
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
continue;
if (sysinfo->banks[i] != 8)
continue;
printk(BIOS_SPEW, "DIMM%d has 8 banks.\n", i);
if (i & 1)
MCHBAR16(off32) |= 0x50;
else
MCHBAR16(off32) |= 0x05;
}
}
#define REFRESH_7_8US 1
#define REFRESH_15_6US 0
static void sdram_program_refresh_rate(struct sys_info *sysinfo)
{
u32 reg32;
if (sysinfo->refresh == REFRESH_7_8US) {
reg32 = (2 << 8); /* Refresh enabled at 7.8us */
} else {
reg32 = (1 << 8); /* Refresh enabled at 15.6us */
}
MCHBAR32(C0DRC0) &= ~(7 << 8);
MCHBAR32(C0DRC0) |= reg32;
MCHBAR32(C1DRC0) &= ~(7 << 8);
MCHBAR32(C1DRC0) |= reg32;
}
static void sdram_program_cke_tristate(struct sys_info *sysinfo)
{
u32 reg32;
int i;
reg32 = MCHBAR32(C0DRC1);
for (i=0; i < 4; i++) {
if (sysinfo->banksize[i] == 0) {
reg32 |= (1 << (16 + i));
}
}
reg32 |= (1 << 12);
reg32 |= (1 << 11);
MCHBAR32(C0DRC1) = reg32;
/* Do we have to do this if we're in Single Channel Mode? */
reg32 = MCHBAR32(C1DRC1);
for (i=4; i < 8; i++) {
if (sysinfo->banksize[i] == 0) {
reg32 |= (1 << (12 + i));
}
}
reg32 |= (1 << 12);
reg32 |= (1 << 11);
MCHBAR32(C1DRC1) = reg32;
}
static void sdram_program_odt_tristate(struct sys_info *sysinfo)
{
u32 reg32;
int i;
reg32 = MCHBAR32(C0DRC2);
for (i=0; i < 4; i++) {
if (sysinfo->banksize[i] == 0) {
reg32 |= (1 << (24 + i));
}
}
MCHBAR32(C0DRC2) = reg32;
reg32 = MCHBAR32(C1DRC2);
for (i=4; i < 8; i++) {
if (sysinfo->banksize[i] == 0) {
reg32 |= (1 << (20 + i));
}
}
MCHBAR32(C1DRC2) = reg32;
}
static void sdram_set_timing_and_control(struct sys_info *sysinfo)
{
u32 reg32, off32;
u32 tWTR;
u32 temp_drt;
int i, page_size;
static const u8 const drt0_table[] = {
/* CL 3, 4, 5 */
3, 4, 5, /* FSB533/400, DDR533/400 */
4, 5, 6, /* FSB667, DDR533/400 */
4, 5, 6, /* FSB667, DDR667 */
};
static const u8 const cas_table[] = {
2, 1, 0, 3
};
reg32 = MCHBAR32(C0DRC0);
reg32 |= (1 << 2); /* Burst Length 8 */
reg32 &= ~( (1 << 13) | (1 << 12) );
MCHBAR32(C0DRC0) = reg32;
reg32 = MCHBAR32(C1DRC0);
reg32 |= (1 << 2); /* Burst Length 8 */
reg32 &= ~( (1 << 13) | (1 << 12) );
MCHBAR32(C1DRC0) = reg32;
if (!sysinfo->dual_channel && sysinfo->dimm[1] !=
SYSINFO_DIMM_NOT_POPULATED) {
reg32 = MCHBAR32(C0DRC0);
reg32 |= (1 << 15);
MCHBAR32(C0DRC0) = reg32;
}
sdram_program_refresh_rate(sysinfo);
sdram_program_cke_tristate(sysinfo);
sdram_program_odt_tristate(sysinfo);
/* Calculate DRT0 */
temp_drt = 0;
/* B2B Write Precharge (same bank) = CL-1 + BL/2 + tWR */
reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + sysinfo->twr;
temp_drt |= (reg32 << 28);
/* Write Auto Precharge (same bank) = CL-1 + BL/2 + tWR + tRP */
reg32 += sysinfo->trp;
temp_drt |= (reg32 << 4);
if (sysinfo->memory_frequency == 667) {
tWTR = 3; /* 667MHz */
} else {
tWTR = 2; /* 400 and 533 */
}
/* B2B Write to Read Command Spacing */
reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + tWTR;
temp_drt |= (reg32 << 24);
/* CxDRT0 [23:22], [21:20], [19:18] [16] have fixed values */
temp_drt |= ( (1 << 22) | (3 << 20) | (1 << 18) | (0 << 16) );
/* Program Write Auto Precharge to Activate */
off32 = 0;
if (sysinfo->fsb_frequency == 667) { /* 667MHz FSB */
off32 += 3;
}
if (sysinfo->memory_frequency == 667) {
off32 += 3;
}
off32 += sysinfo->cas - 3;
reg32 = drt0_table[off32];
temp_drt |= (reg32 << 11);
/* Read Auto Precharge to Activate */
temp_drt |= (8 << 0);
MCHBAR32(C0DRT0) = temp_drt;
MCHBAR32(C1DRT0) = temp_drt;
/* Calculate DRT1 */
temp_drt = MCHBAR32(C0DRT1) & 0x00020088;
/* DRAM RASB Precharge */
temp_drt |= (sysinfo->trp - 2) << 0;
/* DRAM RASB to CASB Delay */
temp_drt |= (sysinfo->trcd - 2) << 4;
/* CASB Latency */
temp_drt |= (cas_table[sysinfo->cas - 3]) << 8;
/* Refresh Cycle Time */
temp_drt |= (sysinfo->trfc) << 10;
/* Pre-All to Activate Delay */
temp_drt |= (0 << 16);
/* Precharge to Precharge Delay stays at 1 clock */
temp_drt |= (0 << 18);
/* Activate to Precharge Delay */
temp_drt |= (sysinfo->tras << 19);
/* Read to Precharge (tRTP) */
