blob: 3c4ce5619b84670569e0aaa7850ccd0dbe1f5253 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2009 coresystems GmbH
* Copyright (C) 2011 The ChromiumOS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <string.h>
#include <arch/acpi.h>
#include <cpu/cpu.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/lapic.h>
#include <cpu/intel/microcode.h>
#include <cpu/intel/speedstep.h>
#include <cpu/intel/turbo.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/name.h>
#include <delay.h>
#include <pc80/mc146818rtc.h>
#include <usbdebug.h>
#include <northbridge/intel/haswell/haswell.h>
#include <southbridge/intel/lynxpoint/pch.h>
#include "haswell.h"
#include "chip.h"
/* Intel suggested latency times in units of 1024ns. */
#define C_STATE_LATENCY_CONTROL_0_LIMIT 0x42
#define C_STATE_LATENCY_CONTROL_1_LIMIT 0x73
#define C_STATE_LATENCY_CONTROL_2_LIMIT 0x91
#define C_STATE_LATENCY_CONTROL_3_LIMIT 0xe4
#define C_STATE_LATENCY_CONTROL_4_LIMIT 0x145
#define C_STATE_LATENCY_CONTROL_5_LIMIT 0x1ef
#define C_STATE_LATENCY_MICRO_SECONDS(limit, base) \
(((1 << ((base)*5)) * (limit)) / 1000)
#define C_STATE_LATENCY_FROM_LAT_REG(reg) \
C_STATE_LATENCY_MICRO_SECONDS(C_STATE_LATENCY_CONTROL_ ##reg## _LIMIT, \
(IRTL_1024_NS >> 10))
/*
* List of suported C-states in this processor. Only the ULT parts support C8,
* C9, and C10.
*/
enum {
C_STATE_C0, /* 0 */
C_STATE_C1, /* 1 */
C_STATE_C1E, /* 2 */
C_STATE_C3, /* 3 */
C_STATE_C6_SHORT_LAT, /* 4 */
C_STATE_C6_LONG_LAT, /* 5 */
C_STATE_C7_SHORT_LAT, /* 6 */
C_STATE_C7_LONG_LAT, /* 7 */
C_STATE_C7S_SHORT_LAT, /* 8 */
C_STATE_C7S_LONG_LAT, /* 9 */
C_STATE_C8, /* 10 */
C_STATE_C9, /* 11 */
C_STATE_C10, /* 12 */
NUM_C_STATES
};
#define MWAIT_RES(state, sub_state) \
{ \
.addrl = (((state) << 4) | (sub_state)), \
.space_id = ACPI_ADDRESS_SPACE_FIXED, \
.bit_width = ACPI_FFIXEDHW_VENDOR_INTEL, \
.bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT, \
.access_size = ACPI_FFIXEDHW_FLAG_HW_COORD, \
}
static acpi_cstate_t cstate_map[NUM_C_STATES] = {
[C_STATE_C0] = { },
[C_STATE_C1] = {
.latency = 0,
.power = 1000,
.resource = MWAIT_RES(0,0),
},
[C_STATE_C1E] = {
.latency = 0,
.power = 1000,
.resource = MWAIT_RES(0,1),
},
[C_STATE_C3] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = 900,
.resource = MWAIT_RES(1, 0),
},
[C_STATE_C6_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
.power = 800,
.resource = MWAIT_RES(2, 0),
},
[C_STATE_C6_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
.power = 800,
.resource = MWAIT_RES(2, 1),
},
[C_STATE_C7_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
.power = 700,
.resource = MWAIT_RES(3, 0),
},
[C_STATE_C7_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
.power = 700,
.resource = MWAIT_RES(3, 1),
},
[C_STATE_C7S_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
.power = 700,
.resource = MWAIT_RES(3, 2),
},
