blob: 47256fd2f44ef1736baa9d4bb960a98e6fd846ed [file] [log] [blame]
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define _GNU_SOURCE
#include <getopt.h>
#include "elf.h"
#include "elf_boot.h"
#include "convert.h"
#include "x86-linux.h"
#include "mkelfImage.h"
static unsigned char payload[] = {
#include "convert.bin.c"
};
struct kernel_info;
static void (*parse_kernel_type)(struct kernel_info *info, char *kernel_buf, size_t kernel_size);
static void parse_bzImage_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size);
static void parse_elf32_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size);
static void parse_elf64_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size);
char *vmlinux_x86_64_probe(char *kernel_buf, off_t kernel_size);
char *vmlinux_i386_probe(char *kernel_buf, off_t kernel_size)
{
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
int i;
int phdrs;
ehdr = (Elf32_Ehdr *)kernel_buf;
if (
(ehdr->e_ident[EI_MAG0] != ELFMAG0) ||
(ehdr->e_ident[EI_MAG1] != ELFMAG1) ||
(ehdr->e_ident[EI_MAG2] != ELFMAG2) ||
(ehdr->e_ident[EI_MAG3] != ELFMAG3)) {
return "No ELF signature found on kernel\n";
}
if (ehdr->e_ident[EI_CLASS] != ELFCLASS32) {
return vmlinux_x86_64_probe(kernel_buf, kernel_size);
// return "Not a 32bit ELF kernel\n";
}
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
return "Not a little endian ELF kernel\n";
}
if (le16_to_cpu(ehdr->e_type) != ET_EXEC) {
return "Not an executable kernel\n";
}
if (le16_to_cpu(ehdr->e_machine) != EM_386) {
return "Not an i386 kernel\n";
}
if ( (ehdr->e_ident[EI_VERSION] != EV_CURRENT) ||
(le32_to_cpu(ehdr->e_version) != EV_CURRENT)) {
return "Kernel not using ELF version 1.\n";
}
if (le16_to_cpu(ehdr->e_phentsize) != sizeof(*phdr)) {
return "Kernel uses bad program header size.\n";
}
phdr = (Elf32_Phdr *)(kernel_buf + le32_to_cpu(ehdr->e_phoff));
phdrs = 0;
for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) {
if (le32_to_cpu(phdr[i].p_type) != PT_LOAD)
continue;
phdrs++;
}
if (phdrs == 0) {
return "No PT_LOAD segments!\n";
}
parse_kernel_type = parse_elf32_kernel;
return 0;
}
char *vmlinux_x86_64_probe(char *kernel_buf, off_t kernel_size)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
int i;
int phdrs = 0;
ehdr = (Elf64_Ehdr *)kernel_buf;
if (
(ehdr->e_ident[EI_MAG0] != ELFMAG0) ||
(ehdr->e_ident[EI_MAG1] != ELFMAG1) ||
(ehdr->e_ident[EI_MAG2] != ELFMAG2) ||
(ehdr->e_ident[EI_MAG3] != ELFMAG3)) {
return "No ELF signature found on kernel\n";
}
if (ehdr->e_ident[EI_CLASS] != ELFCLASS64) {
return "Not a 64bit ELF kernel\n";
}
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
return "Not a little endian ELF kernel\n";
}
if (le16_to_cpu(ehdr->e_type) != ET_EXEC) {
return "Not an executable kernel\n";
}
if (le16_to_cpu(ehdr->e_machine) != EM_X86_64) {
return "Not an x86_64 kernel\n";
}
if ( (ehdr->e_ident[EI_VERSION] != EV_CURRENT) ||
(le32_to_cpu(ehdr->e_version) != EV_CURRENT)) {
return "Kernel not using ELF version 1.\n";
}
if (le16_to_cpu(ehdr->e_phentsize) != sizeof(*phdr)) {
