blob: 9f3dabf40fa608ba418cbfbe623125fc6fcad8c3 [file] [log] [blame]
/*
* cbfs-mkpayload
*
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* 2009 coresystems GmbH
* written by Patrick Georgi <patrick.georgi@coresystems.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "cbfs.h"
#include "elf.h"
#include "fv.h"
#include "coff.h"
int parse_elf_to_payload(const struct buffer *input,
struct buffer *output, comp_algo algo)
{
Elf32_Phdr *phdr;
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)input->data;
Elf32_Shdr *shdr;
char *header;
char *strtab;
int headers;
int segments = 1;
int isize = 0, osize = 0;
int doffset = 0;
struct cbfs_payload_segment *segs;
int i;
if(!iself((unsigned char *)input->data)){
INFO("The payload file is not in ELF format!\n");
return -1;
}
// The tool may work in architecture-independent way.
if (arch != CBFS_ARCHITECTURE_UNKNOWN &&
!((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) &&
!((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) {
ERROR("The payload file has the wrong architecture\n");
return -1;
}
comp_func_ptr compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_elf_to_payload\n");
headers = ehdr->e_phnum;
header = (char *)ehdr;
phdr = (Elf32_Phdr *) & (header[ehdr->e_phoff]);
shdr = (Elf32_Shdr *) & (header[ehdr->e_shoff]);
strtab = &header[shdr[ehdr->e_shstrndx].sh_offset];
/* Count the number of headers - look for the .notes.pinfo
* section */
for (i = 0; i < ehdr->e_shnum; i++) {
char *name;
if (i == ehdr->e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segments++;
isize += (unsigned int)shdr[i].sh_size;
}
}
/* Now, regular headers - we only care about PT_LOAD headers,
* because thats what we're actually going to load
*/
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
/* Empty segments are never interesting */
if (phdr[i].p_memsz == 0)
continue;
isize += phdr[i].p_filesz;
segments++;
}
/* Allocate a block of memory to store the data in */
if (buffer_create(output, (segments * sizeof(*segs)) + isize,
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (segments * sizeof(struct cbfs_payload_segment));
segs = (struct cbfs_payload_segment *)output->data;
segments = 0;
for (i = 0; i < ehdr->e_shnum; i++) {
char *name;
if (i == ehdr->e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segs[segments].type = PAYLOAD_SEGMENT_PARAMS;
segs[segments].load_addr = 0;
segs[segments].len = (unsigned int)shdr[i].sh_size;
segs[segments].offset = doffset;
memcpy((unsigned long *)(output->data + doffset),
&header[shdr[i].sh_offset], shdr[i].sh_size);
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
}
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
if (phdr[i].p_memsz == 0)
continue;
if (phdr[i].p_filesz == 0) {
segs[segments].type = PAYLOAD_SEGMENT_BSS;
segs[segments].load_addr =
(uint64_t)htonll(phdr[i].p_paddr);
segs[segments].mem_len =
(uint32_t)htonl(phdr[i].p_memsz);
segs[segments].offset = htonl(doffset);
segments++;
continue;
}
if (phdr[i].p_flags & PF_X)
segs[segments].type = PAYLOAD_SEGMENT_CODE;
else
segs[segments].type = PAYLOAD_SEGMENT_DATA;
segs[segments].load_addr = (uint64_t)htonll(phdr[i].p_paddr);
segs[segments].mem_len = (uint32_t)htonl(phdr[i].p_memsz);
segs[segments].compression = htonl(algo);
segs[segments].offset = htonl(doffset);
int len;
compress((char *)&header[phdr[i].p_offset],
phdr[i].p_filesz, output->data + doffset, &len);
segs[segments].len = htonl(len);
/* If the compressed section is larger, then use the
original stuff */
if ((unsigned int)len > phdr[i].p_filesz) {
segs[segments].compression = 0;
segs[segments].len = htonl(phdr[i].p_filesz);
memcpy(output->data + doffset,
&header[phdr[i].p_offset], phdr[i].p_filesz);
}
doffset += ntohl(segs[segments].len);
osize += ntohl(segs[segments].len);
segments++;
}
segs[segments].type = PAYLOAD_SEGMENT_ENTRY;
segs[segments++].load_addr = htonll(ehdr->e_entry);