if (sysinfo->memory_frequency == 667) {
temp_drt |= (1 << 28);
} else {
temp_drt |= (0 << 28);
}
/* Determine page size */
reg32 = 0;
page_size = 1; /* Default: 1k pagesize */
for (i=0; i< 2*DIMM_SOCKETS; i++) {
if (sysinfo->dimm[i] == SYSINFO_DIMM_X16DS ||
sysinfo->dimm[i] == SYSINFO_DIMM_X16SS)
page_size = 2; /* 2k pagesize */
}
if (sysinfo->memory_frequency == 533 && page_size == 2) {
reg32 = 1;
}
if (sysinfo->memory_frequency == 667) {
reg32 = page_size;
}
temp_drt |= (reg32 << 30);
MCHBAR32(C0DRT1) = temp_drt;
MCHBAR32(C1DRT1) = temp_drt;
/* Program DRT2 */
reg32 = MCHBAR32(C0DRT2);
reg32 &= ~(1 << 8);
MCHBAR32(C0DRT2) = reg32;
reg32 = MCHBAR32(C1DRT2);
reg32 &= ~(1 << 8);
MCHBAR32(C1DRT2) = reg32;
/* Calculate DRT3 */
temp_drt = MCHBAR32(C0DRT3) & ~0x07ffffff;
/* Get old tRFC value */
reg32 = MCHBAR32(C0DRT1) >> 10;
reg32 &= 0x3f;
/* 788nS - tRFC */
switch (sysinfo->memory_frequency) {
case 400: /* 5nS */
reg32 = ((78800 / 500) - reg32) & 0x1ff;
reg32 |= (0x8c << 16) | (0x0c << 10); /* 1 us */
break;
case 533: /* 3.75nS */
reg32 = ((78800 / 375) - reg32) & 0x1ff;
reg32 |= (0xba << 16) | (0x10 << 10); /* 1 us */
break;
case 667: /* 3nS */
reg32 = ((78800 / 300) - reg32) & 0x1ff;
reg32 |= (0xe9 << 16) | (0x14 << 10); /* 1 us */
break;
}
temp_drt |= reg32;
MCHBAR32(C0DRT3) = temp_drt;
MCHBAR32(C1DRT3) = temp_drt;
}
static void sdram_set_channel_mode(struct sys_info *sysinfo)
{
u32 reg32;
printk(BIOS_DEBUG, "Setting mode of operation for memory channels...");
if (sdram_capabilities_interleave() &&
( ( sysinfo->banksize[0] + sysinfo->banksize[1] +
sysinfo->banksize[2] + sysinfo->banksize[3] ) ==
( sysinfo->banksize[4] + sysinfo->banksize[5] +
sysinfo->banksize[6] + sysinfo->banksize[7] ) ) ) {
/* Both channels equipped with DIMMs of the same size */
sysinfo->interleaved = 1;
} else {
sysinfo->interleaved = 0;
}
reg32 = MCHBAR32(DCC);
reg32 &= ~(7 << 0);
if(sysinfo->interleaved) {
/* Dual Channel Interleaved */
printk(BIOS_DEBUG, "Dual Channel Interleaved.\n");
reg32 |= (1 << 1);
} else if (sysinfo->dimm[0] == SYSINFO_DIMM_NOT_POPULATED &&
sysinfo->dimm[1] == SYSINFO_DIMM_NOT_POPULATED) {
/* Channel 1 only */
printk(BIOS_DEBUG, "Single Channel 1 only.\n");
reg32 |= (1 << 2);
} else if (sdram_capabilities_dual_channel() && sysinfo->dimm[2] !=
SYSINFO_DIMM_NOT_POPULATED) {
/* Dual Channel Assymetric */
printk(BIOS_DEBUG, "Dual Channel Assymetric.\n");
reg32 |= (1 << 0);
} else {
/* All bits 0 means Single Channel 0 operation */
printk(BIOS_DEBUG, "Single Channel 0 only.\n");
}
/* Now disable channel XORing */
reg32 |= (1 << 10);
MCHBAR32(DCC) = reg32;
PRINTK_DEBUG("DCC=0x%08x\n", MCHBAR32(DCC));
}
static void sdram_program_pll_settings(struct sys_info *sysinfo)
{
volatile u16 reg16;
MCHBAR32(PLLMON) = 0x80800000;
sysinfo->fsb_frequency = fsbclk();
if (sysinfo->fsb_frequency == 0xffff)
die("Unsupported FSB speed");
/* Program CPCTL according to FSB speed */
/* Only write the lower byte */
switch (sysinfo->fsb_frequency) {
case 400: MCHBAR8(CPCTL) = 0x90; break; /* FSB400 */
case 533: MCHBAR8(CPCTL) = 0x95; break; /* FSB533 */
case 667: MCHBAR8(CPCTL) = 0x8d; break; /* FSB667 */
}
MCHBAR16(CPCTL) &= ~(1 << 11);
reg16 = MCHBAR16(CPCTL); /* Read back register to activate settings */
}
static void sdram_program_graphics_frequency(struct sys_info *sysinfo)
{
u8 reg8;
u16 reg16;
u8 freq, second_vco, voltage;
#define CRCLK_166MHz 0x00
#define CRCLK_200MHz 0x01
#define CRCLK_250MHz 0x03
#define CRCLK_400MHz 0x05
#define CDCLK_200MHz 0x00
#define CDCLK_320MHz 0x40
#define VOLTAGE_1_05 0x00
#define VOLTAGE_1_50 0x01
printk(BIOS_DEBUG, "Setting Graphics Frequency... \n");
printk(BIOS_DEBUG, "FSB: %d MHz ", sysinfo->fsb_frequency);
voltage = VOLTAGE_1_05;
if (MCHBAR32(DFT_STRAP1) & (1 << 20))
voltage = VOLTAGE_1_50;
printk(BIOS_DEBUG, "Voltage: %s ", (voltage==VOLTAGE_1_05)?"1.05V":"1.5V");
/* Gate graphics hardware for frequency change */
reg8 = pci_read_config16(PCI_DEV(0,2,0), GCFC + 1);