return "Kernel uses bad program header size.\n";
}
phdr = (Elf64_Phdr *)(kernel_buf + le64_to_cpu(ehdr->e_phoff));
phdrs = 0;
for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) {
if (le32_to_cpu(phdr[i].p_type) != PT_LOAD)
continue;
phdrs++;
}
if (phdrs == 0) {
return "No PT_LOAD segments!\n";
}
parse_kernel_type = parse_elf64_kernel;
return 0;
}
char *bzImage_i386_probe(char *kernel_buf, off_t kernel_size)
{
struct x86_linux_header *hdr;
unsigned long offset;
int setup_sects;
hdr = (struct x86_linux_header *)kernel_buf;
if (le16_to_cpu(hdr->boot_sector_magic) != 0xaa55) {
return "No bootsector magic";
}
if (memcmp(hdr->header_magic, "HdrS", 4) != 0) {
return "Not a linux kernel";
}
if (le16_to_cpu(hdr->protocol_version) < 0x202) {
return "Kernel protcols version before 2.02 not supported";
}
setup_sects = hdr->setup_sects;
if (setup_sects == 0) {
setup_sects = 4;
}
offset = 512 + (512 *setup_sects);
if (offset > kernel_size) {
return "Not enough bytes";
}
parse_kernel_type = parse_bzImage_kernel;
return 0;
}
char *linux_i386_probe(char *kernel_buf, off_t kernel_size)
{
char *result;
result = "";
if (result) result = bzImage_i386_probe(kernel_buf, kernel_size);
if (result) result = vmlinux_i386_probe(kernel_buf, kernel_size);
if (result) result = bzImage_i386_probe(kernel_buf, kernel_size);
return result;
}
#define NR_SECTIONS 16
struct kernel_info
{
int phdrs;
void *kernel[NR_SECTIONS];
size_t filesz[NR_SECTIONS];
size_t memsz[NR_SECTIONS];
size_t paddr[NR_SECTIONS];
size_t vaddr[NR_SECTIONS];
size_t entry;
size_t switch_64;
char *version;
};
static void parse_elf32_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size)
{
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
int i;
int phdrs;
ehdr = (Elf32_Ehdr *)kernel_buf;
phdr = (Elf32_Phdr *)(kernel_buf + ehdr->e_phoff);
phdrs = 0;
for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) {
if (le32_to_cpu(phdr[i].p_type) != PT_LOAD)
continue;
if(phdrs == NR_SECTIONS)
die("NR_SECTIONS is too small\n");
info->kernel[phdrs] = kernel_buf + le32_to_cpu(phdr[i].p_offset);
info->filesz[phdrs] = le32_to_cpu(phdr[i].p_filesz);
info->memsz[phdrs] = le32_to_cpu(phdr[i].p_memsz);
info->paddr[phdrs] = le32_to_cpu(phdr[i].p_paddr) & 0xfffffff;
info->vaddr[phdrs] = le32_to_cpu(phdr[i].p_vaddr);
phdrs++;
}
if(!phdrs)
die("We need at least one phdr\n");
info->phdrs = phdrs;
info->entry = le32_to_cpu(ehdr->e_entry);
info->switch_64 = 0; //not convert from elf64
info->version = "unknown";
}
static void parse_elf64_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
int i;
int phdrs;
ehdr = (Elf64_Ehdr *)kernel_buf;
phdr = (Elf64_Phdr *)(kernel_buf + le64_to_cpu(ehdr->e_phoff));
phdrs = 0;
for(i = 0; i < le16_to_cpu(ehdr->e_phnum); i++) {
if (le32_to_cpu(phdr[i].p_type) != PT_LOAD)
continue;
if(phdrs == NR_SECTIONS)
die("NR_SECTIONS is too small\n");
info->kernel[phdrs] = kernel_buf + le64_to_cpu(phdr[i].p_offset);
info->filesz[phdrs] = le64_to_cpu(phdr[i].p_filesz);
info->memsz[phdrs] = le64_to_cpu(phdr[i].p_memsz);
info->paddr[phdrs] = le64_to_cpu(phdr[i].p_paddr) & 0xfffffff;