[C_STATE_C7S_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
.power = 700,
.resource = MWAIT_RES(3, 3),
},
[C_STATE_C8] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(3),
.power = 600,
.resource = MWAIT_RES(4, 0),
},
[C_STATE_C9] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(4),
.power = 500,
.resource = MWAIT_RES(5, 0),
},
[C_STATE_C10] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(5),
.power = 400,
.resource = MWAIT_RES(6, 0),
},
};
/* Convert time in seconds to POWER_LIMIT_1_TIME MSR value */
static const u8 power_limit_time_sec_to_msr[] = {
[0] = 0x00,
[1] = 0x0a,
[2] = 0x0b,
[3] = 0x4b,
[4] = 0x0c,
[5] = 0x2c,
[6] = 0x4c,
[7] = 0x6c,
[8] = 0x0d,
[10] = 0x2d,
[12] = 0x4d,
[14] = 0x6d,
[16] = 0x0e,
[20] = 0x2e,
[24] = 0x4e,
[28] = 0x6e,
[32] = 0x0f,
[40] = 0x2f,
[48] = 0x4f,
[56] = 0x6f,
[64] = 0x10,
[80] = 0x30,
[96] = 0x50,
[112] = 0x70,
[128] = 0x11,
};
/* Convert POWER_LIMIT_1_TIME MSR value to seconds */
static const u8 power_limit_time_msr_to_sec[] = {
[0x00] = 0,
[0x0a] = 1,
[0x0b] = 2,
[0x4b] = 3,
[0x0c] = 4,
[0x2c] = 5,
[0x4c] = 6,
[0x6c] = 7,
[0x0d] = 8,
[0x2d] = 10,
[0x4d] = 12,
[0x6d] = 14,
[0x0e] = 16,
[0x2e] = 20,
[0x4e] = 24,
[0x6e] = 28,
[0x0f] = 32,
[0x2f] = 40,
[0x4f] = 48,
[0x6f] = 56,
[0x10] = 64,
[0x30] = 80,
[0x50] = 96,
[0x70] = 112,
[0x11] = 128,
};
int haswell_family_model(void)
{
return cpuid_eax(1) & 0x0fff0ff0;
}
int haswell_stepping(void)
{
return cpuid_eax(1) & 0xf;
}
/* Dynamically determine if the part is ULT. */
int haswell_is_ult(void)
{
static int ult = -1;
if (ult < 0)
ult = !!(haswell_family_model() == HASWELL_FAMILY_ULT);
return ult;
}
/* The core 100MHz BLCK is disabled in deeper c-states. One needs to calibrate
* the 100MHz BCLCK against the 24MHz BLCK to restore the clocks properly
* when a core is woken up. */
static int pcode_ready(void)
{
int wait_count;
const int delay_step = 10;
wait_count = 0;
do {
if (!(MCHBAR32(BIOS_MAILBOX_INTERFACE) & MAILBOX_RUN_BUSY))
return 0;
wait_count += delay_step;
udelay(delay_step);
} while (wait_count < 1000);
return -1;
}
static void calibrate_24mhz_bclk(void)
{
int err_code;
if (pcode_ready() < 0) {
printk(BIOS_ERR, "PCODE: mailbox timeout on wait ready.\n");
return;
}
/* A non-zero value initiates the PCODE calibration. */
MCHBAR32(BIOS_MAILBOX_DATA) = ~0;
MCHBAR32(BIOS_MAILBOX_INTERFACE) =
MAILBOX_RUN_BUSY | MAILBOX_BIOS_CMD_FSM_MEASURE_INTVL;
if (pcode_ready() < 0) {
printk(BIOS_ERR, "PCODE: mailbox timeout on completion.\n");
return;
}
err_code = MCHBAR32(BIOS_MAILBOX_INTERFACE) & 0xff;
printk(BIOS_DEBUG, "PCODE: 24MHz BLCK calibration response: %d\n",
err_code);
/* Read the calibrated value. */
MCHBAR32(BIOS_MAILBOX_INTERFACE) =
MAILBOX_RUN_BUSY | MAILBOX_BIOS_CMD_READ_CALIBRATION;
if (pcode_ready() < 0) {
printk(BIOS_ERR, "PCODE: mailbox timeout on read.\n");
return;
}
printk(BIOS_DEBUG, "PCODE: 24MHz BLCK calibration value: 0x%08x\n",
