blob: d371506ec134c2cd6e1e94793b38fbc48d644a44 [file] [log] [blame]
#undef VERSION_MAJOR
#undef VERSION_MINOR
#undef RELEASE_DATE
#undef VERSION
#define VERSION_MAJOR "0"
#define VERSION_MINOR "72"
#define RELEASE_DATE "10 February 2010"
#define VERSION VERSION_MAJOR "." VERSION_MINOR
#include <stdarg.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <locale.h>
#include <time.h>
#define MAX_CWD_SIZE 4096
#define MAX_ALLOCATION_PASSES 100
/* NOTE: Before you even start thinking to touch anything
* in this code, set DEBUG_ROMCC_WARNINGS to 1 to get an
* insight on the original author's thoughts. We introduced
* this switch as romcc was about the only thing producing
* massive warnings in our code..
*/
#define DEBUG_ROMCC_WARNINGS 0
#define DEBUG_CONSISTENCY 1
#define DEBUG_SDP_BLOCKS 0
#define DEBUG_TRIPLE_COLOR 0
#define DEBUG_DISPLAY_USES 1
#define DEBUG_DISPLAY_TYPES 1
#define DEBUG_REPLACE_CLOSURE_TYPE_HIRES 0
#define DEBUG_DECOMPOSE_PRINT_TUPLES 0
#define DEBUG_DECOMPOSE_HIRES 0
#define DEBUG_INITIALIZER 0
#define DEBUG_UPDATE_CLOSURE_TYPE 0
#define DEBUG_LOCAL_TRIPLE 0
#define DEBUG_BASIC_BLOCKS_VERBOSE 0
#define DEBUG_CPS_RENAME_VARIABLES_HIRES 0
#define DEBUG_SIMPLIFY_HIRES 0
#define DEBUG_SHRINKING 0
#define DEBUG_COALESCE_HITCHES 0
#define DEBUG_CODE_ELIMINATION 0
#define DEBUG_EXPLICIT_CLOSURES 0
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME give clear error messages about unused variables"
#warning "FIXME properly handle multi dimensional arrays"
#warning "FIXME handle multiple register sizes"
#endif
/* Control flow graph of a loop without goto.
*
* AAA
* +---/
* /
* / +--->CCC
* | | / \
* | | DDD EEE break;
* | | \ \
* | | FFF \
* \| / \ \
* |\ GGG HHH | continue;
* | \ \ | |
* | \ III | /
* | \ | / /
* | vvv /
* +----BBB /
* | /
* vv
* JJJ
*
*
* AAA
* +-----+ | +----+
* | \ | / |
* | BBB +-+ |
* | / \ / | |
* | CCC JJJ / /
* | / \ / /
* | DDD EEE / /
* | | +-/ /
* | FFF /
* | / \ /
* | GGG HHH /
* | | +-/
* | III
* +--+
*
*
* DFlocal(X) = { Y <- Succ(X) | idom(Y) != X }
* DFup(Z) = { Y <- DF(Z) | idom(Y) != X }
*
*
* [] == DFlocal(X) U DF(X)
* () == DFup(X)
*
* Dominator graph of the same nodes.
*
* AAA AAA: [ ] ()
* / \
* BBB JJJ BBB: [ JJJ ] ( JJJ ) JJJ: [ ] ()
* |
* CCC CCC: [ ] ( BBB, JJJ )
* / \
* DDD EEE DDD: [ ] ( BBB ) EEE: [ JJJ ] ()
* |
* FFF FFF: [ ] ( BBB )
* / \
* GGG HHH GGG: [ ] ( BBB ) HHH: [ BBB ] ()
* |
* III III: [ BBB ] ()
*
*
* BBB and JJJ are definitely the dominance frontier.
* Where do I place phi functions and how do I make that decision.
*
*/
struct filelist {
const char *filename;
struct filelist *next;
};
struct filelist *include_filelist = NULL;
static void __attribute__((noreturn)) die(char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fflush(stdout);
fflush(stderr);
exit(1);
}
static void *xmalloc(size_t size, const char *name)
{
void *buf;
buf = malloc(size);
if (!buf) {
die("Cannot malloc %ld bytes to hold %s: %s\n",
size + 0UL, name, strerror(errno));
}
return buf;
}
static void *xcmalloc(size_t size, const char *name)
{
void *buf;
buf = xmalloc(size, name);
memset(buf, 0, size);
return buf;
}
static void *xrealloc(void *ptr, size_t size, const char *name)
{
void *buf;
buf = realloc(ptr, size);
if (!buf) {
die("Cannot realloc %ld bytes to hold %s: %s\n",
size + 0UL, name, strerror(errno));
}
return buf;
}
static void xfree(const void *ptr)
{
free((void *)ptr);
}
static char *xstrdup(const char *str)
{
char *new;
int len;
len = strlen(str);
new = xmalloc(len + 1, "xstrdup string");
memcpy(new, str, len);
new[len] = '\0';
return new;
}
static void xchdir(const char *path)
{
if (chdir(path) != 0) {
die("chdir to `%s' failed: %s\n",
path, strerror(errno));
}
}
static int exists(const char *dirname, const char *filename)
{
char cwd[MAX_CWD_SIZE];
int does_exist;
if (getcwd(cwd, sizeof(cwd)) == 0) {
die("cwd buffer to small");
}
does_exist = 1;
if (chdir(dirname) != 0) {
does_exist = 0;
}
if (does_exist && (access(filename, O_RDONLY) < 0)) {
if ((errno != EACCES) && (errno != EROFS)) {
does_exist = 0;
}
}
xchdir(cwd);
return does_exist;
}
static char *slurp_file(const char *dirname, const char *filename, off_t *r_size)
{
char cwd[MAX_CWD_SIZE];
char *buf;
off_t size, progress;
ssize_t result;
FILE* file;
if (!filename) {
*r_size = 0;
return 0;
}
if (getcwd(cwd, sizeof(cwd)) == 0) {
die("cwd buffer to small");
}
xchdir(dirname);
file = fopen(filename, "rb");
xchdir(cwd);
if (file == NULL) {
die("Cannot open '%s' : %s\n",
filename, strerror(errno));
}
fseek(file, 0, SEEK_END);
size = ftell(file);
fseek(file, 0, SEEK_SET);
*r_size = size +1;
buf = xmalloc(size +2, filename);
buf[size] = '\n'; /* Make certain the file is newline terminated */
buf[size+1] = '\0'; /* Null terminate the file for good measure */
progress = 0;
while(progress < size) {
result = fread(buf + progress, 1, size - progress, file);
if (result < 0) {
if ((errno == EINTR) || (errno == EAGAIN))
continue;
die("read on %s of %ld bytes failed: %s\n",
filename, (size - progress)+ 0UL, strerror(errno));
}
progress += result;
}
fclose(file);
return buf;
}
/* Types on the destination platform */
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME this assumes 32bit x86 is the destination"
#endif
typedef int8_t schar_t;
typedef uint8_t uchar_t;
typedef int8_t char_t;
typedef int16_t short_t;
typedef uint16_t ushort_t;
typedef int32_t int_t;
typedef uint32_t uint_t;
typedef int32_t long_t;
#define ulong_t uint32_t
#define SCHAR_T_MIN (-128)
#define SCHAR_T_MAX 127
#define UCHAR_T_MAX 255
#define CHAR_T_MIN SCHAR_T_MIN
#define CHAR_T_MAX SCHAR_T_MAX
#define SHRT_T_MIN (-32768)
#define SHRT_T_MAX 32767
#define USHRT_T_MAX 65535
#define INT_T_MIN (-LONG_T_MAX - 1)
#define INT_T_MAX 2147483647
#define UINT_T_MAX 4294967295U
#define LONG_T_MIN (-LONG_T_MAX - 1)
#define LONG_T_MAX 2147483647
#define ULONG_T_MAX 4294967295U
#define SIZEOF_I8 8
#define SIZEOF_I16 16
#define SIZEOF_I32 32
#define SIZEOF_I64 64
#define SIZEOF_CHAR 8
#define SIZEOF_SHORT 16
#define SIZEOF_INT 32
#define SIZEOF_LONG (sizeof(long_t)*SIZEOF_CHAR)
#define ALIGNOF_CHAR 8
#define ALIGNOF_SHORT 16
#define ALIGNOF_INT 32
#define ALIGNOF_LONG (sizeof(long_t)*SIZEOF_CHAR)
#define REG_SIZEOF_REG 32
#define REG_SIZEOF_CHAR REG_SIZEOF_REG
#define REG_SIZEOF_SHORT REG_SIZEOF_REG
#define REG_SIZEOF_INT REG_SIZEOF_REG
#define REG_SIZEOF_LONG REG_SIZEOF_REG
#define REG_ALIGNOF_REG REG_SIZEOF_REG
#define REG_ALIGNOF_CHAR REG_SIZEOF_REG
#define REG_ALIGNOF_SHORT REG_SIZEOF_REG
#define REG_ALIGNOF_INT REG_SIZEOF_REG
#define REG_ALIGNOF_LONG REG_SIZEOF_REG
/* Additional definitions for clarity.
* I currently assume a long is the largest native
* machine word and that a pointer fits into it.
*/
#define SIZEOF_WORD SIZEOF_LONG
#define SIZEOF_POINTER SIZEOF_LONG
#define ALIGNOF_WORD ALIGNOF_LONG
#define ALIGNOF_POINTER ALIGNOF_LONG
#define REG_SIZEOF_POINTER REG_SIZEOF_LONG
#define REG_ALIGNOF_POINTER REG_ALIGNOF_LONG
struct file_state {
struct file_state *prev;
const char *basename;
char *dirname;
const char *buf;
off_t size;
const char *pos;
int line;
const char *line_start;
int report_line;
const char *report_name;
const char *report_dir;
int macro : 1;
int trigraphs : 1;
int join_lines : 1;
};
struct hash_entry;
struct token {
int tok;
struct hash_entry *ident;
const char *pos;
int str_len;
union {
ulong_t integer;
const char *str;
int notmacro;
} val;
};
/* I have two classes of types:
* Operational types.
* Logical types. (The type the C standard says the operation is of)
*
* The operational types are:
* chars
* shorts
* ints
* longs
*
* floats
* doubles
* long doubles
*
* pointer
*/
/* Machine model.
* No memory is useable by the compiler.
* There is no floating point support.
* All operations take place in general purpose registers.
* There is one type of general purpose register.
* Unsigned longs are stored in that general purpose register.
*/
/* Operations on general purpose registers.