info->vaddr[phdrs] = le64_to_cpu(phdr[i].p_vaddr);
phdrs++;
}
if(!phdrs)
die("We need at least one phdr\n");
info->phdrs = phdrs;
info->entry = le64_to_cpu(ehdr->e_entry);
#if 0
if (info->entry != info->paddr[0]) {
info->entry = info->paddr[0]; // we still have startup_32 there
info->switch_64 = 0; //not convert from elf64
} else
#endif
info->switch_64 = 1; //convert from elf64
info->version = "unknown";
}
static void parse_bzImage_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size)
{
struct x86_linux_header *hdr;
unsigned long offset;
int setup_sects;
hdr = (struct x86_linux_header *)kernel_buf;
setup_sects = hdr->setup_sects;
if (setup_sects == 0) {
setup_sects = 4;
}
offset = 512 + (512 *setup_sects);
info->kernel[0] = kernel_buf + offset;
info->filesz[0] = kernel_size - offset;
info->memsz[0] = 0x700000;
info->paddr[0] = 0x100000;
info->vaddr[0] = 0x100000;
info->phdrs = 1;
info->entry = info->paddr[0];
info->switch_64 = 0; //not convert from elf64, even later bzImage become elf64, it still includes startup_32
info->version = kernel_buf + 512 + le16_to_cpu(hdr->kver_addr);
}
static void parse_kernel(struct kernel_info *info, char *kernel_buf, size_t kernel_size)
{
memset(info, 0, sizeof(*info));
if (parse_kernel_type) {
parse_kernel_type(info, kernel_buf, kernel_size);
}
else {
die("Unknown kernel format");
}
}
void linux_i386_usage(void)
{
printf(
" --command-line=<string> Set the command line to <string>\n"
" --append=<string> Set the command line to <string>\n"
" --initrd=<filename> Set the initrd to <filename>\n"
" --ramdisk=<filename> Set the initrd to <filename>\n"
" --ramdisk-base=<addr> Set the initrd load address to <addr>\n"
);
return;
}
#define OPT_CMDLINE OPT_MAX+0
#define OPT_RAMDISK OPT_MAX+1
#define OPT_RAMDISK_BASE OPT_MAX+2
#define DEFAULT_RAMDISK_BASE (8*1024*1024)
int linux_i386_mkelf(int argc, char **argv,
struct memelfheader *ehdr, char *kernel_buf, off_t kernel_size)
{
const char *ramdisk, *cmdline;
unsigned long ramdisk_base;
char *payload_buf, *ramdisk_buf;
off_t payload_size, ramdisk_size;
struct memelfphdr *phdr;
struct memelfnote *note;
struct kernel_info kinfo;
struct image_parameters *params;
int index;
int i;
int opt;
static const struct option options[] = {
MKELF_OPTIONS
{ "command-line", 1, 0, OPT_CMDLINE },
{ "append", 1, 0, OPT_CMDLINE },
{ "initrd", 1, 0, OPT_RAMDISK },
{ "ramdisk", 1, 0, OPT_RAMDISK },
{ "ramdisk-base", 1, 0, OPT_RAMDISK_BASE },
{ 0 , 0, 0, 0 },
};
static const char short_options[] = MKELF_OPT_STR;
ramdisk_base = DEFAULT_RAMDISK_BASE;
ramdisk = 0;
cmdline="";
while((opt = getopt_long(argc, argv, short_options, options, 0)) != -1) {
switch(opt) {
case '?':
error("Unknown option %s\n", argv[optind]);
break;
case OPT_RAMDISK_BASE:
{
char *end;
unsigned long base;
base = strtoul(optarg, &end, 0);
if ((end == optarg) || (*end != '\0')) {
error("Invalid ramdisk base\n");
}
ramdisk_base = base;
}
case OPT_RAMDISK:
ramdisk = optarg;
break;
case OPT_CMDLINE:
cmdline = optarg;
break;
default:
break;
}
}