output->size = (segments * sizeof(struct cbfs_payload_segment)) + osize;
return 0;
}
int parse_flat_binary_to_payload(const struct buffer *input,
struct buffer *output,
uint32_t loadaddress,
uint32_t entrypoint,
comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment *segs;
int doffset, len = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_flat_binary_to_payload\n");
if (buffer_create(output, (2 * sizeof(*segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
segs = (struct cbfs_payload_segment *)output->data;
doffset = (2 * sizeof(*segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = htonll(loadaddress);
segs[0].mem_len = htonl(input->size);
segs[0].offset = htonl(doffset);
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = htonl(algo);
segs[0].len = htonl(len);
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = htonl(input->size);
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = htonll(entrypoint);
output->size = doffset + ntohl(segs[0].len);
return 0;
}
int parse_fv_to_payload(const struct buffer *input,
struct buffer *output, comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment *segs;
int doffset, len = 0;
firmware_volume_header_t *fv;
ffs_file_header_t *fh;
common_section_header_t *cs;
dos_header_t *dh;
coff_header_t *ch;
int dh_offset;
uint32_t loadaddress = 0;
uint32_t entrypoint = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_fv_to_payload\n");
fv = (firmware_volume_header_t *)input->data;
if (fv->signature != FV_SIGNATURE) {
INFO("Not a UEFI firmware volume.\n");
return -1;
}
fh = (ffs_file_header_t *)(input->data + fv->header_length);
while (fh->file_type == FILETYPE_PAD) {
unsigned long offset = (fh->size[2] << 16) | (fh->size[1] << 8) | fh->size[0];
ERROR("skipping %lu bytes of FV padding\n", offset);
fh = (ffs_file_header_t *)(((void*)fh) + offset);
}
if (fh->file_type != FILETYPE_SEC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("First file in first FV not a SEC core.\n");
return -1;
}
cs = (common_section_header_t *)&fh[1];
while (cs->section_type == SECTION_RAW) {
unsigned long offset = (cs->size[2] << 16) | (cs->size[1] << 8) | cs->size[0];
ERROR("skipping %lu bytes of section padding\n", offset);
cs = (common_section_header_t *)(((void*)cs) + offset);
}
if (cs->section_type != SECTION_PE32) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("Section type not PE32.\n");
return -1;
}
dh = (dos_header_t *)&cs[1];
if (dh->signature != DOS_MAGIC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("DOS header signature wrong.\n");
return -1;
}
dh_offset = (unsigned long)dh - (unsigned long)input->data;
DEBUG("dos header offset = %x\n", dh_offset);
ch = (coff_header_t *)(((void *)dh)+dh->e_lfanew);
if (ch->machine == MACHINE_TYPE_X86) {
pe_opt_header_32_t *ph;
ph = (pe_opt_header_32_t *)&ch[1];
if (ph->signature != PE_HDR_32_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %x\n", ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else if (ch->machine == MACHINE_TYPE_X64) {
pe_opt_header_64_t *ph;
ph = (pe_opt_header_64_t *)&ch[1];
if (ph->signature != PE_HDR_64_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %lx\n", (unsigned long)ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else {
ERROR("Machine type not x86 or x64.\n");
return -1;
}
if (buffer_create(output, (2 * sizeof(*segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
segs = (struct cbfs_payload_segment *)output->data;
doffset = (2 * sizeof(*segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = htonll(loadaddress);
segs[0].mem_len = htonl(input->size);
segs[0].offset = htonl(doffset);
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = htonl(algo);
segs[0].len = htonl(len);
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = htonl(input->size);
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = htonll(entrypoint);
output->size = doffset + ntohl(segs[0].len);
return 0;
}