*/
#define OP_SDIVT 0
#define OP_UDIVT 1
#define OP_SMUL 2
#define OP_UMUL 3
#define OP_SDIV 4
#define OP_UDIV 5
#define OP_SMOD 6
#define OP_UMOD 7
#define OP_ADD 8
#define OP_SUB 9
#define OP_SL 10
#define OP_USR 11
#define OP_SSR 12
#define OP_AND 13
#define OP_XOR 14
#define OP_OR 15
#define OP_POS 16 /* Dummy positive operator don't use it */
#define OP_NEG 17
#define OP_INVERT 18
#define OP_EQ 20
#define OP_NOTEQ 21
#define OP_SLESS 22
#define OP_ULESS 23
#define OP_SMORE 24
#define OP_UMORE 25
#define OP_SLESSEQ 26
#define OP_ULESSEQ 27
#define OP_SMOREEQ 28
#define OP_UMOREEQ 29
#define OP_LFALSE 30 /* Test if the expression is logically false */
#define OP_LTRUE 31 /* Test if the expression is logcially true */
#define OP_LOAD 32
#define OP_STORE 33
/* For OP_STORE ->type holds the type
* RHS(0) holds the destination address
* RHS(1) holds the value to store.
*/
#define OP_UEXTRACT 34
/* OP_UEXTRACT extracts an unsigned bitfield from a pseudo register
* RHS(0) holds the psuedo register to extract from
* ->type holds the size of the bitfield.
* ->u.bitfield.size holds the size of the bitfield.
* ->u.bitfield.offset holds the offset to extract from
*/
#define OP_SEXTRACT 35
/* OP_SEXTRACT extracts a signed bitfield from a pseudo register
* RHS(0) holds the psuedo register to extract from
* ->type holds the size of the bitfield.
* ->u.bitfield.size holds the size of the bitfield.
* ->u.bitfield.offset holds the offset to extract from
*/
#define OP_DEPOSIT 36
/* OP_DEPOSIT replaces a bitfield with a new value.
* RHS(0) holds the value to replace a bitifield in.
* RHS(1) holds the replacement value
* ->u.bitfield.size holds the size of the bitfield.
* ->u.bitfield.offset holds the deposit into
*/
#define OP_NOOP 37
#define OP_MIN_CONST 50
#define OP_MAX_CONST 58
#define IS_CONST_OP(X) (((X) >= OP_MIN_CONST) && ((X) <= OP_MAX_CONST))
#define OP_INTCONST 50
/* For OP_INTCONST ->type holds the type.
* ->u.cval holds the constant value.
*/
#define OP_BLOBCONST 51
/* For OP_BLOBCONST ->type holds the layout and size
* information. u.blob holds a pointer to the raw binary
* data for the constant initializer.
*/
#define OP_ADDRCONST 52
/* For OP_ADDRCONST ->type holds the type.
* MISC(0) holds the reference to the static variable.
* ->u.cval holds an offset from that value.
*/
#define OP_UNKNOWNVAL 59
/* For OP_UNKNOWNAL ->type holds the type.
* For some reason we don't know what value this type has.
* This allows for variables that have don't have values
* assigned yet, or variables whose value we simply do not know.
*/
#define OP_WRITE 60
/* OP_WRITE moves one pseudo register to another.
* MISC(0) holds the destination pseudo register, which must be an OP_DECL.
* RHS(0) holds the psuedo to move.
*/
#define OP_READ 61
/* OP_READ reads the value of a variable and makes
* it available for the pseudo operation.
* Useful for things like def-use chains.
* RHS(0) holds points to the triple to read from.
*/
#define OP_COPY 62
/* OP_COPY makes a copy of the pseudo register or constant in RHS(0).
*/
#define OP_CONVERT 63
/* OP_CONVERT makes a copy of the pseudo register or constant in RHS(0).
* And then the type is converted appropriately.
*/
#define OP_PIECE 64
/* OP_PIECE returns one piece of a instruction that returns a structure.
* MISC(0) is the instruction
* u.cval is the LHS piece of the instruction to return.
*/
#define OP_ASM 65
/* OP_ASM holds a sequence of assembly instructions, the result
* of a C asm directive.
* RHS(x) holds input value x to the assembly sequence.
* LHS(x) holds the output value x from the assembly sequence.
* u.blob holds the string of assembly instructions.
*/
#define OP_DEREF 66
/* OP_DEREF generates an lvalue from a pointer.
* RHS(0) holds the pointer value.
* OP_DEREF serves as a place holder to indicate all necessary
* checks have been done to indicate a value is an lvalue.
*/
#define OP_DOT 67
/* OP_DOT references a submember of a structure lvalue.
* MISC(0) holds the lvalue.
* ->u.field holds the name of the field we want.
*
* Not seen after structures are flattened.
*/
#define OP_INDEX 68
/* OP_INDEX references a submember of a tuple or array lvalue.
* MISC(0) holds the lvalue.
* ->u.cval holds the index into the lvalue.
*
* Not seen after structures are flattened.
*/
#define OP_VAL 69
/* OP_VAL returns the value of a subexpression of the current expression.
* Useful for operators that have side effects.
* RHS(0) holds the expression.
* MISC(0) holds the subexpression of RHS(0) that is the
* value of the expression.
*
* Not seen outside of expressions.
*/
#define OP_TUPLE 70
/* OP_TUPLE is an array of triples that are either variable
* or values for a structure or an array. It is used as
* a place holder when flattening compound types.
* The value represented by an OP_TUPLE is held in N registers.
* LHS(0..N-1) refer to those registers.
* ->use is a list of statements that use the value.
*
* Although OP_TUPLE always has register sized pieces they are not
* used until structures are flattened/decomposed into their register
* components.
* ???? registers ????
*/
#define OP_BITREF 71
/* OP_BITREF describes a bitfield as an lvalue.
* RHS(0) holds the register value.
* ->type holds the type of the bitfield.
* ->u.bitfield.size holds the size of the bitfield.
* ->u.bitfield.offset holds the offset of the bitfield in the register
*/
#define OP_FCALL 72
/* OP_FCALL performs a procedure call.
* MISC(0) holds a pointer to the OP_LIST of a function
* RHS(x) holds argument x of a function
*
* Currently not seen outside of expressions.
*/
#define OP_PROG 73
/* OP_PROG is an expression that holds a list of statements, or
* expressions. The final expression is the value of the expression.
* RHS(0) holds the start of the list.
*/
/* statements */
#define OP_LIST 80
/* OP_LIST Holds a list of statements that compose a function, and a result value.
* RHS(0) holds the list of statements.
* A list of all functions is maintained.
*/
#define OP_BRANCH 81 /* an unconditional branch */
/* For branch instructions
* TARG(0) holds the branch target.
* ->next holds where to branch to if the branch is not taken.
* The branch target can only be a label
*/
#define OP_CBRANCH 82 /* a conditional branch */
/* For conditional branch instructions
* RHS(0) holds the branch condition.
* TARG(0) holds the branch target.
* ->next holds where to branch to if the branch is not taken.
* The branch target can only be a label
*/
#define OP_CALL 83 /* an uncontional branch that will return */
/* For call instructions
* MISC(0) holds the OP_RET that returns from the branch
* TARG(0) holds the branch target.
* ->next holds where to branch to if the branch is not taken.
* The branch target can only be a label
*/
#define OP_RET 84 /* an uncontinonal branch through a variable back to an OP_CALL */
/* For call instructions
* RHS(0) holds the variable with the return address
* The branch target can only be a label
*/
#define OP_LABEL 86
/* OP_LABEL is a triple that establishes an target for branches.
* ->use is the list of all branches that use this label.
*/
#define OP_ADECL 87
/* OP_ADECL is a triple that establishes an lvalue for assignments.
* A variable takes N registers to contain.
* LHS(0..N-1) refer to an OP_PIECE triple that represents
* the Xth register that the variable is stored in.
* ->use is a list of statements that use the variable.
*
* Although OP_ADECL always has register sized pieces they are not
* used until structures are flattened/decomposed into their register
* components.
*/
#define OP_SDECL 88
/* OP_SDECL is a triple that establishes a variable of static
* storage duration.
* ->use is a list of statements that use the variable.
* MISC(0) holds the initializer expression.
*/
#define OP_PHI 89
/* OP_PHI is a triple used in SSA form code.
* It is used when multiple code paths merge and a variable needs
* a single assignment from any of those code paths.
* The operation is a cross between OP_DECL and OP_WRITE, which
* is what OP_PHI is generated from.
*
* RHS(x) points to the value from code path x
* The number of RHS entries is the number of control paths into the block
* in which OP_PHI resides. The elements of the array point to point
* to the variables OP_PHI is derived from.
*
* MISC(0) holds a pointer to the orginal OP_DECL node.
*/
#if 0
/* continuation helpers
*/
#define OP_CPS_BRANCH 90 /* an unconditional branch */
/* OP_CPS_BRANCH calls a continuation
* RHS(x) holds argument x of the function
* TARG(0) holds OP_CPS_START target
*/
#define OP_CPS_CBRANCH 91 /* a conditional branch */
/* OP_CPS_CBRANCH conditionally calls one of two continuations
* RHS(0) holds the branch condition
* RHS(x + 1) holds argument x of the function
* TARG(0) holds the OP_CPS_START to jump to when true
* ->next holds the OP_CPS_START to jump to when false
*/
#define OP_CPS_CALL 92 /* an uncontional branch that will return */
/* For OP_CPS_CALL instructions
* RHS(x) holds argument x of the function
* MISC(0) holds the OP_CPS_RET that returns from the branch
* TARG(0) holds the branch target.
* ->next holds where the OP_CPS_RET will return to.
*/
#define OP_CPS_RET 93
/* OP_CPS_RET conditionally calls one of two continuations
* RHS(0) holds the variable with the return function address
* RHS(x + 1) holds argument x of the function
* The branch target may be any OP_CPS_START
*/
#define OP_CPS_END 94
/* OP_CPS_END is the triple at the end of the program.
* For most practical purposes it is a branch.
*/
#define OP_CPS_START 95
/* OP_CPS_START is a triple at the start of a continuation
* The arguments variables takes N registers to contain.
* LHS(0..N-1) refer to an OP_PIECE triple that represents
* the Xth register that the arguments are stored in.