ehdr->ei_class = ELFCLASS32;
ehdr->ei_data = ELFDATA2LSB;
ehdr->e_type = ET_EXEC;
ehdr->e_machine = EM_386;
/* locate the payload buffer */
payload_buf = payload;
payload_size = sizeof(payload);
/* slurp the input files */
ramdisk_buf = slurp_file(ramdisk, &ramdisk_size);
/* parse the kernel */
parse_kernel(&kinfo, kernel_buf, kernel_size);
/* Find the parameters */
params = (void *)(payload_buf + (payload_size - sizeof(*params)));
/* A sanity check against bad versions of binutils */
if (params->convert_magic != CONVERT_MAGIC) {
die("Internal error convert_magic %08x != %08x\n",
params->convert_magic, CONVERT_MAGIC);
}
/* Copy the command line */
strncpy(params->cmdline, cmdline, sizeof(params->cmdline));
params->cmdline[sizeof(params->cmdline)-1]= '\0';
/* Add a program header for the note section */
index = 4;
index += (kinfo.phdrs - 1);
index += ramdisk_size ? 1:0;
phdr = add_program_headers(ehdr, index);
/* Fill in the program headers*/
phdr[0].p_type = PT_NOTE;
/* Fill in the converter program headers */
phdr[1].p_paddr = CONVERTLOC;
phdr[1].p_vaddr = CONVERTLOC;
phdr[1].p_filesz = payload_size;
phdr[1].p_memsz = payload_size + params->bss_size;
phdr[1].p_data = payload;
/* Reserve space for the REAL MODE DATA segment AND the GDT segment */
phdr[2].p_paddr = REAL_MODE_DATA_LOC;
phdr[2].p_vaddr = REAL_MODE_DATA_LOC;
phdr[2].p_filesz = 0;
if(!kinfo.switch_64)
phdr[2].p_memsz = (GDTLOC - REAL_MODE_DATA_LOC) + params->gdt_size;
else
phdr[2].p_memsz = (PGTLOC - REAL_MODE_DATA_LOC) + params->pgt_size;
phdr[2].p_data = 0;
if( (phdr[1].p_paddr + phdr[1].p_memsz) > phdr[2].p_paddr) {
die("Internal error: need to increase REAL_MODE_DATA_LOC !\n");
}
index = 3;
/* Put the second kernel frament if present */
for(i=0;i<kinfo.phdrs;i++) {
phdr[index].p_paddr = kinfo.paddr[i];
phdr[index].p_vaddr = kinfo.vaddr[i];
phdr[index].p_filesz = kinfo.filesz[i];
phdr[index].p_memsz = kinfo.memsz[i];
phdr[index].p_data = kinfo.kernel[i];
index++;
}
/* Put the ramdisk at ramdisk base.
*/
params->initrd_start = params->initrd_size = 0;
if (ramdisk_size) {
if( (phdr[index-1].p_paddr + phdr[index-1].p_memsz) > ramdisk_base) {
die("need to increase increase ramdisk_base !\n");
}
phdr[index].p_paddr = ramdisk_base;
phdr[index].p_vaddr = ramdisk_base;
phdr[index].p_filesz = ramdisk_size;
phdr[index].p_memsz = ramdisk_size;
phdr[index].p_data = ramdisk_buf;
params->initrd_start = phdr[index].p_paddr;
params->initrd_size = phdr[index].p_filesz;
index++;
}
/* Set the start location */
params->entry = kinfo.entry;
params->switch_64 = kinfo.switch_64;
ehdr->e_entry = phdr[1].p_paddr;
/* Setup the elf notes */
note = add_notes(ehdr, 3);
note[0].n_type = EIN_PROGRAM_NAME;
note[0].n_name = "ELFBoot";
note[0].n_desc = "Linux";
note[0].n_descsz = strlen(note[0].n_desc)+1;
note[1].n_type = EIN_PROGRAM_VERSION;
note[1].n_name = "ELFBoot";
note[1].n_desc = kinfo.version;
note[1].n_descsz = strlen(note[1].n_desc);
note[2].n_type = EIN_PROGRAM_CHECKSUM;
note[2].n_name = "ELFBoot";
note[2].n_desc = 0;
note[2].n_descsz = 2;
return 0;
}