reg8 = (1<<3) | (1<<1); /* disable crclk, gate cdclk */
pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8);
/* Get graphics frequency capabilities */
reg8 = sdram_capabilities_core_frequencies();
freq = CRCLK_250MHz;
switch (reg8) {
case GFX_FREQUENCY_CAP_ALL:
if (voltage == VOLTAGE_1_05)
freq = CRCLK_250MHz;
else
freq = CRCLK_400MHz; /* 1.5V requires 400MHz */
break;
case GFX_FREQUENCY_CAP_250MHZ: freq = CRCLK_250MHz; break;
case GFX_FREQUENCY_CAP_200MHZ: freq = CRCLK_200MHz; break;
case GFX_FREQUENCY_CAP_166MHZ: freq = CRCLK_166MHz; break;
}
if (freq != CRCLK_400MHz) {
/* What chipset are we? Force 166MHz for GMS */
reg8 = (pci_read_config8(PCI_DEV(0, 0x00,0), 0xe7) & 0x70) >> 4;
if (reg8==2)
freq = CRCLK_166MHz;
}
printk(BIOS_DEBUG, "Render: ");
switch (freq) {
case CRCLK_166MHz: printk(BIOS_DEBUG, "166Mhz"); break;
case CRCLK_200MHz: printk(BIOS_DEBUG, "200Mhz"); break;
case CRCLK_250MHz: printk(BIOS_DEBUG, "250Mhz"); break;
case CRCLK_400MHz: printk(BIOS_DEBUG, "400Mhz"); break;
}
if (i945_silicon_revision() == 0) {
sysinfo->mvco4x = 1;
} else {
sysinfo->mvco4x = 0;
}
second_vco = 0;
if (voltage == VOLTAGE_1_50) {
second_vco = 1;
} else if ((i945_silicon_revision() > 0) && (freq == CRCLK_250MHz)) {
u16 mem = sysinfo->memory_frequency;
u16 fsb = sysinfo->fsb_frequency;
if ( (fsb == 667 && mem == 533) ||
(fsb == 533 && mem == 533) ||
(fsb == 533 && mem == 400)) {
second_vco = 1;
}
if (fsb == 667 && mem == 533)
sysinfo->mvco4x = 1;
}
if (second_vco) {
sysinfo->clkcfg_bit7=1;
} else {
sysinfo->clkcfg_bit7=0;
}
/* Graphics Core Render Clock */
reg16 = pci_read_config16(PCI_DEV(0,2,0), GCFC);
reg16 &= ~( (7 << 0) | (1 << 13) );
reg16 |= freq;
pci_write_config16(PCI_DEV(0,2,0), GCFC, reg16);
/* Graphics Core Display Clock */
reg8 = pci_read_config8(PCI_DEV(0,2,0), GCFC);
reg8 &= ~( (1<<7) | (7<<4) );
if (voltage == VOLTAGE_1_05) {
reg8 |= CDCLK_200MHz;
printk(BIOS_DEBUG, " Display: 200MHz\n");
} else {
reg8 |= CDCLK_320MHz;
printk(BIOS_DEBUG, " Display: 320MHz\n");
}
pci_write_config8(PCI_DEV(0,2,0), GCFC, reg8);
reg8 = pci_read_config8(PCI_DEV(0,2,0), GCFC + 1);
reg8 |= (1<<3) | (1<<1);
pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8);
reg8 |= 0x0f;
pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8);
/* Ungate core render and display clocks */
reg8 &= 0xf0;
pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8);
}
static void sdram_program_memory_frequency(struct sys_info *sysinfo)
{
u32 clkcfg;
u8 reg8;
printk(BIOS_DEBUG, "Setting Memory Frequency... ");
clkcfg = MCHBAR32(CLKCFG);
printk(BIOS_DEBUG, "CLKCFG=0x%08x, ", clkcfg);
clkcfg &= ~( (1 << 12) | (1 << 7) | ( 7 << 4) );
if (sysinfo->mvco4x) {
printk(BIOS_DEBUG, "MVCO 4x, ");
clkcfg &= ~(1 << 12);
}
if (sysinfo->clkcfg_bit7) {
printk(BIOS_DEBUG, "second VCO, ");
clkcfg |= (1 << 7);
}
switch (sysinfo->memory_frequency) {
case 400: clkcfg |= (2 << 4); break;
case 533: clkcfg |= (3 << 4); break;
case 667: clkcfg |= (4 << 4); break;
default: die("Target Memory Frequency Error");
}
if (MCHBAR32(CLKCFG) == clkcfg) {
printk(BIOS_DEBUG, "ok (unchanged)\n");
return;
}
MCHBAR32(CLKCFG) = clkcfg;
/* Make sure the following code is in the
* cache before we execute it.
*/
goto cache_code;
vco_update:
reg8 = pci_read_config8(PCI_DEV(0,0x1f,0), 0xa2);
reg8 &= ~(1 << 7);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
clkcfg &= ~(1 << 10);
MCHBAR32(CLKCFG) = clkcfg;
clkcfg |= (1 << 10);
MCHBAR32(CLKCFG) = clkcfg;
asm volatile (
" movl $0x100, %%ecx\n"
"delay_update:\n"
" nop\n"
" nop\n"
" nop\n"
" nop\n"
" loop delay_update\n"
: /* No outputs */
: /* No inputs */
: "%ecx", "memory"
);
clkcfg &= ~(1 << 10);
MCHBAR32(CLKCFG) = clkcfg;
goto out;
cache_code:
goto vco_update;
out:
printk(BIOS_DEBUG, "CLKCFG=0x%08x, ", MCHBAR32(CLKCFG));
printk(BIOS_DEBUG, "ok\n");
}
static void sdram_program_clock_crossing(void)
{
int idx = 0;
/**
* We add the indices according to our clocks from CLKCFG.