*/
#endif
/* Architecture specific instructions */
#define OP_CMP 100
#define OP_TEST 101
#define OP_SET_EQ 102
#define OP_SET_NOTEQ 103
#define OP_SET_SLESS 104
#define OP_SET_ULESS 105
#define OP_SET_SMORE 106
#define OP_SET_UMORE 107
#define OP_SET_SLESSEQ 108
#define OP_SET_ULESSEQ 109
#define OP_SET_SMOREEQ 110
#define OP_SET_UMOREEQ 111
#define OP_JMP 112
#define OP_JMP_EQ 113
#define OP_JMP_NOTEQ 114
#define OP_JMP_SLESS 115
#define OP_JMP_ULESS 116
#define OP_JMP_SMORE 117
#define OP_JMP_UMORE 118
#define OP_JMP_SLESSEQ 119
#define OP_JMP_ULESSEQ 120
#define OP_JMP_SMOREEQ 121
#define OP_JMP_UMOREEQ 122
/* Builtin operators that it is just simpler to use the compiler for */
#define OP_INB 130
#define OP_INW 131
#define OP_INL 132
#define OP_OUTB 133
#define OP_OUTW 134
#define OP_OUTL 135
#define OP_BSF 136
#define OP_BSR 137
#define OP_RDMSR 138
#define OP_WRMSR 139
#define OP_HLT 140
struct op_info {
const char *name;
unsigned flags;
#define PURE 0x001 /* Triple has no side effects */
#define IMPURE 0x002 /* Triple has side effects */
#define PURE_BITS(FLAGS) ((FLAGS) & 0x3)
#define DEF 0x004 /* Triple is a variable definition */
#define BLOCK 0x008 /* Triple stores the current block */
#define STRUCTURAL 0x010 /* Triple does not generate a machine instruction */
#define BRANCH_BITS(FLAGS) ((FLAGS) & 0xe0 )
#define UBRANCH 0x020 /* Triple is an unconditional branch instruction */
#define CBRANCH 0x040 /* Triple is a conditional branch instruction */
#define RETBRANCH 0x060 /* Triple is a return instruction */
#define CALLBRANCH 0x080 /* Triple is a call instruction */
#define ENDBRANCH 0x0a0 /* Triple is an end instruction */
#define PART 0x100 /* Triple is really part of another triple */
#define BITFIELD 0x200 /* Triple manipulates a bitfield */
signed char lhs, rhs, misc, targ;
};
#define OP(LHS, RHS, MISC, TARG, FLAGS, NAME) { \
.name = (NAME), \
.flags = (FLAGS), \
.lhs = (LHS), \
.rhs = (RHS), \
.misc = (MISC), \
.targ = (TARG), \
}
static const struct op_info table_ops[] = {
[OP_SDIVT ] = OP( 2, 2, 0, 0, PURE | BLOCK , "sdivt"),
[OP_UDIVT ] = OP( 2, 2, 0, 0, PURE | BLOCK , "udivt"),
[OP_SMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smul"),
[OP_UMUL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umul"),
[OP_SDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sdiv"),
[OP_UDIV ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "udiv"),
[OP_SMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smod"),
[OP_UMOD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umod"),
[OP_ADD ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "add"),
[OP_SUB ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sub"),
[OP_SL ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sl"),
[OP_USR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "usr"),
[OP_SSR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ssr"),
[OP_AND ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "and"),
[OP_XOR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "xor"),
[OP_OR ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "or"),
[OP_POS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "pos"),
[OP_NEG ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "neg"),
[OP_INVERT ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "invert"),
[OP_EQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "eq"),
[OP_NOTEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "noteq"),
[OP_SLESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "sless"),
[OP_ULESS ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "uless"),
[OP_SMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smore"),
[OP_UMORE ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umore"),
[OP_SLESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "slesseq"),
[OP_ULESSEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "ulesseq"),
[OP_SMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "smoreeq"),
[OP_UMOREEQ ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK , "umoreeq"),
[OP_LFALSE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "lfalse"),
[OP_LTRUE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK , "ltrue"),
[OP_LOAD ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "load"),
[OP_STORE ] = OP( 0, 2, 0, 0, PURE | BLOCK , "store"),
[OP_UEXTRACT ] = OP( 0, 1, 0, 0, PURE | DEF | BITFIELD, "uextract"),
[OP_SEXTRACT ] = OP( 0, 1, 0, 0, PURE | DEF | BITFIELD, "sextract"),
[OP_DEPOSIT ] = OP( 0, 2, 0, 0, PURE | DEF | BITFIELD, "deposit"),
[OP_NOOP ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "noop"),
[OP_INTCONST ] = OP( 0, 0, 0, 0, PURE | DEF, "intconst"),
[OP_BLOBCONST ] = OP( 0, 0, 0, 0, PURE , "blobconst"),
[OP_ADDRCONST ] = OP( 0, 0, 1, 0, PURE | DEF, "addrconst"),
[OP_UNKNOWNVAL ] = OP( 0, 0, 0, 0, PURE | DEF, "unknown"),
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME is it correct for OP_WRITE to be a def? I currently use it as one..."
#endif
[OP_WRITE ] = OP( 0, 1, 1, 0, PURE | DEF | BLOCK, "write"),
[OP_READ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "read"),
[OP_COPY ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "copy"),
[OP_CONVERT ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "convert"),
[OP_PIECE ] = OP( 0, 0, 1, 0, PURE | DEF | STRUCTURAL | PART, "piece"),
[OP_ASM ] = OP(-1, -1, 0, 0, PURE, "asm"),
[OP_DEREF ] = OP( 0, 1, 0, 0, 0 | DEF | BLOCK, "deref"),
[OP_DOT ] = OP( 0, 0, 1, 0, PURE | DEF | PART, "dot"),
[OP_INDEX ] = OP( 0, 0, 1, 0, PURE | DEF | PART, "index"),
[OP_VAL ] = OP( 0, 1, 1, 0, 0 | DEF | BLOCK, "val"),
[OP_TUPLE ] = OP(-1, 0, 0, 0, 0 | PURE | BLOCK | STRUCTURAL, "tuple"),
[OP_BITREF ] = OP( 0, 1, 0, 0, 0 | DEF | PURE | STRUCTURAL | BITFIELD, "bitref"),
/* Call is special most it can stand in for anything so it depends on context */
[OP_FCALL ] = OP( 0, -1, 1, 0, 0 | BLOCK | CALLBRANCH, "fcall"),
[OP_PROG ] = OP( 0, 1, 0, 0, 0 | IMPURE | BLOCK | STRUCTURAL, "prog"),
/* The sizes of OP_FCALL depends upon context */
[OP_LIST ] = OP( 0, 1, 1, 0, 0 | DEF | STRUCTURAL, "list"),
[OP_BRANCH ] = OP( 0, 0, 0, 1, PURE | BLOCK | UBRANCH, "branch"),
[OP_CBRANCH ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "cbranch"),
[OP_CALL ] = OP( 0, 0, 1, 1, PURE | BLOCK | CALLBRANCH, "call"),
[OP_RET ] = OP( 0, 1, 0, 0, PURE | BLOCK | RETBRANCH, "ret"),
[OP_LABEL ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "label"),
[OP_ADECL ] = OP( 0, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "adecl"),
[OP_SDECL ] = OP( 0, 0, 1, 0, PURE | BLOCK | STRUCTURAL, "sdecl"),
/* The number of RHS elements of OP_PHI depend upon context */
[OP_PHI ] = OP( 0, -1, 1, 0, PURE | DEF | BLOCK, "phi"),
#if 0
[OP_CPS_BRANCH ] = OP( 0, -1, 0, 1, PURE | BLOCK | UBRANCH, "cps_branch"),
[OP_CPS_CBRANCH] = OP( 0, -1, 0, 1, PURE | BLOCK | CBRANCH, "cps_cbranch"),
[OP_CPS_CALL ] = OP( 0, -1, 1, 1, PURE | BLOCK | CALLBRANCH, "cps_call"),
[OP_CPS_RET ] = OP( 0, -1, 0, 0, PURE | BLOCK | RETBRANCH, "cps_ret"),
[OP_CPS_END ] = OP( 0, -1, 0, 0, IMPURE | BLOCK | ENDBRANCH, "cps_end"),
[OP_CPS_START ] = OP( -1, 0, 0, 0, PURE | BLOCK | STRUCTURAL, "cps_start"),
#endif
[OP_CMP ] = OP( 0, 2, 0, 0, PURE | DEF | BLOCK, "cmp"),
[OP_TEST ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "test"),
[OP_SET_EQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_eq"),
[OP_SET_NOTEQ ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_noteq"),
[OP_SET_SLESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_sless"),
[OP_SET_ULESS ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_uless"),
[OP_SET_SMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smore"),
[OP_SET_UMORE ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umore"),
[OP_SET_SLESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_slesseq"),
[OP_SET_ULESSEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_ulesseq"),
[OP_SET_SMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_smoreq"),
[OP_SET_UMOREEQ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "set_umoreq"),
[OP_JMP ] = OP( 0, 0, 0, 1, PURE | BLOCK | UBRANCH, "jmp"),
[OP_JMP_EQ ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_eq"),
[OP_JMP_NOTEQ ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_noteq"),
[OP_JMP_SLESS ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_sless"),
[OP_JMP_ULESS ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_uless"),
[OP_JMP_SMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smore"),
[OP_JMP_UMORE ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umore"),
[OP_JMP_SLESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_slesseq"),
[OP_JMP_ULESSEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_ulesseq"),
[OP_JMP_SMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_smoreq"),
[OP_JMP_UMOREEQ] = OP( 0, 1, 0, 1, PURE | BLOCK | CBRANCH, "jmp_umoreq"),
[OP_INB ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inb"),
[OP_INW ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inw"),
[OP_INL ] = OP( 0, 1, 0, 0, IMPURE | DEF | BLOCK, "__inl"),
[OP_OUTB ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outb"),