MCHBAR32(BIOS_MAILBOX_DATA));
}
static u32 pcode_mailbox_read(u32 command)
{
if (pcode_ready() < 0) {
printk(BIOS_ERR, "PCODE: mailbox timeout on wait ready.\n");
return 0;
}
/* Send command and start transaction */
MCHBAR32(BIOS_MAILBOX_INTERFACE) = command | MAILBOX_RUN_BUSY;
if (pcode_ready() < 0) {
printk(BIOS_ERR, "PCODE: mailbox timeout on completion.\n");
return 0;
}
/* Read mailbox */
return MCHBAR32(BIOS_MAILBOX_DATA);
}
static void initialize_vr_config(void)
{
msr_t msr;
printk(BIOS_DEBUG, "Initializing VR config.\n");
/* Configure VR_CURRENT_CONFIG. */
msr = rdmsr(MSR_VR_CURRENT_CONFIG);
/* Preserve bits 63 and 62. Bit 62 is PSI4 enable, but it is only valid
* on ULT systems. */
msr.hi &= 0xc0000000;
msr.hi |= (0x01 << (52 - 32)); /* PSI3 threshold - 1A. */
msr.hi |= (0x05 << (42 - 32)); /* PSI2 threshold - 5A. */
msr.hi |= (0x0f << (32 - 32)); /* PSI1 threshold - 15A. */
if (haswell_is_ult())
msr.hi |= (1 << (62 - 32)); /* Enable PSI4 */
/* Leave the max instantaneous current limit (12:0) to default. */
wrmsr(MSR_VR_CURRENT_CONFIG, msr);
/* Configure VR_MISC_CONFIG MSR. */
msr = rdmsr(MSR_VR_MISC_CONFIG);
/* Set the IOUT_SLOPE scalar applied to dIout in U10.1.9 format. */
msr.hi &= ~(0x3ff << (40 - 32));
msr.hi |= (0x200 << (40 - 32)); /* 1.0 */
/* Set IOUT_OFFSET to 0. */
msr.hi &= ~0xff;
/* Set exit ramp rate to fast. */
msr.hi |= (1 << (50 - 32));
/* Set entry ramp rate to slow. */
msr.hi &= ~(1 << (51 - 32));
/* Enable decay mode on C-state entry. */
msr.hi |= (1 << (52 - 32));
/* Set the slow ramp rate to be fast ramp rate / 4 */
msr.hi &= ~(0x3 << (53 - 32));
msr.hi |= (0x01 << (53 - 32));
/* Set MIN_VID (31:24) to allow CPU to have full control. */
msr.lo &= ~0xff000000;
wrmsr(MSR_VR_MISC_CONFIG, msr);
/* Configure VR_MISC_CONFIG2 MSR. */
if (haswell_is_ult()) {
msr = rdmsr(MSR_VR_MISC_CONFIG2);
msr.lo &= ~0xffff;
/* Allow CPU to control minimum voltage completely (15:8) and
* set the fast ramp voltage to 1110mV (0x6f in 10mV steps). */
msr.lo |= 0x006f;
wrmsr(MSR_VR_MISC_CONFIG2, msr);
}
}
static void configure_pch_power_sharing(void)
{
u32 pch_power, pch_power_ext, pmsync, pmsync2;
int i;
/* Read PCH Power levels from PCODE */
pch_power = pcode_mailbox_read(MAILBOX_BIOS_CMD_READ_PCH_POWER);
pch_power_ext = pcode_mailbox_read(MAILBOX_BIOS_CMD_READ_PCH_POWER_EXT);
printk(BIOS_INFO, "PCH Power: PCODE Levels 0x%08x 0x%08x\n",
pch_power, pch_power_ext);
pmsync = RCBA32(PMSYNC_CONFIG);
pmsync2 = RCBA32(PMSYNC_CONFIG2);
/* Program PMSYNC_TPR_CONFIG PCH power limit values
* pmsync[0:4] = mailbox[0:5]
* pmsync[8:12] = mailbox[6:11]
* pmsync[16:20] = mailbox[12:17]
*/
for (i = 0; i < 3; i++) {
u32 level = pch_power & 0x3f;
pch_power >>= 6;
pmsync &= ~(0x1f << (i * 8));
pmsync |= (level & 0x1f) << (i * 8);
}
RCBA32(PMSYNC_CONFIG) = pmsync;
/* Program PMSYNC_TPR_CONFIG2 Extended PCH power limit values