*/
#if CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GM
static const u32 data_clock_crossing[] = {
0x00100401, 0x00000000, /* DDR400 FSB400 */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x08040120, 0x00000000, /* DDR400 FSB533 */
0x00100401, 0x00000000, /* DDR533 FSB533 */
0x00010402, 0x00000000, /* DDR667 FSB533 - fake values */
0x04020120, 0x00000010, /* DDR400 FSB667 */
0x10040280, 0x00000040, /* DDR533 FSB667 */
0x00100401, 0x00000000, /* DDR667 FSB667 */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
};
static const u32 command_clock_crossing[] = {
0x04020208, 0x00000000, /* DDR400 FSB400 */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x00060108, 0x00000000, /* DDR400 FSB533 */
0x04020108, 0x00000000, /* DDR533 FSB533 */
0xffffffff, 0xffffffff, /* nonexistant */
0x00040318, 0x00000000, /* DDR400 FSB667 */
0x04020118, 0x00000000, /* DDR533 FSB667 */
0x02010804, 0x00000000, /* DDR667 FSB667 */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
};
#elif CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GC
/* i945 G/P */
static const u32 data_clock_crossing[] = {
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x10080201, 0x00000000, /* DDR400 FSB533 */
0x00100401, 0x00000000, /* DDR533 FSB533 */
0x00010402, 0x00000000, /* DDR667 FSB533 - fake values */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x04020108, 0x00000000, /* DDR400 FSB800 */
0x00020108, 0x00000000, /* DDR533 FSB800 */
0x00080201, 0x00000000, /* DDR667 FSB800 */
0x00010402, 0x00000000, /* DDR400 FSB1066 */
0x04020108, 0x00000000, /* DDR533 FSB1066 */
0x08040110, 0x00000000, /* DDR667 FSB1066 */
};
static const u32 command_clock_crossing[] = {
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x00010800, 0x00000402, /* DDR400 FSB533 */
0x01000400, 0x00000200, /* DDR533 FSB533 */
0x00020904, 0x00000000, /* DDR667 FSB533 - fake values */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0xffffffff, 0xffffffff, /* nonexistant */
0x02010804, 0x00000000, /* DDR400 FSB800 */
0x00010402, 0x00000000, /* DDR533 FSB800 */
0x04020180, 0x00000008, /* DDR667 FSB800 */
0x00020904, 0x00000000, /* DDR400 FSB1066 */
0x02010804, 0x00000000, /* DDR533 FSB1066 */
0x180601c0, 0x00000020, /* DDR667 FSB1066 */
};
#endif
printk(BIOS_DEBUG, "Programming Clock Crossing...");
printk(BIOS_DEBUG, "MEM=");
switch (memclk()) {
case 400: printk(BIOS_DEBUG, "400"); idx += 0; break;
case 533: printk(BIOS_DEBUG, "533"); idx += 2; break;
case 667: printk(BIOS_DEBUG, "667"); idx += 4; break;
default: printk(BIOS_DEBUG, "RSVD %x", memclk()); return;
}
printk(BIOS_DEBUG, " FSB=");
switch (fsbclk()) {
case 400: printk(BIOS_DEBUG, "400"); idx += 0; break;
case 533: printk(BIOS_DEBUG, "533"); idx += 6; break;
case 667: printk(BIOS_DEBUG, "667"); idx += 12; break;
case 800: printk(BIOS_DEBUG, "800"); idx += 18; break;
case 1066: printk(BIOS_DEBUG, "1066"); idx += 24; break;
default: printk(BIOS_DEBUG, "RSVD %x\n", fsbclk()); return;
}
if (command_clock_crossing[idx]==0xffffffff) {
printk(BIOS_DEBUG, "Invalid MEM/FSB combination!\n");
}
MCHBAR32(CCCFT + 0) = command_clock_crossing[idx];
MCHBAR32(CCCFT + 4) = command_clock_crossing[idx + 1];
MCHBAR32(C0DCCFT + 0) = data_clock_crossing[idx];
MCHBAR32(C0DCCFT + 4) = data_clock_crossing[idx + 1];
MCHBAR32(C1DCCFT + 0) = data_clock_crossing[idx];
MCHBAR32(C1DCCFT + 4) = data_clock_crossing[idx + 1];
printk(BIOS_DEBUG, "... ok\n");
}
static void sdram_disable_fast_dispatch(void)
{
u32 reg32;
reg32 = MCHBAR32(FSBPMC3);
reg32 |= (1 << 1);
MCHBAR32(FSBPMC3) = reg32;
reg32 = MCHBAR32(SBTEST);
reg32 |= (3 << 1);
MCHBAR32(SBTEST) = reg32;
}
static void sdram_pre_jedec_initialization(void)
{
u32 reg32;
reg32 = MCHBAR32(WCC);
reg32 &= 0x113ff3ff;
reg32 |= (4 << 29) | (3 << 25) | (1 << 10);
MCHBAR32(WCC) = reg32;
MCHBAR32(SMVREFC) |= (1 << 6);
MCHBAR32(MMARB0) &= ~(3 << 17);
MCHBAR32(MMARB0) |= (1 << 21) | (1 << 16);
MCHBAR32(MMARB1) &= ~(7 << 8);
MCHBAR32(MMARB1) |= (3 << 8);
/* Adaptive Idle Timer Control */
MCHBAR32(C0AIT) = 0x000006c4;
MCHBAR32(C0AIT+4) = 0x871a066d;
MCHBAR32(C1AIT) = 0x000006c4;
MCHBAR32(C1AIT+4) = 0x871a066d;
}
#define EA_DUALCHANNEL_XOR_BANK_RANK_MODE (0xd4 << 24)
#define EA_DUALCHANNEL_XOR_BANK_MODE (0xf4 << 24)
#define EA_DUALCHANNEL_BANK_RANK_MODE (0xc2 << 24)
#define EA_DUALCHANNEL_BANK_MODE (0xe2 << 24)
#define EA_SINGLECHANNEL_XOR_BANK_RANK_MODE (0x91 << 24)
#define EA_SINGLECHANNEL_XOR_BANK_MODE (0xb1 << 24)
#define EA_SINGLECHANNEL_BANK_RANK_MODE (0x80 << 24)
#define EA_SINGLECHANNEL_BANK_MODE (0xa0 << 24)
static void sdram_enhanced_addressing_mode(struct sys_info *sysinfo)
{
u32 chan0 = 0, chan1 = 0;
int chan0_dualsided, chan1_dualsided, chan0_populated, chan1_populated;
chan0_populated = (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED);
chan1_populated = (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED);
chan0_dualsided = (sysinfo->banksize[1] || sysinfo->banksize[3]);
chan1_dualsided = (sysinfo->banksize[5] || sysinfo->banksize[7]);
if (sdram_capabilities_enhanced_addressing_xor()) {