[OP_OUTW ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outw"),
[OP_OUTL ] = OP( 0, 2, 0, 0, IMPURE| BLOCK, "__outl"),
[OP_BSF ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsf"),
[OP_BSR ] = OP( 0, 1, 0, 0, PURE | DEF | BLOCK, "__bsr"),
[OP_RDMSR ] = OP( 2, 1, 0, 0, IMPURE | BLOCK, "__rdmsr"),
[OP_WRMSR ] = OP( 0, 3, 0, 0, IMPURE | BLOCK, "__wrmsr"),
[OP_HLT ] = OP( 0, 0, 0, 0, IMPURE | BLOCK, "__hlt"),
};
#undef OP
#define OP_MAX (sizeof(table_ops)/sizeof(table_ops[0]))
static const char *tops(int index)
{
static const char unknown[] = "unknown op";
if (index < 0) {
return unknown;
}
if (index > OP_MAX) {
return unknown;
}
return table_ops[index].name;
}
struct asm_info;
struct triple;
struct block;
struct triple_set {
struct triple_set *next;
struct triple *member;
};
#define MAX_LHS 63
#define MAX_RHS 127
#define MAX_MISC 3
#define MAX_TARG 1
struct occurance {
int count;
const char *filename;
const char *function;
int line;
int col;
struct occurance *parent;
};
struct bitfield {
ulong_t size : 8;
ulong_t offset : 24;
};
struct triple {
struct triple *next, *prev;
struct triple_set *use;
struct type *type;
unsigned int op : 8;
unsigned int template_id : 7;
unsigned int lhs : 6;
unsigned int rhs : 7;
unsigned int misc : 2;
unsigned int targ : 1;
#define TRIPLE_SIZE(TRIPLE) \
((TRIPLE)->lhs + (TRIPLE)->rhs + (TRIPLE)->misc + (TRIPLE)->targ)
#define TRIPLE_LHS_OFF(PTR) (0)
#define TRIPLE_RHS_OFF(PTR) (TRIPLE_LHS_OFF(PTR) + (PTR)->lhs)
#define TRIPLE_MISC_OFF(PTR) (TRIPLE_RHS_OFF(PTR) + (PTR)->rhs)
#define TRIPLE_TARG_OFF(PTR) (TRIPLE_MISC_OFF(PTR) + (PTR)->misc)
#define LHS(PTR,INDEX) ((PTR)->param[TRIPLE_LHS_OFF(PTR) + (INDEX)])
#define RHS(PTR,INDEX) ((PTR)->param[TRIPLE_RHS_OFF(PTR) + (INDEX)])
#define TARG(PTR,INDEX) ((PTR)->param[TRIPLE_TARG_OFF(PTR) + (INDEX)])
#define MISC(PTR,INDEX) ((PTR)->param[TRIPLE_MISC_OFF(PTR) + (INDEX)])
unsigned id; /* A scratch value and finally the register */
#define TRIPLE_FLAG_FLATTENED (1 << 31)
#define TRIPLE_FLAG_PRE_SPLIT (1 << 30)
#define TRIPLE_FLAG_POST_SPLIT (1 << 29)
#define TRIPLE_FLAG_VOLATILE (1 << 28)
#define TRIPLE_FLAG_INLINE (1 << 27) /* ???? */
#define TRIPLE_FLAG_LOCAL (1 << 26)
#define TRIPLE_FLAG_COPY TRIPLE_FLAG_VOLATILE
struct occurance *occurance;
union {
ulong_t cval;
struct bitfield bitfield;
struct block *block;
void *blob;
struct hash_entry *field;
struct asm_info *ainfo;
struct triple *func;
struct symbol *symbol;
} u;
struct triple *param[2];
};
struct reg_info {
unsigned reg;
unsigned regcm;
};
struct ins_template {
struct reg_info lhs[MAX_LHS + 1], rhs[MAX_RHS + 1];
};
struct asm_info {
struct ins_template tmpl;
char *str;
};
struct block_set {
struct block_set *next;
struct block *member;
};
struct block {
struct block *work_next;
struct triple *first, *last;
int edge_count;
struct block_set *edges;
int users;
struct block_set *use;
struct block_set *idominates;
struct block_set *domfrontier;
struct block *idom;
struct block_set *ipdominates;
struct block_set *ipdomfrontier;
struct block *ipdom;
int vertex;
};
struct symbol {
struct symbol *next;
struct hash_entry *ident;
struct triple *def;
struct type *type;
int scope_depth;
};
struct macro_arg {
struct macro_arg *next;
struct hash_entry *ident;
};
struct macro {
struct hash_entry *ident;
const char *buf;
int buf_len;
struct macro_arg *args;
int argc;
};
struct hash_entry {
struct hash_entry *next;
const char *name;
int name_len;
int tok;
struct macro *sym_define;
struct symbol *sym_label;
struct symbol *sym_tag;
struct symbol *sym_ident;
};
#define HASH_TABLE_SIZE 2048
struct compiler_state {
const char *label_prefix;
const char *ofilename;
unsigned long flags;
unsigned long debug;
unsigned long max_allocation_passes;
size_t include_path_count;
const char **include_paths;
size_t define_count;
const char **defines;
size_t undef_count;
const char **undefs;
};
struct arch_state {
unsigned long features;
};
struct basic_blocks {
struct triple *func;
struct triple *first;
struct block *first_block, *last_block;
int last_vertex;
};
#define MAX_PP_IF_DEPTH 63
struct compile_state {
struct compiler_state *compiler;
struct arch_state *arch;
FILE *output;
FILE *errout;
FILE *dbgout;
struct file_state *file;
struct occurance *last_occurance;
const char *function;
int token_base;
struct token token[6];
struct hash_entry *hash_table[HASH_TABLE_SIZE];
struct hash_entry *i_switch;
struct hash_entry *i_case;
struct hash_entry *i_continue;
struct hash_entry *i_break;
struct hash_entry *i_default;
struct hash_entry *i_return;
struct hash_entry *i_noreturn;
struct hash_entry *i_unused;
/* Additional hash entries for predefined macros */
struct hash_entry *i_defined;
struct hash_entry *i___VA_ARGS__;
struct hash_entry *i___FILE__;
struct hash_entry *i___LINE__;
/* Additional hash entries for predefined identifiers */
struct hash_entry *i___func__;
/* Additional hash entries for attributes */
struct hash_entry *i_noinline;
struct hash_entry *i_always_inline;
int scope_depth;
unsigned char if_bytes[(MAX_PP_IF_DEPTH + CHAR_BIT -1)/CHAR_BIT];
int if_depth;
int eat_depth, eat_targ;
struct file_state *macro_file;
struct triple *functions;
struct triple *main_function;
struct triple *first;
struct triple *global_pool;
struct basic_blocks bb;
int functions_joined;
};
/* visibility global/local */
/* static/auto duration */
/* typedef, register, inline */
#define STOR_SHIFT 0
#define STOR_MASK 0x001f
/* Visibility */
#define STOR_GLOBAL 0x0001
/* Duration */
#define STOR_PERM 0x0002
/* Definition locality */
#define STOR_NONLOCAL 0x0004 /* The definition is not in this translation unit */
/* Storage specifiers */
#define STOR_AUTO 0x0000
#define STOR_STATIC 0x0002
#define STOR_LOCAL 0x0003
#define STOR_EXTERN 0x0007
#define STOR_INLINE 0x0008
#define STOR_REGISTER 0x0010
#define STOR_TYPEDEF 0x0018
#define QUAL_SHIFT 5
#define QUAL_MASK 0x00e0
#define QUAL_NONE 0x0000
#define QUAL_CONST 0x0020
#define QUAL_VOLATILE 0x0040
#define QUAL_RESTRICT 0x0080
#define TYPE_SHIFT 8
#define TYPE_MASK 0x1f00
#define TYPE_INTEGER(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_ULLONG)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
#define TYPE_ARITHMETIC(TYPE) ((((TYPE) >= TYPE_CHAR) && ((TYPE) <= TYPE_LDOUBLE)) || ((TYPE) == TYPE_ENUM) || ((TYPE) == TYPE_BITFIELD))
#define TYPE_UNSIGNED(TYPE) ((TYPE) & 0x0100)
#define TYPE_SIGNED(TYPE) (!TYPE_UNSIGNED(TYPE))
#define TYPE_MKUNSIGNED(TYPE) (((TYPE) & ~0xF000) | 0x0100)
#define TYPE_RANK(TYPE) ((TYPE) & ~0xF1FF)
#define TYPE_PTR(TYPE) (((TYPE) & TYPE_MASK) == TYPE_POINTER)
#define TYPE_DEFAULT 0x0000
#define TYPE_VOID 0x0100
#define TYPE_CHAR 0x0200
#define TYPE_UCHAR 0x0300
#define TYPE_SHORT 0x0400
#define TYPE_USHORT 0x0500
#define TYPE_INT 0x0600
#define TYPE_UINT 0x0700
#define TYPE_LONG 0x0800
#define TYPE_ULONG 0x0900
#define TYPE_LLONG 0x0a00 /* long long */
#define TYPE_ULLONG 0x0b00
#define TYPE_FLOAT 0x0c00
#define TYPE_DOUBLE 0x0d00
#define TYPE_LDOUBLE 0x0e00 /* long double */
/* Note: TYPE_ENUM is chosen very carefully so TYPE_RANK works */
#define TYPE_ENUM 0x1600
#define TYPE_LIST 0x1700
/* TYPE_LIST is a basic building block when defining enumerations
* type->field_ident holds the name of this enumeration entry.
* type->right holds the entry in the list.
*/
#define TYPE_STRUCT 0x1000
/* For TYPE_STRUCT
* type->left holds the link list of TYPE_PRODUCT entries that
* make up the structure.
* type->elements hold the length of the linked list
*/
#define TYPE_UNION 0x1100
/* For TYPE_UNION
* type->left holds the link list of TYPE_OVERLAP entries that
* make up the union.
* type->elements hold the length of the linked list
*/
#define TYPE_POINTER 0x1200
/* For TYPE_POINTER:
* type->left holds the type pointed to.
*/
#define TYPE_FUNCTION 0x1300
/* For TYPE_FUNCTION:
* type->left holds the return type.
* type->right holds the type of the arguments
* type->elements holds the count of the arguments
*/
#define TYPE_PRODUCT 0x1400
/* TYPE_PRODUCT is a basic building block when defining structures
* type->left holds the type that appears first in memory.
* type->right holds the type that appears next in memory.
*/
#define TYPE_OVERLAP 0x1500
/* TYPE_OVERLAP is a basic building block when defining unions
* type->left and type->right holds to types that overlap
* each other in memory.
*/
#define TYPE_ARRAY 0x1800
/* TYPE_ARRAY is a basic building block when definitng arrays.
* type->left holds the type we are an array of.
* type->elements holds the number of elements.
*/
#define TYPE_TUPLE 0x1900
/* TYPE_TUPLE is a basic building block when defining
* positionally reference type conglomerations. (i.e. closures)
* In essence it is a wrapper for TYPE_PRODUCT, like TYPE_STRUCT
* except it has no field names.
* type->left holds the liked list of TYPE_PRODUCT entries that
* make up the closure type.
* type->elements hold the number of elements in the closure.
*/
#define TYPE_JOIN 0x1a00
/* TYPE_JOIN is a basic building block when defining
* positionally reference type conglomerations. (i.e. closures)
* In essence it is a wrapper for TYPE_OVERLAP, like TYPE_UNION
* except it has no field names.