* pmsync2[0:4] = mailbox[23:18]
* pmsync2[8:12] = mailbox_ext[6:11]
* pmsync2[16:20] = mailbox_ext[12:17]
* pmsync2[24:28] = mailbox_ext[18:22]
*/
pmsync2 &= ~0x1f;
pmsync2 |= pch_power & 0x1f;
for (i = 1; i < 4; i++) {
u32 level = pch_power_ext & 0x3f;
pch_power_ext >>= 6;
pmsync2 &= ~(0x1f << (i * 8));
pmsync2 |= (level & 0x1f) << (i * 8);
}
RCBA32(PMSYNC_CONFIG2) = pmsync2;
}
int cpu_config_tdp_levels(void)
{
msr_t platform_info;
/* Bits 34:33 indicate how many levels supported */
platform_info = rdmsr(MSR_PLATFORM_INFO);
return (platform_info.hi >> 1) & 3;
}
/*
* Configure processor power limits if possible
* This must be done AFTER set of BIOS_RESET_CPL
*/
void set_power_limits(u8 power_limit_1_time)
{
msr_t msr = rdmsr(MSR_PLATFORM_INFO);
msr_t limit;
unsigned power_unit;
unsigned tdp, min_power, max_power, max_time;
u8 power_limit_1_val;
if (power_limit_1_time > ARRAY_SIZE(power_limit_time_sec_to_msr))
power_limit_1_time = 28;
if (!(msr.lo & PLATFORM_INFO_SET_TDP))
return;
/* Get units */
msr = rdmsr(MSR_PKG_POWER_SKU_UNIT);
power_unit = 2 << ((msr.lo & 0xf) - 1);
/* Get power defaults for this SKU */
msr = rdmsr(MSR_PKG_POWER_SKU);
tdp = msr.lo & 0x7fff;
min_power = (msr.lo >> 16) & 0x7fff;
max_power = msr.hi & 0x7fff;
max_time = (msr.hi >> 16) & 0x7f;
printk(BIOS_DEBUG, "CPU TDP: %u Watts\n", tdp / power_unit);
if (power_limit_time_msr_to_sec[max_time] > power_limit_1_time)
power_limit_1_time = power_limit_time_msr_to_sec[max_time];
if (min_power > 0 && tdp < min_power)
tdp = min_power;
if (max_power > 0 && tdp > max_power)
tdp = max_power;
power_limit_1_val = power_limit_time_sec_to_msr[power_limit_1_time];
/* Set long term power limit to TDP */
limit.lo = 0;
limit.lo |= tdp & PKG_POWER_LIMIT_MASK;
limit.lo |= PKG_POWER_LIMIT_EN;
limit.lo |= (power_limit_1_val & PKG_POWER_LIMIT_TIME_MASK) <<
PKG_POWER_LIMIT_TIME_SHIFT;
/* Set short term power limit to 1.25 * TDP */
limit.hi = 0;
limit.hi |= ((tdp * 125) / 100) & PKG_POWER_LIMIT_MASK;
limit.hi |= PKG_POWER_LIMIT_EN;
/* Power limit 2 time is only programmable on server SKU */
wrmsr(MSR_PKG_POWER_LIMIT, limit);
/* Set power limit values in MCHBAR as well */
MCHBAR32(MCH_PKG_POWER_LIMIT_LO) = limit.lo;
MCHBAR32(MCH_PKG_POWER_LIMIT_HI) = limit.hi;
/* Set DDR RAPL power limit by copying from MMIO to MSR */
msr.lo = MCHBAR32(MCH_DDR_POWER_LIMIT_LO);
msr.hi = MCHBAR32(MCH_DDR_POWER_LIMIT_HI);
wrmsr(MSR_DDR_RAPL_LIMIT, msr);
/* Use nominal TDP values for CPUs with configurable TDP */
if (cpu_config_tdp_levels()) {
msr = rdmsr(MSR_CONFIG_TDP_NOMINAL);
limit.hi = 0;
limit.lo = msr.lo & 0xff;
wrmsr(MSR_TURBO_ACTIVATION_RATIO, limit);
}
}
static void configure_c_states(void)
{
msr_t msr;
msr = rdmsr(MSR_PMG_CST_CONFIG_CONTROL);
msr.lo |= (1 << 30); // Package c-state Undemotion Enable
msr.lo |= (1 << 29); // Package c-state Demotion Enable