if (!sysinfo->interleaved) {
/* Single Channel & Dual Channel Assymetric */
if (chan0_populated) {
if (chan0_dualsided) {
chan0 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE;
} else {
chan0 = EA_SINGLECHANNEL_XOR_BANK_MODE;
}
}
if (chan1_populated) {
if (chan1_dualsided) {
chan1 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE;
} else {
chan1 = EA_SINGLECHANNEL_XOR_BANK_MODE;
}
}
} else {
/* Interleaved has always both channels populated */
if (chan0_dualsided) {
chan0 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE;
} else {
chan0 = EA_DUALCHANNEL_XOR_BANK_MODE;
}
if (chan1_dualsided) {
chan1 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE;
} else {
chan1 = EA_DUALCHANNEL_XOR_BANK_MODE;
}
}
} else {
if (!sysinfo->interleaved) {
/* Single Channel & Dual Channel Assymetric */
if (chan0_populated) {
if (chan0_dualsided) {
chan0 = EA_SINGLECHANNEL_BANK_RANK_MODE;
} else {
chan0 = EA_SINGLECHANNEL_BANK_MODE;
}
}
if (chan1_populated) {
if (chan1_dualsided) {
chan1 = EA_SINGLECHANNEL_BANK_RANK_MODE;
} else {
chan1 = EA_SINGLECHANNEL_BANK_MODE;
}
}
} else {
/* Interleaved has always both channels populated */
if (chan0_dualsided) {
chan0 = EA_DUALCHANNEL_BANK_RANK_MODE;
} else {
chan0 = EA_DUALCHANNEL_BANK_MODE;
}
if (chan1_dualsided) {
chan1 = EA_DUALCHANNEL_BANK_RANK_MODE;
} else {
chan1 = EA_DUALCHANNEL_BANK_MODE;
}
}
}
MCHBAR32(C0DRC1) &= 0x00ffffff;
MCHBAR32(C0DRC1) |= chan0;
MCHBAR32(C1DRC1) &= 0x00ffffff;
MCHBAR32(C1DRC1) |= chan1;
}
static void sdram_post_jedec_initialization(struct sys_info *sysinfo)
{
u32 reg32;
/* Enable Channel XORing for Dual Channel Interleave */
if (sysinfo->interleaved) {
reg32 = MCHBAR32(DCC);
#if CONFIG_CHANNEL_XOR_RANDOMIZATION
reg32 &= ~(1 << 10);
reg32 |= (1 << 9);
#else
reg32 &= ~(1 << 9);
#endif
MCHBAR32(DCC) = reg32;
}
/* DRAM mode optimizations */
sdram_enhanced_addressing_mode(sysinfo);
reg32 = MCHBAR32(FSBPMC3);
reg32 &= ~(1 << 1);
MCHBAR32(FSBPMC3) = reg32;
reg32 = MCHBAR32(SBTEST);
reg32 &= ~(1 << 2);
MCHBAR32(SBTEST) = reg32;
reg32 = MCHBAR32(SBOCC);
reg32 &= 0xffbdb6ff;
reg32 |= (0xbdb6 << 8) | (1 << 0);
MCHBAR32(SBOCC) = reg32;
}
static void sdram_power_management(struct sys_info *sysinfo)
{
u8 reg8;
u16 reg16;
u32 reg32;
int integrated_graphics = 1;
int i;
reg32 = MCHBAR32(C0DRT2);
reg32 &= 0xffffff00;
/* Idle timer = 8 clocks, CKE idle timer = 16 clocks */
reg32 |= (1 << 5) | (1 << 4);
MCHBAR32(C0DRT2) = reg32;
reg32 = MCHBAR32(C1DRT2);
reg32 &= 0xffffff00;
/* Idle timer = 8 clocks, CKE idle timer = 16 clocks */
reg32 |= (1 << 5) | (1 << 4);
MCHBAR32(C1DRT2) = reg32;
reg32 = MCHBAR32(C0DRC1);
reg32 |= (1 << 12) | (1 << 11);
MCHBAR32(C0DRC1) = reg32;
reg32 = MCHBAR32(C1DRC1);
reg32 |= (1 << 12) | (1 << 11);
MCHBAR32(C1DRC1) = reg32;
if (i945_silicon_revision()>1) {
/* FIXME bits 5 and 0 only if PCIe graphics is disabled */
u16 peg_bits = (1 << 5) | (1 << 0);
MCHBAR16(UPMC1) = 0x1010 | peg_bits;
} else {
/* FIXME bits 5 and 0 only if PCIe graphics is disabled */
u16 peg_bits = (1 << 5) | (1 << 0);
/* Rev 0 and 1 */
MCHBAR16(UPMC1) = 0x0010 | peg_bits;
}
reg16 = MCHBAR16(UPMC2);
reg16 &= 0xfc00;
reg16 |= 0x0100;
MCHBAR16(UPMC2) = reg16;
MCHBAR32(UPMC3) = 0x000f06ff;
for (i=0; i<5; i++) {
MCHBAR32(UPMC3) &= ~(1 << 16);
MCHBAR32(UPMC3) |= (1 << 16);
}
MCHBAR32(GIPMC1) = 0x8000000c;
reg16 = MCHBAR16(CPCTL);
reg16 &= ~(7 << 11);
if (i945_silicon_revision()>2) {
reg16 |= (6 << 11);
} else {
reg16 |= (4 << 11);
}
MCHBAR16(CPCTL) = reg16;
#if 0
if ((MCHBAR32(ECO) & (1 << 16)) != 0) {
#else
if (i945_silicon_revision() != 0) {
#endif
switch (sysinfo->fsb_frequency) {
case 667: MCHBAR32(HGIPMC2) = 0x0d590d59; break;
case 533: MCHBAR32(HGIPMC2) = 0x155b155b; break;
}
} else {
switch (sysinfo->fsb_frequency) {
case 667: MCHBAR32(HGIPMC2) = 0x09c409c4; break;
case 533: MCHBAR32(HGIPMC2) = 0x0fa00fa0; break;
}
}
MCHBAR32(FSBPMC1) = 0x8000000c;
reg32 = MCHBAR32(C2C3TT);
reg32 &= 0xffff0000;
switch (sysinfo->fsb_frequency) {
case 667: reg32 |= 0x0600; break;
case 533: reg32 |= 0x0480; break;
}
MCHBAR32(C2C3TT) = reg32;
reg32 = MCHBAR32(C3C4TT);
reg32 &= 0xffff0000;
switch (sysinfo->fsb_frequency) {
case 667: reg32 |= 0x0b80; break;
case 533: reg32 |= 0x0980; break;
}
MCHBAR32(C3C4TT) = reg32;
if (i945_silicon_revision() == 0) {
MCHBAR32(ECO) &= ~(1 << 16);
} else {
MCHBAR32(ECO) |= (1 << 16);
}
#if 0
if (i945_silicon_revision() == 0) {
MCHBAR32(FSBPMC3) &= ~(1 << 29);
} else {
MCHBAR32(FSBPMC3) |= (1 << 29);
}
#endif
MCHBAR32(FSBPMC3) &= ~(1 << 29);
MCHBAR32(FSBPMC3) |= (1 << 21);
MCHBAR32(FSBPMC3) &= ~(1 << 19);
MCHBAR32(FSBPMC3) &= ~(1 << 13);
reg32 = MCHBAR32(FSBPMC4);
reg32 &= ~(3 << 24);
reg32 |= ( 2 << 24);
MCHBAR32(FSBPMC4) = reg32;
MCHBAR32(FSBPMC4) |= (1 << 21);
MCHBAR32(FSBPMC4) |= (1 << 5);
if ((i945_silicon_revision() < 2) /* || cpuid() = 0x6e8 */ ) {
/* stepping 0 and 1 or CPUID 6e8 */
MCHBAR32(FSBPMC4) &= ~(1 << 4);
} else {
MCHBAR32(FSBPMC4) |= (1 << 4);
}
reg8 = pci_read_config8(PCI_DEV(0,0x0,0), 0xfc);
reg8 |= (1 << 4);