* type->left holds the liked list of TYPE_OVERLAP entries that
* make up the closure type.
* type->elements hold the number of elements in the closure.
*/
#define TYPE_BITFIELD 0x1b00
/* TYPE_BITFIED is the type of a bitfield.
* type->left holds the type basic type TYPE_BITFIELD is derived from.
* type->elements holds the number of bits in the bitfield.
*/
#define TYPE_UNKNOWN 0x1c00
/* TYPE_UNKNOWN is the type of an unknown value.
* Used on unknown consts and other places where I don't know the type.
*/
#define ATTRIB_SHIFT 16
#define ATTRIB_MASK 0xffff0000
#define ATTRIB_NOINLINE 0x00010000
#define ATTRIB_ALWAYS_INLINE 0x00020000
#define ELEMENT_COUNT_UNSPECIFIED ULONG_T_MAX
struct type {
unsigned int type;
struct type *left, *right;
ulong_t elements;
struct hash_entry *field_ident;
struct hash_entry *type_ident;
};
#define TEMPLATE_BITS 7
#define MAX_TEMPLATES (1<<TEMPLATE_BITS)
#define MAX_REG_EQUIVS 16
#define MAX_REGC 14
#define MAX_REGISTERS 75
#define REGISTER_BITS 7
#define MAX_VIRT_REGISTERS (1<<REGISTER_BITS)
#define REG_ERROR 0
#define REG_UNSET 1
#define REG_UNNEEDED 2
#define REG_VIRT0 (MAX_REGISTERS + 0)
#define REG_VIRT1 (MAX_REGISTERS + 1)
#define REG_VIRT2 (MAX_REGISTERS + 2)
#define REG_VIRT3 (MAX_REGISTERS + 3)
#define REG_VIRT4 (MAX_REGISTERS + 4)
#define REG_VIRT5 (MAX_REGISTERS + 5)
#define REG_VIRT6 (MAX_REGISTERS + 6)
#define REG_VIRT7 (MAX_REGISTERS + 7)
#define REG_VIRT8 (MAX_REGISTERS + 8)
#define REG_VIRT9 (MAX_REGISTERS + 9)
#if (MAX_REGISTERS + 9) > MAX_VIRT_REGISTERS
#error "MAX_VIRT_REGISTERS to small"
#endif
#if (MAX_REGC + REGISTER_BITS) >= 26
#error "Too many id bits used"
#endif
/* Provision for 8 register classes */
#define REG_SHIFT 0
#define REGC_SHIFT REGISTER_BITS
#define REGC_MASK (((1 << MAX_REGC) - 1) << REGISTER_BITS)
#define REG_MASK (MAX_VIRT_REGISTERS -1)
#define ID_REG(ID) ((ID) & REG_MASK)
#define SET_REG(ID, REG) ((ID) = (((ID) & ~REG_MASK) | ((REG) & REG_MASK)))
#define ID_REGCM(ID) (((ID) & REGC_MASK) >> REGC_SHIFT)
#define SET_REGCM(ID, REGCM) ((ID) = (((ID) & ~REGC_MASK) | (((REGCM) << REGC_SHIFT) & REGC_MASK)))
#define SET_INFO(ID, INFO) ((ID) = (((ID) & ~(REG_MASK | REGC_MASK)) | \
(((INFO).reg) & REG_MASK) | ((((INFO).regcm) << REGC_SHIFT) & REGC_MASK)))
#define ARCH_INPUT_REGS 4
#define ARCH_OUTPUT_REGS 4
static const struct reg_info arch_input_regs[ARCH_INPUT_REGS];
static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS];
static unsigned arch_reg_regcm(struct compile_state *state, int reg);
static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm);
static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm);
static void arch_reg_equivs(
struct compile_state *state, unsigned *equiv, int reg);
static int arch_select_free_register(
struct compile_state *state, char *used, int classes);
static unsigned arch_regc_size(struct compile_state *state, int class);
static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2);
static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type);
static const char *arch_reg_str(int reg);
static struct reg_info arch_reg_constraint(
struct compile_state *state, struct type *type, const char *constraint);
static struct reg_info arch_reg_clobber(
struct compile_state *state, const char *clobber);
static struct reg_info arch_reg_lhs(struct compile_state *state,
struct triple *ins, int index);
static struct reg_info arch_reg_rhs(struct compile_state *state,
struct triple *ins, int index);
static int arch_reg_size(int reg);
static struct triple *transform_to_arch_instruction(
struct compile_state *state, struct triple *ins);
static struct triple *flatten(
struct compile_state *state, struct triple *first, struct triple *ptr);
static void print_dominators(struct compile_state *state,
FILE *fp, struct basic_blocks *bb);
static void print_dominance_frontiers(struct compile_state *state,
FILE *fp, struct basic_blocks *bb);
#define DEBUG_ABORT_ON_ERROR 0x00000001
#define DEBUG_BASIC_BLOCKS 0x00000002
#define DEBUG_FDOMINATORS 0x00000004
#define DEBUG_RDOMINATORS 0x00000008
#define DEBUG_TRIPLES 0x00000010
#define DEBUG_INTERFERENCE 0x00000020
#define DEBUG_SCC_TRANSFORM 0x00000040
#define DEBUG_SCC_TRANSFORM2 0x00000080
#define DEBUG_REBUILD_SSA_FORM 0x00000100
#define DEBUG_INLINE 0x00000200
#define DEBUG_RANGE_CONFLICTS 0x00000400
#define DEBUG_RANGE_CONFLICTS2 0x00000800
#define DEBUG_COLOR_GRAPH 0x00001000
#define DEBUG_COLOR_GRAPH2 0x00002000
#define DEBUG_COALESCING 0x00004000
#define DEBUG_COALESCING2 0x00008000
#define DEBUG_VERIFICATION 0x00010000
#define DEBUG_CALLS 0x00020000
#define DEBUG_CALLS2 0x00040000
#define DEBUG_TOKENS 0x80000000
#define DEBUG_DEFAULT ( \
DEBUG_ABORT_ON_ERROR | \
DEBUG_BASIC_BLOCKS | \
DEBUG_FDOMINATORS | \
DEBUG_RDOMINATORS | \
DEBUG_TRIPLES | \
0 )
#define DEBUG_ALL ( \
DEBUG_ABORT_ON_ERROR | \
DEBUG_BASIC_BLOCKS | \
DEBUG_FDOMINATORS | \
DEBUG_RDOMINATORS | \
DEBUG_TRIPLES | \
DEBUG_INTERFERENCE | \
DEBUG_SCC_TRANSFORM | \
DEBUG_SCC_TRANSFORM2 | \
DEBUG_REBUILD_SSA_FORM | \
DEBUG_INLINE | \
DEBUG_RANGE_CONFLICTS | \
DEBUG_RANGE_CONFLICTS2 | \
DEBUG_COLOR_GRAPH | \
DEBUG_COLOR_GRAPH2 | \
DEBUG_COALESCING | \
DEBUG_COALESCING2 | \
DEBUG_VERIFICATION | \
DEBUG_CALLS | \
DEBUG_CALLS2 | \
DEBUG_TOKENS | \
0 )
#define COMPILER_INLINE_MASK 0x00000007
#define COMPILER_INLINE_ALWAYS 0x00000000
#define COMPILER_INLINE_NEVER 0x00000001
#define COMPILER_INLINE_DEFAULTON 0x00000002
#define COMPILER_INLINE_DEFAULTOFF 0x00000003
#define COMPILER_INLINE_NOPENALTY 0x00000004
#define COMPILER_ELIMINATE_INEFECTUAL_CODE 0x00000008
#define COMPILER_SIMPLIFY 0x00000010
#define COMPILER_SCC_TRANSFORM 0x00000020
#define COMPILER_SIMPLIFY_OP 0x00000040
#define COMPILER_SIMPLIFY_PHI 0x00000080
#define COMPILER_SIMPLIFY_LABEL 0x00000100
#define COMPILER_SIMPLIFY_BRANCH 0x00000200
#define COMPILER_SIMPLIFY_COPY 0x00000400
#define COMPILER_SIMPLIFY_ARITH 0x00000800
#define COMPILER_SIMPLIFY_SHIFT 0x00001000
#define COMPILER_SIMPLIFY_BITWISE 0x00002000
#define COMPILER_SIMPLIFY_LOGICAL 0x00004000
#define COMPILER_SIMPLIFY_BITFIELD 0x00008000
#define COMPILER_TRIGRAPHS 0x40000000
#define COMPILER_PP_ONLY 0x80000000
#define COMPILER_DEFAULT_FLAGS ( \
COMPILER_TRIGRAPHS | \
COMPILER_ELIMINATE_INEFECTUAL_CODE | \
COMPILER_INLINE_DEFAULTON | \
COMPILER_SIMPLIFY_OP | \
COMPILER_SIMPLIFY_PHI | \
COMPILER_SIMPLIFY_LABEL | \
COMPILER_SIMPLIFY_BRANCH | \
COMPILER_SIMPLIFY_COPY | \
COMPILER_SIMPLIFY_ARITH | \
COMPILER_SIMPLIFY_SHIFT | \
COMPILER_SIMPLIFY_BITWISE | \
COMPILER_SIMPLIFY_LOGICAL | \
COMPILER_SIMPLIFY_BITFIELD | \
0 )
#define GLOBAL_SCOPE_DEPTH 1
#define FUNCTION_SCOPE_DEPTH (GLOBAL_SCOPE_DEPTH + 1)
static void compile_file(struct compile_state *old_state, const char *filename, int local);
static void init_compiler_state(struct compiler_state *compiler)
{
memset(compiler, 0, sizeof(*compiler));
compiler->label_prefix = "";
compiler->ofilename = "auto.inc";
compiler->flags = COMPILER_DEFAULT_FLAGS;
compiler->debug = 0;
compiler->max_allocation_passes = MAX_ALLOCATION_PASSES;
compiler->include_path_count = 1;
compiler->include_paths = xcmalloc(sizeof(char *), "include_paths");
compiler->define_count = 1;
compiler->defines = xcmalloc(sizeof(char *), "defines");
compiler->undef_count = 1;
compiler->undefs = xcmalloc(sizeof(char *), "undefs");
}
struct compiler_flag {
const char *name;
unsigned long flag;
};
struct compiler_arg {
const char *name;
unsigned long mask;
struct compiler_flag flags[16];
};
static int set_flag(
const struct compiler_flag *ptr, unsigned long *flags,
int act, const char *flag)
{
int result = -1;
for(; ptr->name; ptr++) {
if (strcmp(ptr->name, flag) == 0) {
break;
}
}
if (ptr->name) {
result = 0;
*flags &= ~(ptr->flag);
if (act) {
*flags |= ptr->flag;
}
}
return result;
}
static int set_arg(
const struct compiler_arg *ptr, unsigned long *flags, const char *arg)