msr.lo |= (1 << 28); // C1 Auto Undemotion Enable
msr.lo |= (1 << 27); // C3 Auto Undemotion Enable
msr.lo |= (1 << 26); // C1 Auto Demotion Enable
msr.lo |= (1 << 25); // C3 Auto Demotion Enable
msr.lo &= ~(1 << 10); // Disable IO MWAIT redirection
/* The deepest package c-state defaults to factory-configured value. */
wrmsr(MSR_PMG_CST_CONFIG_CONTROL, msr);
msr = rdmsr(MSR_PMG_IO_CAPTURE_BASE);
msr.lo &= ~0xffff;
msr.lo |= (get_pmbase() + 0x14); // LVL_2 base address
/* The deepest package c-state defaults to factory-configured value. */
wrmsr(MSR_PMG_IO_CAPTURE_BASE, msr);
msr = rdmsr(MSR_MISC_PWR_MGMT);
msr.lo &= ~(1 << 0); // Enable P-state HW_ALL coordination
wrmsr(MSR_MISC_PWR_MGMT, msr);
msr = rdmsr(MSR_POWER_CTL);
msr.lo |= (1 << 18); // Enable Energy Perf Bias MSR 0x1b0
msr.lo |= (1 << 1); // C1E Enable
msr.lo |= (1 << 0); // Bi-directional PROCHOT#
wrmsr(MSR_POWER_CTL, msr);
/* C-state Interrupt Response Latency Control 0 - package C3 latency */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_0_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_0, msr);
/* C-state Interrupt Response Latency Control 1 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_1_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_1, msr);
/* C-state Interrupt Response Latency Control 2 - package C6/C7 short */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | C_STATE_LATENCY_CONTROL_2_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_2, msr);
/* Haswell ULT only supoprts the 3-5 latency response registers.*/
if (haswell_is_ult()) {
/* C-state Interrupt Response Latency Control 3 - package C8 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS |
C_STATE_LATENCY_CONTROL_3_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_3, msr);
/* C-state Interrupt Response Latency Control 4 - package C9 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS |
C_STATE_LATENCY_CONTROL_4_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_4, msr);
/* C-state Interrupt Response Latency Control 5 - package C10 */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS |
C_STATE_LATENCY_CONTROL_5_LIMIT;
wrmsr(MSR_C_STATE_LATENCY_CONTROL_5, msr);
}
}
static void configure_thermal_target(void)
{
struct cpu_intel_haswell_config *conf;
device_t lapic;
msr_t msr;
/* Find pointer to CPU configuration */
lapic = dev_find_lapic(SPEEDSTEP_APIC_MAGIC);
if (!lapic || !lapic->chip_info)
return;
conf = lapic->chip_info;
/* Set TCC activaiton offset if supported */
msr = rdmsr(MSR_PLATFORM_INFO);
if ((msr.lo & (1 << 30)) && conf->tcc_offset) {
msr = rdmsr(MSR_TEMPERATURE_TARGET);
msr.lo &= ~(0xf << 24); /* Bits 27:24 */
msr.lo |= (conf->tcc_offset & 0xf) << 24;
wrmsr(MSR_TEMPERATURE_TARGET, msr);
}
}
static void configure_misc(void)
{
msr_t msr;
msr = rdmsr(IA32_MISC_ENABLE);
msr.lo |= (1 << 0); /* Fast String enable */
msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */
msr.lo |= (1 << 16); /* Enhanced SpeedStep Enable */
wrmsr(IA32_MISC_ENABLE, msr);
/* Disable Thermal interrupts */
msr.lo = 0;
msr.hi = 0;
wrmsr(IA32_THERM_INTERRUPT, msr);
/* Enable package critical interrupt only */
msr.lo = 1 << 4;
msr.hi = 0;
wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr);
}
static void enable_lapic_tpr(void)
{
msr_t msr;
msr = rdmsr(MSR_PIC_MSG_CONTROL);
msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */
wrmsr(MSR_PIC_MSG_CONTROL, msr);
}
static void configure_dca_cap(void)
{
struct cpuid_result cpuid_regs;
msr_t msr;
/* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */
cpuid_regs = cpuid(1);
if (cpuid_regs.ecx & (1 << 18)) {
msr = rdmsr(IA32_PLATFORM_DCA_CAP);
msr.lo |= 1;
wrmsr(IA32_PLATFORM_DCA_CAP, msr);
}
}
static void set_max_ratio(void)
{
msr_t msr, perf_ctl;
perf_ctl.hi = 0;
/* Check for configurable TDP option */
if (cpu_config_tdp_levels()) {
/* Set to nominal TDP ratio */
msr = rdmsr(MSR_CONFIG_TDP_NOMINAL);
perf_ctl.lo = (msr.lo & 0xff) << 8;
} else {
/* Platform Info bits 15:8 give max ratio */
msr = rdmsr(MSR_PLATFORM_INFO);
perf_ctl.lo = msr.lo & 0xff00;
}
wrmsr(IA32_PERF_CTL, perf_ctl);
printk(BIOS_DEBUG, "haswell: frequency set to %d\n",
((perf_ctl.lo >> 8) & 0xff) * HASWELL_BCLK);
}
static void set_energy_perf_bias(u8 policy)
{
msr_t msr;
int ecx;
/* Determine if energy efficient policy is supported. */
ecx = cpuid_ecx(0x6);
if (!(ecx & (1 << 3)))
return;
/* Energy Policy is bits 3:0 */
msr = rdmsr(IA32_ENERGY_PERFORMANCE_BIAS);
msr.lo &= ~0xf;
msr.lo |= policy & 0xf;
wrmsr(IA32_ENERGY_PERFORMANCE_BIAS, msr);
printk(BIOS_DEBUG, "haswell: energy policy set to %u\n",
policy);
}
static void configure_mca(void)
{
msr_t msr;
const unsigned int mcg_cap_msr = 0x179;
int i;
int num_banks;
msr = rdmsr(mcg_cap_msr);
num_banks = msr.lo & 0xff;
msr.lo = msr.hi = 0;
/* TODO(adurbin): This should only be done on a cold boot. Also, some
* of these banks are core vs package scope. For now every CPU clears
* every bank. */
for (i = 0; i < num_banks; i++)
wrmsr(IA32_MC0_STATUS + (i * 4), msr);
}
#if CONFIG_USBDEBUG
static unsigned ehci_debug_addr;
#endif
static void bsp_init_before_ap_bringup(struct bus *cpu_bus)
{
struct device_path cpu_path;
struct cpu_info *info;
char processor_name[49];
/* Print processor name */
fill_processor_name(processor_name);
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
/* Ensure the local apic is enabled */
enable_lapic();
/* Set the device path of the boot cpu. */
cpu_path.type = DEVICE_PATH_APIC;
cpu_path.apic.apic_id = lapicid();
/* Find the device structure for the boot cpu. */
info = cpu_info();
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
if (info->index != 0)
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
#if CONFIG_USBDEBUG
// Is this caution really needed?