pci_write_config8(PCI_DEV(0, 0x0, 0), 0xfc, reg8);
reg8 = pci_read_config8(PCI_DEV(0,0x2,0), 0xc1);
reg8 |= (1 << 2);
pci_write_config8(PCI_DEV(0, 0x2, 0), 0xc1, reg8);
#ifdef C2_SELF_REFRESH_DISABLE
if (integrated_graphics) {
printk(BIOS_DEBUG, "C2 self-refresh with IGD\n");
MCHBAR16(MIPMC4) = 0x0468;
MCHBAR16(MIPMC5) = 0x046c;
MCHBAR16(MIPMC6) = 0x046c;
} else {
MCHBAR16(MIPMC4) = 0x6468;
MCHBAR16(MIPMC5) = 0x646c;
MCHBAR16(MIPMC6) = 0x646c;
}
#else
if (integrated_graphics) {
MCHBAR16(MIPMC4) = 0x04f8;
MCHBAR16(MIPMC5) = 0x04fc;
MCHBAR16(MIPMC6) = 0x04fc;
} else {
MCHBAR16(MIPMC4) = 0x64f8;
MCHBAR16(MIPMC5) = 0x64fc;
MCHBAR16(MIPMC6) = 0x64fc;
}
#endif
reg32 = MCHBAR32(PMCFG);
reg32 &= ~(3 << 17);
reg32 |= (2 << 17);
MCHBAR32(PMCFG) = reg32;
MCHBAR32(PMCFG) |= (1 << 4);
reg32 = MCHBAR32(0xc30);
reg32 &= 0xffffff00;
reg32 |= 0x01;
MCHBAR32(0xc30) = reg32;
MCHBAR32(0xb18) &= ~(1 << 21);
}
static void sdram_thermal_management(void)
{
MCHBAR8(TCO1) = 0x00;
MCHBAR8(TCO0) = 0x00;
/* The Thermal Sensors for DIMMs at 0x50, 0x52 are at I2C addr
* 0x30/0x32.
*/
/* TODO This is not implemented yet. Volunteers? */
}
static void sdram_save_receive_enable(void)
{
int i;
u32 reg32;
u8 values[4];
/* The following values are stored to an unused CMOS
* area and restored instead of recalculated in case
* of an S3 resume.
*
* C0WL0REOST [7:0] -> 8 bit
* C1WL0REOST [7:0] -> 8 bit
* RCVENMT [11:8] [3:0] -> 8 bit
* C0DRT1 [27:24] -> 4 bit
* C1DRT1 [27:24] -> 4 bit
*/
values[0] = MCHBAR8(C0WL0REOST);
values[1] = MCHBAR8(C1WL0REOST);
reg32 = MCHBAR32(RCVENMT);
values[2] = (u8)((reg32 >> (8 - 4)) & 0xf0) | (reg32 & 0x0f);
reg32 = MCHBAR32(C0DRT1);
values[3] = (reg32 >> 24) & 0x0f;
reg32 = MCHBAR32(C1DRT1);
values[3] |= (reg32 >> (24 - 4)) & 0xf0;
/* coreboot only uses bytes 0 - 127 for its CMOS values so far
* so we grab bytes 128 - 131 to save the receive enable values
*/
for (i=0; i<4; i++)
cmos_write(values[i], 128 + i);
}
static void sdram_recover_receive_enable(void)
{
int i;
u32 reg32;
u8 values[4];
for (i=0; i<4; i++)
values[i] = cmos_read(128 + i);
MCHBAR8(C0WL0REOST) = values[0];
MCHBAR8(C1WL0REOST) = values[1];
reg32 = MCHBAR32(RCVENMT);
reg32 &= ~((0x0f << 8) | (0x0f << 0));
reg32 |= ((u32)(values[2] & 0xf0) << (8 - 4)) | (values[2] & 0x0f);
MCHBAR32(RCVENMT) = reg32;
reg32 = MCHBAR32(C0DRT1) & ~(0x0f << 24);
reg32 |= (u32)(values[3] & 0x0f) << 24;
MCHBAR32(C0DRT1) = reg32;
reg32 = MCHBAR32(C1DRT1) & ~(0x0f << 24);
reg32 |= (u32)(values[3] & 0xf0) << (24 - 4);
MCHBAR32(C1DRT1) = reg32;
}
#include "rcven.c"
static void sdram_program_receive_enable(struct sys_info *sysinfo)
{
MCHBAR32(REPC) |= (1 << 0);
/* enable upper CMOS */
RCBA32(0x3400) = (1 << 2);
/* Program Receive Enable Timings */
if (sysinfo->boot_path == BOOT_PATH_RESUME) {
sdram_recover_receive_enable();
} else {
receive_enable_adjust(sysinfo);
sdram_save_receive_enable();
}
MCHBAR32(C0DRC1) |= (1 << 6);
MCHBAR32(C1DRC1) |= (1 << 6);
MCHBAR32(C0DRC1) &= ~(1 << 6);
MCHBAR32(C1DRC1) &= ~(1 << 6);
MCHBAR32(MIPMC3) |= (0x0f << 0);
}
/**
* @brief Enable On-Die Termination for DDR2.
*
*/
static void sdram_on_die_termination(struct sys_info *sysinfo)
{
static const u32 odt[] = {
0x00024911, 0xe0010000,
0x00049211, 0xe0020000,
0x0006db11, 0xe0030000,
};
u32 reg32;
int cas;
reg32 = MCHBAR32(ODTC);
reg32 &= ~(3 << 16);
reg32 |= (1 << 14) | (1 << 6) | (2 << 16);
MCHBAR32(ODTC) = reg32;
if ( !(sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED &&
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) ) {
printk(BIOS_DEBUG, "one dimm per channel config.. \n");
reg32 = MCHBAR32(C0ODT);
reg32 &= ~(7 << 28);
MCHBAR32(C0ODT) = reg32;
reg32 = MCHBAR32(C1ODT);
reg32 &= ~(7 << 28);
MCHBAR32(C1ODT) = reg32;
}
cas = sysinfo->cas;
reg32 = MCHBAR32(C0ODT) & 0xfff00000;
reg32 |= odt[(cas-3) * 2];
MCHBAR32(C0ODT) = reg32;
reg32 = MCHBAR32(C1ODT) & 0xfff00000;
reg32 |= odt[(cas-3) * 2];
MCHBAR32(C1ODT) = reg32;
reg32 = MCHBAR32(C0ODT + 4) & 0x1fc8ffff;
reg32 |= odt[((cas-3) * 2) + 1];
MCHBAR32(C0ODT + 4) = reg32;
reg32 = MCHBAR32(C1ODT + 4) & 0x1fc8ffff;
reg32 |= odt[((cas-3) * 2) + 1];
MCHBAR32(C1ODT + 4) = reg32;
}
/**
* @brief Enable clocks to populated sockets
*/
static void sdram_enable_memory_clocks(struct sys_info *sysinfo)
{
u8 clocks[2] = { 0, 0 };
#if CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GM
#define CLOCKS_WIDTH 2
#elif CONFIG_NORTHBRIDGE_INTEL_SUBTYPE_I945GC
#define CLOCKS_WIDTH 3
#endif
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED)
clocks[0] |= (1 << CLOCKS_WIDTH)-1;
if (sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)
clocks[0] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH;
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED)
clocks[1] |= (1 << CLOCKS_WIDTH)-1;
if (sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)
clocks[1] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH;
#if CONFIG_OVERRIDE_CLOCK_DISABLE
/* Usually system firmware turns off system memory clock signals
* to unused SO-DIMM slots to reduce EMI and power consumption.