{
const char *val;
int result = -1;
int len;
val = strchr(arg, '=');
if (val) {
len = val - arg;
val++;
for(; ptr->name; ptr++) {
if (strncmp(ptr->name, arg, len) == 0) {
break;
}
}
if (ptr->name) {
*flags &= ~ptr->mask;
result = set_flag(&ptr->flags[0], flags, 1, val);
}
}
return result;
}
static void flag_usage(FILE *fp, const struct compiler_flag *ptr,
const char *prefix, const char *invert_prefix)
{
for(;ptr->name; ptr++) {
fprintf(fp, "%s%s\n", prefix, ptr->name);
if (invert_prefix) {
fprintf(fp, "%s%s\n", invert_prefix, ptr->name);
}
}
}
static void arg_usage(FILE *fp, const struct compiler_arg *ptr,
const char *prefix)
{
for(;ptr->name; ptr++) {
const struct compiler_flag *flag;
for(flag = &ptr->flags[0]; flag->name; flag++) {
fprintf(fp, "%s%s=%s\n",
prefix, ptr->name, flag->name);
}
}
}
static int append_string(size_t *max, const char ***vec, const char *str,
const char *name)
{
size_t count;
count = ++(*max);
*vec = xrealloc(*vec, sizeof(char *)*count, "name");
(*vec)[count -1] = 0;
(*vec)[count -2] = str;
return 0;
}
static void arg_error(char *fmt, ...);
static const char *identifier(const char *str, const char *end);
static int append_include_path(struct compiler_state *compiler, const char *str)
{
int result;
if (!exists(str, ".")) {
arg_error("Nonexistent include path: `%s'\n",
str);
}
result = append_string(&compiler->include_path_count,
&compiler->include_paths, str, "include_paths");
return result;
}
static int append_define(struct compiler_state *compiler, const char *str)
{
const char *end, *rest;
int result;
end = strchr(str, '=');
if (!end) {
end = str + strlen(str);
}
rest = identifier(str, end);
if (rest != end) {
int len = end - str - 1;
arg_error("Invalid name cannot define macro: `%*.*s'\n",
len, len, str);
}
result = append_string(&compiler->define_count,
&compiler->defines, str, "defines");
return result;
}
static int append_undef(struct compiler_state *compiler, const char *str)
{
const char *end, *rest;
int result;
end = str + strlen(str);
rest = identifier(str, end);
if (rest != end) {
int len = end - str - 1;
arg_error("Invalid name cannot undefine macro: `%*.*s'\n",
len, len, str);
}
result = append_string(&compiler->undef_count,
&compiler->undefs, str, "undefs");
return result;
}
static const struct compiler_flag romcc_flags[] = {
{ "trigraphs", COMPILER_TRIGRAPHS },
{ "pp-only", COMPILER_PP_ONLY },
{ "eliminate-inefectual-code", COMPILER_ELIMINATE_INEFECTUAL_CODE },
{ "simplify", COMPILER_SIMPLIFY },
{ "scc-transform", COMPILER_SCC_TRANSFORM },
{ "simplify-op", COMPILER_SIMPLIFY_OP },
{ "simplify-phi", COMPILER_SIMPLIFY_PHI },
{ "simplify-label", COMPILER_SIMPLIFY_LABEL },
{ "simplify-branch", COMPILER_SIMPLIFY_BRANCH },
{ "simplify-copy", COMPILER_SIMPLIFY_COPY },
{ "simplify-arith", COMPILER_SIMPLIFY_ARITH },
{ "simplify-shift", COMPILER_SIMPLIFY_SHIFT },
{ "simplify-bitwise", COMPILER_SIMPLIFY_BITWISE },
{ "simplify-logical", COMPILER_SIMPLIFY_LOGICAL },
{ "simplify-bitfield", COMPILER_SIMPLIFY_BITFIELD },
{ 0, 0 },
};
static const struct compiler_arg romcc_args[] = {
{ "inline-policy", COMPILER_INLINE_MASK,
{
{ "always", COMPILER_INLINE_ALWAYS, },
{ "never", COMPILER_INLINE_NEVER, },
{ "defaulton", COMPILER_INLINE_DEFAULTON, },
{ "defaultoff", COMPILER_INLINE_DEFAULTOFF, },
{ "nopenalty", COMPILER_INLINE_NOPENALTY, },
{ 0, 0 },
},
},
{ 0, 0 },
};
static const struct compiler_flag romcc_opt_flags[] = {
{ "-O", COMPILER_SIMPLIFY },
{ "-O2", COMPILER_SIMPLIFY | COMPILER_SCC_TRANSFORM },
{ "-E", COMPILER_PP_ONLY },
{ 0, 0, },
};
static const struct compiler_flag romcc_debug_flags[] = {
{ "all", DEBUG_ALL },
{ "abort-on-error", DEBUG_ABORT_ON_ERROR },
{ "basic-blocks", DEBUG_BASIC_BLOCKS },
{ "fdominators", DEBUG_FDOMINATORS },
{ "rdominators", DEBUG_RDOMINATORS },
{ "triples", DEBUG_TRIPLES },
{ "interference", DEBUG_INTERFERENCE },
{ "scc-transform", DEBUG_SCC_TRANSFORM },
{ "scc-transform2", DEBUG_SCC_TRANSFORM2 },
{ "rebuild-ssa-form", DEBUG_REBUILD_SSA_FORM },
{ "inline", DEBUG_INLINE },
{ "live-range-conflicts", DEBUG_RANGE_CONFLICTS },
{ "live-range-conflicts2", DEBUG_RANGE_CONFLICTS2 },
{ "color-graph", DEBUG_COLOR_GRAPH },
{ "color-graph2", DEBUG_COLOR_GRAPH2 },
{ "coalescing", DEBUG_COALESCING },
{ "coalescing2", DEBUG_COALESCING2 },
{ "verification", DEBUG_VERIFICATION },
{ "calls", DEBUG_CALLS },
{ "calls2", DEBUG_CALLS2 },
{ "tokens", DEBUG_TOKENS },
{ 0, 0 },
};
static int compiler_encode_flag(
struct compiler_state *compiler, const char *flag)
{
int act;
int result;
act = 1;
result = -1;
if (strncmp(flag, "no-", 3) == 0) {
flag += 3;
act = 0;
}
if (strncmp(flag, "-O", 2) == 0) {
result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
}
else if (strncmp(flag, "-E", 2) == 0) {
result = set_flag(romcc_opt_flags, &compiler->flags, act, flag);
}
else if (strncmp(flag, "-I", 2) == 0) {
result = append_include_path(compiler, flag + 2);
}
else if (strncmp(flag, "-D", 2) == 0) {
result = append_define(compiler, flag + 2);
}
else if (strncmp(flag, "-U", 2) == 0) {
result = append_undef(compiler, flag + 2);
}
else if (act && strncmp(flag, "label-prefix=", 13) == 0) {
result = 0;
compiler->label_prefix = flag + 13;
}
else if (act && strncmp(flag, "max-allocation-passes=", 22) == 0) {
unsigned long max_passes;
char *end;
max_passes = strtoul(flag + 22, &end, 10);
if (end[0] == '\0') {
result = 0;
compiler->max_allocation_passes = max_passes;
}
}
else if (act && strcmp(flag, "debug") == 0) {
result = 0;
compiler->debug |= DEBUG_DEFAULT;
}
else if (strncmp(flag, "debug-", 6) == 0) {
flag += 6;
result = set_flag(romcc_debug_flags, &compiler->debug, act, flag);
}
else {
result = set_flag(romcc_flags, &compiler->flags, act, flag);
if (result < 0) {
result = set_arg(romcc_args, &compiler->flags, flag);
}
}
return result;
}
static void compiler_usage(FILE *fp)
{
flag_usage(fp, romcc_opt_flags, "", 0);
flag_usage(fp, romcc_flags, "-f", "-fno-");
arg_usage(fp, romcc_args, "-f");
flag_usage(fp, romcc_debug_flags, "-fdebug-", "-fno-debug-");
fprintf(fp, "-flabel-prefix=<prefix for assembly language labels>\n");
fprintf(fp, "--label-prefix=<prefix for assembly language labels>\n");
fprintf(fp, "-I<include path>\n");
fprintf(fp, "-D<macro>[=defn]\n");
fprintf(fp, "-U<macro>\n");
}
static void do_cleanup(struct compile_state *state)
{
if (state->output) {
fclose(state->output);
unlink(state->compiler->ofilename);
state->output = 0;
}
if (state->dbgout) {
fflush(state->dbgout);
}
if (state->errout) {
fflush(state->errout);
}
}
static struct compile_state *exit_state;
static void exit_cleanup(void)
{
if (exit_state) {
do_cleanup(exit_state);
}
}
static int get_col(struct file_state *file)
{
int col;
const char *ptr, *end;
ptr = file->line_start;
end = file->pos;
for(col = 0; ptr < end; ptr++) {
if (*ptr != '\t') {
col++;
}
else {
col = (col & ~7) + 8;
}
}
return col;
}
static void loc(FILE *fp, struct compile_state *state, struct triple *triple)
{
int col;
if (triple && triple->occurance) {
struct occurance *spot;
for(spot = triple->occurance; spot; spot = spot->parent) {
fprintf(fp, "%s:%d.%d: ",
spot->filename, spot->line, spot->col);
}
return;
}
if (!state->file) {
return;
}
col = get_col(state->file);
fprintf(fp, "%s:%d.%d: ",
state->file->report_name, state->file->report_line, col);
}
static void __attribute__ ((noreturn)) internal_error(struct compile_state *state, struct triple *ptr,
const char *fmt, ...)
{
FILE *fp = state->errout;
va_list args;
va_start(args, fmt);
loc(fp, state, ptr);
fputc('\n', fp);
if (ptr) {
fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
}
fprintf(fp, "Internal compiler error: ");
vfprintf(fp, fmt, args);
fprintf(fp, "\n");
va_end(args);
do_cleanup(state);
abort();
}
static void internal_warning(struct compile_state *state, struct triple *ptr,
const char *fmt, ...)