if(!ehci_debug_addr)
ehci_debug_addr = get_ehci_debug();
set_ehci_debug(0);
#endif
/* Setup MTRRs based on physical address size. */
x86_setup_fixed_mtrrs();
x86_setup_var_mtrrs(cpuid_eax(0x80000008) & 0xff, 2);
x86_mtrr_check();
#if CONFIG_USBDEBUG
set_ehci_debug(ehci_debug_addr);
#endif
initialize_vr_config();
if (haswell_is_ult()) {
calibrate_24mhz_bclk();
configure_pch_power_sharing();
}
/* Call through the cpu driver's initialization. */
cpu_initialize(0);
}
/* All CPUs including BSP will run the following function. */
static void haswell_init(device_t cpu)
{
/* Clear out pending MCEs */
configure_mca();
/* Enable the local cpu apics */
enable_lapic_tpr();
setup_lapic();
/* Configure C States */
configure_c_states();
/* Configure Enhanced SpeedStep and Thermal Sensors */
configure_misc();
/* Thermal throttle activation offset */
configure_thermal_target();
/* Enable Direct Cache Access */
configure_dca_cap();
/* Set energy policy */
set_energy_perf_bias(ENERGY_POLICY_NORMAL);
/* Set Max Ratio */
set_max_ratio();
/* Enable Turbo */
enable_turbo();
}
void bsp_init_and_start_aps(struct bus *cpu_bus)
{
int max_cpus;
int num_aps;
const void *microcode_patch;
/* Perform any necesarry BSP initialization before APs are brought up.
* This call alos allows the BSP to prepare for any secondary effects
* from calling cpu_initialize() such as smm_init(). */
bsp_init_before_ap_bringup(cpu_bus);
microcode_patch = intel_microcode_find();
/* This needs to be called after the mtrr setup so the BSP mtrrs
* can be mirrored by the APs. */
if (setup_ap_init(cpu_bus, &max_cpus, microcode_patch)) {
printk(BIOS_CRIT, "AP setup initialization failed. "
"No APs will be brought up.\n");
return;
}
num_aps = max_cpus - 1;
if (start_aps(cpu_bus, num_aps)) {
printk(BIOS_CRIT, "AP startup failed. Trying to continue.\n");
}
if (smm_initialize()) {
printk(BIOS_CRIT, "SMM Initialiazation failed...\n");
return;
}
/* After SMM relocation a 2nd microcode load is required. */
intel_microcode_load_unlocked(microcode_patch);
/* Enable ROM caching if option was selected. */
x86_mtrr_enable_rom_caching();
}
static struct device_operations cpu_dev_ops = {
.init = haswell_init,
};
static struct cpu_device_id cpu_table[] = {
{ X86_VENDOR_INTEL, 0x306c1 }, /* Intel Haswell 4+2 A0 */
{ X86_VENDOR_INTEL, 0x306c2 }, /* Intel Haswell 4+2 B0 */
{ X86_VENDOR_INTEL, 0x40650 }, /* Intel Haswell ULT B0 */
{ X86_VENDOR_INTEL, 0x40651 }, /* Intel Haswell ULT B1 */
{ 0, 0 },
};
static const struct cpu_driver driver __cpu_driver = {
.ops = &cpu_dev_ops,
.id_table = cpu_table,
.cstates = cstate_map,
};