* However, the Kontron 986LCD-M does not like unused clock
* signals to be disabled.
*/
clocks[0] = 0xf; /* force all clock gate pairs to enable */
clocks[1] = 0xf; /* force all clock gate pairs to enable */
#endif
MCHBAR8(C0DCLKDIS) = clocks[0];
MCHBAR8(C1DCLKDIS) = clocks[1];
}
#define RTT_ODT_NONE 0
#define RTT_ODT_50_OHM ( (1 << 9) | (1 << 5) )
#define RTT_ODT_75_OHM (1 << 5)
#define RTT_ODT_150_OHM (1 << 9)
#define EMRS_OCD_DEFAULT ( (1 << 12) | (1 << 11) | (1 << 10) )
#define MRS_CAS_3 (3 << 7)
#define MRS_CAS_4 (4 << 7)
#define MRS_CAS_5 (5 << 7)
#define MRS_TWR_3 (2 << 12)
#define MRS_TWR_4 (3 << 12)
#define MRS_TWR_5 (4 << 12)
#define MRS_BT (1 << 6)
#define MRS_BL4 (2 << 3)
#define MRS_BL8 (3 << 3)
static void sdram_jedec_enable(struct sys_info *sysinfo)
{
int i, nonzero;
u32 bankaddr = 0, tmpaddr, mrsaddr = 0;
for (i = 0, nonzero = -1; i < 8; i++) {
if (sysinfo->banksize[i] == 0) {
continue;
}
printk(BIOS_DEBUG, "jedec enable sequence: bank %d\n", i);
switch (i) {
case 0:
/* Start at address 0 */
bankaddr = 0;
break;
case 4:
if (sysinfo->interleaved) {
bankaddr = 0x40;
break;
}
default:
if (nonzero != -1) {
printk(BIOS_DEBUG, "bankaddr from bank size of rank %d\n", nonzero);
bankaddr += sysinfo->banksize[nonzero] <<
(sysinfo->interleaved ? 26 : 25);
break;
}
/* No populated bank hit before. Start at address 0 */
bankaddr = 0;
}
/* We have a bank with a non-zero size.. Remember it
* for the next offset we have to calculate
*/
nonzero = i;
/* Get CAS latency set up */
switch (sysinfo->cas) {
case 5: mrsaddr = MRS_CAS_5; break;
case 4: mrsaddr = MRS_CAS_4; break;
case 3: mrsaddr = MRS_CAS_3; break;
default: die("Jedec Error (CAS).\n");
}
/* Get tWR set */
switch (sysinfo->twr) {
case 5: mrsaddr |= MRS_TWR_5; break;
case 4: mrsaddr |= MRS_TWR_4; break;
case 3: mrsaddr |= MRS_TWR_3; break;
default: die("Jedec Error (tWR).\n");
}
/* Set "Burst Type" */
mrsaddr |= MRS_BT;
/* Interleaved */
if (sysinfo->interleaved) {
mrsaddr = mrsaddr << 1;
}
/* Only burst length 8 supported */
mrsaddr |= MRS_BL8;
/* Apply NOP */
PRINTK_DEBUG("Apply NOP\n");
do_ram_command(RAM_COMMAND_NOP);
ram_read32(bankaddr);
/* Precharge all banks */
PRINTK_DEBUG("All Banks Precharge\n");
do_ram_command(RAM_COMMAND_PRECHARGE);
ram_read32(bankaddr);
/* Extended Mode Register Set (2) */
PRINTK_DEBUG("Extended Mode Register Set(2)\n");
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_2);
ram_read32(bankaddr);
/* Extended Mode Register Set (3) */
PRINTK_DEBUG("Extended Mode Register Set(3)\n");
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_3);
ram_read32(bankaddr);
/* Extended Mode Register Set */
PRINTK_DEBUG("Extended Mode Register Set\n");
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
tmpaddr = bankaddr;
if (!sdram_capabilities_dual_channel()) {
tmpaddr |= RTT_ODT_75_OHM;
} else if (sysinfo->interleaved) {
tmpaddr |= (RTT_ODT_150_OHM << 1);
} else {
tmpaddr |= RTT_ODT_150_OHM;
}
ram_read32(tmpaddr);
/* Mode Register Set: Reset DLLs */
PRINTK_DEBUG("MRS: Reset DLLs\n");
do_ram_command(RAM_COMMAND_MRS);
tmpaddr = bankaddr;
tmpaddr |= mrsaddr;
/* Set DLL reset bit */
if (sysinfo->interleaved)
tmpaddr |= (1 << 12);
else
tmpaddr |= (1 << 11);
ram_read32(tmpaddr);
/* Precharge all banks */
PRINTK_DEBUG("All Banks Precharge\n");
do_ram_command(RAM_COMMAND_PRECHARGE);
ram_read32(bankaddr);
/* CAS before RAS Refresh */
PRINTK_DEBUG("CAS before RAS\n");
do_ram_command(RAM_COMMAND_CBR);
/* CBR wants two READs */
ram_read32(bankaddr);
ram_read32(bankaddr);
/* Mode Register Set: Enable DLLs */
PRINTK_DEBUG("MRS: Enable DLLs\n");
do_ram_command(RAM_COMMAND_MRS);
tmpaddr = bankaddr;
tmpaddr |= mrsaddr;
ram_read32(tmpaddr);
/* Extended Mode Register Set */
PRINTK_DEBUG("Extended Mode Register Set: ODT/OCD\n");
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
tmpaddr = bankaddr;
if (!sdram_capabilities_dual_channel()) {
tmpaddr |= RTT_ODT_75_OHM | EMRS_OCD_DEFAULT;
} else if (sysinfo->interleaved) {
tmpaddr |= ((RTT_ODT_150_OHM | EMRS_OCD_DEFAULT) << 1);
} else {
tmpaddr |= RTT_ODT_150_OHM | EMRS_OCD_DEFAULT;
}
ram_read32(tmpaddr);
/* Extended Mode Register Set */
PRINTK_DEBUG("Extended Mode Register Set: OCD Exit\n");
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
tmpaddr = bankaddr;
if (!sdram_capabilities_dual_channel()) {
tmpaddr |= RTT_ODT_75_OHM;
} else if (sysinfo->interleaved) {