{
FILE *fp = state->errout;
va_list args;
va_start(args, fmt);
loc(fp, state, ptr);
if (ptr) {
fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
}
fprintf(fp, "Internal compiler warning: ");
vfprintf(fp, fmt, args);
fprintf(fp, "\n");
va_end(args);
}
static void __attribute__ ((noreturn)) error(struct compile_state *state, struct triple *ptr,
const char *fmt, ...)
{
FILE *fp = state->errout;
va_list args;
va_start(args, fmt);
loc(fp, state, ptr);
fputc('\n', fp);
if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
}
vfprintf(fp, fmt, args);
va_end(args);
fprintf(fp, "\n");
do_cleanup(state);
if (state->compiler->debug & DEBUG_ABORT_ON_ERROR) {
abort();
}
exit(1);
}
static void warning(struct compile_state *state, struct triple *ptr,
const char *fmt, ...)
{
FILE *fp = state->errout;
va_list args;
va_start(args, fmt);
loc(fp, state, ptr);
fprintf(fp, "warning: ");
if (ptr && (state->compiler->debug & DEBUG_ABORT_ON_ERROR)) {
fprintf(fp, "%p %-10s ", ptr, tops(ptr->op));
}
vfprintf(fp, fmt, args);
fprintf(fp, "\n");
va_end(args);
}
#define FINISHME() warning(state, 0, "FINISHME @ %s.%s:%d", __FILE__, __func__, __LINE__)
static void valid_op(struct compile_state *state, int op)
{
char *fmt = "invalid op: %d";
if (op >= OP_MAX) {
internal_error(state, 0, fmt, op);
}
if (op < 0) {
internal_error(state, 0, fmt, op);
}
}
static void valid_ins(struct compile_state *state, struct triple *ptr)
{
valid_op(state, ptr->op);
}
#if DEBUG_ROMCC_WARNING
static void valid_param_count(struct compile_state *state, struct triple *ins)
{
int lhs, rhs, misc, targ;
valid_ins(state, ins);
lhs = table_ops[ins->op].lhs;
rhs = table_ops[ins->op].rhs;
misc = table_ops[ins->op].misc;
targ = table_ops[ins->op].targ;
if ((lhs >= 0) && (ins->lhs != lhs)) {
internal_error(state, ins, "Bad lhs count");
}
if ((rhs >= 0) && (ins->rhs != rhs)) {
internal_error(state, ins, "Bad rhs count");
}
if ((misc >= 0) && (ins->misc != misc)) {
internal_error(state, ins, "Bad misc count");
}
if ((targ >= 0) && (ins->targ != targ)) {
internal_error(state, ins, "Bad targ count");
}
}
#endif
static struct type void_type;
static struct type unknown_type;
static void use_triple(struct triple *used, struct triple *user)
{
struct triple_set **ptr, *new;
if (!used)
return;
if (!user)
return;
ptr = &used->use;
while(*ptr) {
if ((*ptr)->member == user) {
return;
}
ptr = &(*ptr)->next;
}
/* Append new to the head of the list,
* copy_func and rename_block_variables
* depends on this.
*/
new = xcmalloc(sizeof(*new), "triple_set");
new->member = user;
new->next = used->use;
used->use = new;
}
static void unuse_triple(struct triple *used, struct triple *unuser)
{
struct triple_set *use, **ptr;
if (!used) {
return;
}
ptr = &used->use;
while(*ptr) {
use = *ptr;
if (use->member == unuser) {
*ptr = use->next;
xfree(use);
}
else {
ptr = &use->next;
}
}
}
static void put_occurance(struct occurance *occurance)
{
if (occurance) {
occurance->count -= 1;
if (occurance->count <= 0) {
if (occurance->parent) {
put_occurance(occurance->parent);
}
xfree(occurance);
}
}
}
static void get_occurance(struct occurance *occurance)
{
if (occurance) {
occurance->count += 1;
}
}
static struct occurance *new_occurance(struct compile_state *state)
{
struct occurance *result, *last;
const char *filename;
const char *function;
int line, col;
function = "";
filename = 0;
line = 0;
col = 0;
if (state->file) {
filename = state->file->report_name;
line = state->file->report_line;
col = get_col(state->file);
}
if (state->function) {
function = state->function;
}
last = state->last_occurance;
if (last &&
(last->col == col) &&
(last->line == line) &&
(last->function == function) &&
((last->filename == filename) ||
(strcmp(last->filename, filename) == 0)))
{
get_occurance(last);
return last;
}
if (last) {
state->last_occurance = 0;
put_occurance(last);
}
result = xmalloc(sizeof(*result), "occurance");
result->count = 2;
result->filename = filename;
result->function = function;
result->line = line;
result->col = col;
result->parent = 0;
state->last_occurance = result;
return result;
}
static struct occurance *inline_occurance(struct compile_state *state,
struct occurance *base, struct occurance *top)
{
struct occurance *result, *last;
if (top->parent) {
internal_error(state, 0, "inlining an already inlined function?");
}
/* If I have a null base treat it that way */
if ((base->parent == 0) &&
(base->col == 0) &&
(base->line == 0) &&
(base->function[0] == '\0') &&
(base->filename[0] == '\0')) {
base = 0;
}
/* See if I can reuse the last occurance I had */
last = state->last_occurance;
if (last &&
(last->parent == base) &&
(last->col == top->col) &&
(last->line == top->line) &&
(last->function == top->function) &&
(last->filename == top->filename)) {
get_occurance(last);
return last;
}
/* I can't reuse the last occurance so free it */
if (last) {
state->last_occurance = 0;
put_occurance(last);
}
/* Generate a new occurance structure */
get_occurance(base);
result = xmalloc(sizeof(*result), "occurance");
result->count = 2;
result->filename = top->filename;
result->function = top->function;
result->line = top->line;
result->col = top->col;
result->parent = base;
state->last_occurance = result;
return result;
}
static struct occurance dummy_occurance = {
.count = 2,
.filename = __FILE__,
.function = "",
.line = __LINE__,
.col = 0,
.parent = 0,
};
/* The undef triple is used as a place holder when we are removing pointers
* from a triple. Having allows certain sanity checks to pass even
* when the original triple that was pointed to is gone.
*/
static struct triple unknown_triple = {
.next = &unknown_triple,
.prev = &unknown_triple,
.use = 0,
.op = OP_UNKNOWNVAL,
.lhs = 0,
.rhs = 0,
.misc = 0,
.targ = 0,
.type = &unknown_type,
.id = -1, /* An invalid id */
.u = { .cval = 0, },
.occurance = &dummy_occurance,
.param = { [0] = 0, [1] = 0, },
};
static size_t registers_of(struct compile_state *state, struct type *type);
static struct triple *alloc_triple(struct compile_state *state,
int op, struct type *type, int lhs_wanted, int rhs_wanted,
struct occurance *occurance)
{
size_t size, extra_count, min_count;
int lhs, rhs, misc, targ;
struct triple *ret, dummy;
dummy.op = op;
dummy.occurance = occurance;
valid_op(state, op);
lhs = table_ops[op].lhs;
rhs = table_ops[op].rhs;
misc = table_ops[op].misc;
targ = table_ops[op].targ;
switch(op) {
case OP_FCALL:
rhs = rhs_wanted;
break;
case OP_PHI:
rhs = rhs_wanted;
break;
case OP_ADECL:
lhs = registers_of(state, type);
break;
case OP_TUPLE:
lhs = registers_of(state, type);
break;
case OP_ASM:
rhs = rhs_wanted;
lhs = lhs_wanted;
break;
}
if ((rhs < 0) || (rhs > MAX_RHS)) {
internal_error(state, &dummy, "bad rhs count %d", rhs);
}
if ((lhs < 0) || (lhs > MAX_LHS)) {
internal_error(state, &dummy, "bad lhs count %d", lhs);
}
if ((misc < 0) || (misc > MAX_MISC)) {
internal_error(state, &dummy, "bad misc count %d", misc);
}
if ((targ < 0) || (targ > MAX_TARG)) {
internal_error(state, &dummy, "bad targs count %d", targ);
}
min_count = sizeof(ret->param)/sizeof(ret->param[0]);
extra_count = lhs + rhs + misc + targ;
extra_count = (extra_count < min_count)? 0 : extra_count - min_count;
size = sizeof(*ret) + sizeof(ret->param[0]) * extra_count;
ret = xcmalloc(size, "tripple");
ret->op = op;
ret->lhs = lhs;
ret->rhs = rhs;
ret->misc = misc;
ret->targ = targ;
ret->type = type;
ret->next = ret;
ret->prev = ret;
ret->occurance = occurance;
/* A simple sanity check */
if ((ret->op != op) ||
(ret->lhs != lhs) ||
(ret->rhs != rhs) ||
(ret->misc != misc) ||
(ret->targ != targ) ||
(ret->type != type) ||
(ret->next != ret) ||
(ret->prev != ret) ||
(ret->occurance != occurance)) {
internal_error(state, ret, "huh?");
}
return ret;
}
struct triple *dup_triple(struct compile_state *state, struct triple *src)
{
struct triple *dup;
int src_lhs, src_rhs, src_size;
src_lhs = src->lhs;
src_rhs = src->rhs;
src_size = TRIPLE_SIZE(src);
get_occurance(src->occurance);
dup = alloc_triple(state, src->op, src->type, src_lhs, src_rhs,
src->occurance);
memcpy(dup, src, sizeof(*src));
memcpy(dup->param, src->param, src_size * sizeof(src->param[0]));
return dup;
}
static struct triple *copy_triple(struct compile_state *state, struct triple *src)
{
struct triple *copy;
copy = dup_triple(state, src);
copy->use = 0;
copy->next = copy->prev = copy;
return copy;
}
static struct triple *new_triple(struct compile_state *state,
int op, struct type *type, int lhs, int rhs)
{
struct triple *ret;
struct occurance *occurance;
occurance = new_occurance(state);
ret = alloc_triple(state, op, type, lhs, rhs, occurance);
return ret;
}
static struct triple *build_triple(struct compile_state *state,
int op, struct type *type, struct triple *left, struct triple *right,
struct occurance *occurance)
{
struct triple *ret;
size_t count;
ret = alloc_triple(state, op, type, -1, -1, occurance);
count = TRIPLE_SIZE(ret);
if (count > 0) {
ret->param[0] = left;
}
if (count > 1) {
ret->param[1] = right;
}
return ret;
}
static struct triple *triple(struct compile_state *state,
int op, struct type *type, struct triple *left, struct triple *right)
{
struct triple *ret;
size_t count;
ret = new_triple(state, op, type, -1, -1);
count = TRIPLE_SIZE(ret);
if (count >= 1) {
ret->param[0] = left;
}
if (count >= 2) {
ret->param[1] = right;
}
return ret;
}
static struct triple *branch(struct compile_state *state,
struct triple *targ, struct triple *test)
{
struct triple *ret;
if (test) {
ret = new_triple(state, OP_CBRANCH, &void_type, -1, 1);
RHS(ret, 0) = test;
} else {
ret = new_triple(state, OP_BRANCH, &void_type, -1, 0);
}
TARG(ret, 0) = targ;
/* record the branch target was used */
if (!targ || (targ->op != OP_LABEL)) {
internal_error(state, 0, "branch not to label");
}
return ret;
}
static int triple_is_label(struct compile_state *state, struct triple *ins);
static int triple_is_call(struct compile_state *state, struct triple *ins);
static int triple_is_cbranch(struct compile_state *state, struct triple *ins);
static void insert_triple(struct compile_state *state,
struct triple *first, struct triple *ptr)
{
if (ptr) {
if ((ptr->id & TRIPLE_FLAG_FLATTENED) || (ptr->next != ptr)) {
internal_error(state, ptr, "expression already used");
}
ptr->next = first;
ptr->prev = first->prev;
ptr->prev->next = ptr;
ptr->next->prev = ptr;
if (triple_is_cbranch(state, ptr->prev) ||
triple_is_call(state, ptr->prev)) {
unuse_triple(first, ptr->prev);
use_triple(ptr, ptr->prev);
}
}
}
static int triple_stores_block(struct compile_state *state, struct triple *ins)
{
/* This function is used to determine if u.block
* is utilized to store the current block number.