tmpaddr |= (RTT_ODT_150_OHM << 1);
} else {
tmpaddr |= RTT_ODT_150_OHM;
}
ram_read32(tmpaddr);
}
}
static void sdram_init_complete(void)
{
PRINTK_DEBUG("Normal Operation\n");
do_ram_command(RAM_COMMAND_NORMAL);
}
static void sdram_setup_processor_side(void)
{
if (i945_silicon_revision() == 0)
MCHBAR32(FSBPMC3) |= (1 << 2);
MCHBAR8(0xb00) |= 1;
if (i945_silicon_revision() == 0)
MCHBAR32(SLPCTL) |= (1 << 8);
}
/**
* @param boot_path: 0 = normal, 1 = reset, 2 = resume from s3
*/
void sdram_initialize(int boot_path, const u8 *spd_addresses)
{
struct sys_info sysinfo;
u8 reg8, cas_mask;
printk(BIOS_DEBUG, "Setting up RAM controller.\n");
memset(&sysinfo, 0, sizeof(sysinfo));
sysinfo.boot_path = boot_path;
sysinfo.spd_addresses = spd_addresses;
/* Look at the type of DIMMs and verify all DIMMs are x8 or x16 width */
sdram_get_dram_configuration(&sysinfo);
/* If error, do cold boot */
sdram_detect_errors(&sysinfo);
/* Check whether we have stacked DIMMs */
sdram_verify_package_type(&sysinfo);
/* Determine common CAS */
cas_mask = sdram_possible_cas_latencies(&sysinfo);
/* Choose Common Frequency */
sdram_detect_cas_latency_and_ram_speed(&sysinfo, cas_mask);
/* Determine smallest common tRAS */
sdram_detect_smallest_tRAS(&sysinfo);
/* Determine tRP */
sdram_detect_smallest_tRP(&sysinfo);
/* Determine tRCD */
sdram_detect_smallest_tRCD(&sysinfo);
/* Determine smallest refresh period */
sdram_detect_smallest_refresh(&sysinfo);
/* Verify all DIMMs support burst length 8 */
sdram_verify_burst_length(&sysinfo);
/* determine tWR */
sdram_detect_smallest_tWR(&sysinfo);
/* Determine DIMM size parameters (rows, columns banks) */
sdram_detect_dimm_size(&sysinfo);
/* determine tRFC */
sdram_detect_smallest_tRFC(&sysinfo);
/* Program PLL settings */
sdram_program_pll_settings(&sysinfo);
/* Program Graphics Frequency */
sdram_program_graphics_frequency(&sysinfo);
/* Program System Memory Frequency */
sdram_program_memory_frequency(&sysinfo);
/* Determine Mode of Operation (Interleaved etc) */
sdram_set_channel_mode(&sysinfo);
/* Program Clock Crossing values */
sdram_program_clock_crossing();
/* Disable fast dispatch */
sdram_disable_fast_dispatch();
/* Enable WIODLL Power Down in ACPI states */
MCHBAR32(C0DMC) |= (1 << 24);
MCHBAR32(C1DMC) |= (1 << 24);
/* Program DRAM Row Boundary/Attribute Registers */
/* program row size DRB and set TOLUD */
sdram_program_row_boundaries(&sysinfo);
/* program page size DRA */
sdram_set_row_attributes(&sysinfo);
/* Program CxBNKARC */
sdram_set_bank_architecture(&sysinfo);
/* Program DRAM Timing and Control registers based on SPD */
sdram_set_timing_and_control(&sysinfo);
/* On-Die Termination Adjustment */
sdram_on_die_termination(&sysinfo);
/* Pre Jedec Initialization */
sdram_pre_jedec_initialization();
/* Perform System Memory IO Initialization */
sdram_initialize_system_memory_io(&sysinfo);
/* Perform System Memory IO Buffer Enable */
sdram_enable_system_memory_io(&sysinfo);
/* Enable System Memory Clocks */
sdram_enable_memory_clocks(&sysinfo);
if (boot_path == BOOT_PATH_NORMAL) {
/* Jedec Initialization sequence */
sdram_jedec_enable(&sysinfo);
}
/* Program Power Management Registers */
sdram_power_management(&sysinfo);
/* Post Jedec Init */
sdram_post_jedec_initialization(&sysinfo);
/* Program DRAM Throttling */
sdram_thermal_management();
/* Normal Operations */
sdram_init_complete();
/* Program Receive Enable Timings */
sdram_program_receive_enable(&sysinfo);
/* Enable Periodic RCOMP */
sdram_enable_rcomp();
/* Tell ICH7 that we're done */
reg8 = pci_read_config8(PCI_DEV(0,0x1f,0), 0xa2);
reg8 &= ~(1 << 7);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
printk(BIOS_DEBUG, "RAM initialization finished.\n");
sdram_setup_processor_side();
}
unsigned long get_top_of_ram(void)
{
u32 tom;
if (pci_read_config8(PCI_DEV(0, 0x0, 0), DEVEN) & ((1 << 4) | (1 << 3))) {
/* IGD enabled, get top of Memory from BSM register */
tom = pci_read_config32(PCI_DEV(0,2,0), 0x5c);
} else {
tom = (pci_read_config8(PCI_DEV(0,0,0), TOLUD) & 0xf7) << 24;
}
/* if TSEG enabled subtract size */
switch(pci_read_config8(PCI_DEV(0, 0, 0), ESMRAM)) {
case 0x01:
/* 1MB TSEG */
tom -= 0x10000;
break;
case 0x03:
/* 2MB TSEG */
tom -= 0x20000;
break;
case 0x05:
/* 8MB TSEG */
tom -= 0x80000;
break;
default:
/* TSEG either disabled or invalid */
break;
}
return (unsigned long) tom;
}