*/
int stores_block;
valid_ins(state, ins);
stores_block = (table_ops[ins->op].flags & BLOCK) == BLOCK;
return stores_block;
}
static int triple_is_branch(struct compile_state *state, struct triple *ins);
static struct block *block_of_triple(struct compile_state *state,
struct triple *ins)
{
struct triple *first;
if (!ins || ins == &unknown_triple) {
return 0;
}
first = state->first;
while(ins != first && !triple_is_branch(state, ins->prev) &&
!triple_stores_block(state, ins))
{
if (ins == ins->prev) {
internal_error(state, ins, "ins == ins->prev?");
}
ins = ins->prev;
}
return triple_stores_block(state, ins)? ins->u.block: 0;
}
static void generate_lhs_pieces(struct compile_state *state, struct triple *ins);
static struct triple *pre_triple(struct compile_state *state,
struct triple *base,
int op, struct type *type, struct triple *left, struct triple *right)
{
struct block *block;
struct triple *ret;
int i;
/* If I am an OP_PIECE jump to the real instruction */
if (base->op == OP_PIECE) {
base = MISC(base, 0);
}
block = block_of_triple(state, base);
get_occurance(base->occurance);
ret = build_triple(state, op, type, left, right, base->occurance);
generate_lhs_pieces(state, ret);
if (triple_stores_block(state, ret)) {
ret->u.block = block;
}
insert_triple(state, base, ret);
for(i = 0; i < ret->lhs; i++) {
struct triple *piece;
piece = LHS(ret, i);
insert_triple(state, base, piece);
use_triple(ret, piece);
use_triple(piece, ret);
}
if (block && (block->first == base)) {
block->first = ret;
}
return ret;
}
static struct triple *post_triple(struct compile_state *state,
struct triple *base,
int op, struct type *type, struct triple *left, struct triple *right)
{
struct block *block;
struct triple *ret, *next;
int zlhs, i;
/* If I am an OP_PIECE jump to the real instruction */
if (base->op == OP_PIECE) {
base = MISC(base, 0);
}
/* If I have a left hand side skip over it */
zlhs = base->lhs;
if (zlhs) {
base = LHS(base, zlhs - 1);
}
block = block_of_triple(state, base);
get_occurance(base->occurance);
ret = build_triple(state, op, type, left, right, base->occurance);
generate_lhs_pieces(state, ret);
if (triple_stores_block(state, ret)) {
ret->u.block = block;
}
next = base->next;
insert_triple(state, next, ret);
zlhs = ret->lhs;
for(i = 0; i < zlhs; i++) {
struct triple *piece;
piece = LHS(ret, i);
insert_triple(state, next, piece);
use_triple(ret, piece);
use_triple(piece, ret);
}
if (block && (block->last == base)) {
block->last = ret;
if (zlhs) {
block->last = LHS(ret, zlhs - 1);
}
}
return ret;
}
static struct type *reg_type(
struct compile_state *state, struct type *type, int reg);
static void generate_lhs_piece(
struct compile_state *state, struct triple *ins, int index)
{
struct type *piece_type;
struct triple *piece;
get_occurance(ins->occurance);
piece_type = reg_type(state, ins->type, index * REG_SIZEOF_REG);
if ((piece_type->type & TYPE_MASK) == TYPE_BITFIELD) {
piece_type = piece_type->left;
}
#if 0
{
static void name_of(FILE *fp, struct type *type);
FILE * fp = state->errout;
fprintf(fp, "piece_type(%d): ", index);
name_of(fp, piece_type);
fprintf(fp, "\n");
}
#endif
piece = alloc_triple(state, OP_PIECE, piece_type, -1, -1, ins->occurance);
piece->u.cval = index;
LHS(ins, piece->u.cval) = piece;
MISC(piece, 0) = ins;
}
static void generate_lhs_pieces(struct compile_state *state, struct triple *ins)
{
int i, zlhs;
zlhs = ins->lhs;
for(i = 0; i < zlhs; i++) {
generate_lhs_piece(state, ins, i);
}
}
static struct triple *label(struct compile_state *state)
{
/* Labels don't get a type */
struct triple *result;
result = triple(state, OP_LABEL, &void_type, 0, 0);
return result;
}
static struct triple *mkprog(struct compile_state *state, ...)
{
struct triple *prog, *head, *arg;
va_list args;
int i;
head = label(state);
prog = new_triple(state, OP_PROG, &void_type, -1, -1);
RHS(prog, 0) = head;
va_start(args, state);
i = 0;
while((arg = va_arg(args, struct triple *)) != 0) {
if (++i >= 100) {
internal_error(state, 0, "too many arguments to mkprog");
}
flatten(state, head, arg);
}
va_end(args);
prog->type = head->prev->type;
return prog;
}
static void name_of(FILE *fp, struct type *type);
static void display_triple(FILE *fp, struct triple *ins)
{
struct occurance *ptr;
const char *reg;
char pre, post, vol;
pre = post = vol = ' ';
if (ins) {
if (ins->id & TRIPLE_FLAG_PRE_SPLIT) {
pre = '^';
}
if (ins->id & TRIPLE_FLAG_POST_SPLIT) {
post = ',';
}
if (ins->id & TRIPLE_FLAG_VOLATILE) {
vol = 'v';
}
reg = arch_reg_str(ID_REG(ins->id));
}
if (ins == 0) {
fprintf(fp, "(%p) <nothing> ", ins);
}
else if (ins->op == OP_INTCONST) {
fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s <0x%08lx> ",
ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
(unsigned long)(ins->u.cval));
}
else if (ins->op == OP_ADDRCONST) {
fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
MISC(ins, 0), (unsigned long)(ins->u.cval));
}
else if (ins->op == OP_INDEX) {
fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
RHS(ins, 0), (unsigned long)(ins->u.cval));
}
else if (ins->op == OP_PIECE) {
fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s %-10p <0x%08lx>",
ins, pre, post, vol, reg, ins->template_id, tops(ins->op),
MISC(ins, 0), (unsigned long)(ins->u.cval));
}
else {
int i, count;
fprintf(fp, "(%p) %c%c%c %-7s %-2d %-10s",
ins, pre, post, vol, reg, ins->template_id, tops(ins->op));
if (table_ops[ins->op].flags & BITFIELD) {
fprintf(fp, " <%2d-%2d:%2d>",
ins->u.bitfield.offset,
ins->u.bitfield.offset + ins->u.bitfield.size,
ins->u.bitfield.size);
}
count = TRIPLE_SIZE(ins);
for(i = 0; i < count; i++) {
fprintf(fp, " %-10p", ins->param[i]);
}
for(; i < 2; i++) {
fprintf(fp, " ");
}
}
if (ins) {
struct triple_set *user;
#if DEBUG_DISPLAY_TYPES
fprintf(fp, " <");
name_of(fp, ins->type);
fprintf(fp, "> ");
#endif
#if DEBUG_DISPLAY_USES
fprintf(fp, " [");
for(user = ins->use; user; user = user->next) {
fprintf(fp, " %-10p", user->member);
}
fprintf(fp, " ]");
#endif
fprintf(fp, " @");
for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
fprintf(fp, " %s,%s:%d.%d",
ptr->function,
ptr->filename,
ptr->line,
ptr->col);
}
if (ins->op == OP_ASM) {
fprintf(fp, "\n\t%s", ins->u.ainfo->str);
}
}
fprintf(fp, "\n");
fflush(fp);
}
static int equiv_types(struct type *left, struct type *right);
static void display_triple_changes(
FILE *fp, const struct triple *new, const struct triple *orig)
{
int new_count, orig_count;
new_count = TRIPLE_SIZE(new);
orig_count = TRIPLE_SIZE(orig);
if ((new->op != orig->op) ||
(new_count != orig_count) ||
(memcmp(orig->param, new->param,
orig_count * sizeof(orig->param[0])) != 0) ||
(memcmp(&orig->u, &new->u, sizeof(orig->u)) != 0))
{
struct occurance *ptr;
int i, min_count, indent;
fprintf(fp, "(%p %p)", new, orig);
if (orig->op == new->op) {
fprintf(fp, " %-11s", tops(orig->op));
} else {
fprintf(fp, " [%-10s %-10s]",
tops(new->op), tops(orig->op));
}
min_count = new_count;
if (min_count > orig_count) {
min_count = orig_count;
}
for(indent = i = 0; i < min_count; i++) {
if (orig->param[i] == new->param[i]) {
fprintf(fp, " %-11p",
orig->param[i]);
indent += 12;
} else {
fprintf(fp, " [%-10p %-10p]",
new->param[i],
orig->param[i]);
indent += 24;
}
}
for(; i < orig_count; i++) {
fprintf(fp, " [%-9p]", orig->param[i]);
indent += 12;
}
for(; i < new_count; i++) {
fprintf(fp, " [%-9p]", new->param[i]);
indent += 12;
}
if ((new->op == OP_INTCONST)||
(new->op == OP_ADDRCONST)) {
fprintf(fp, " <0x%08lx>",
(unsigned long)(new->u.cval));
indent += 13;
}
for(;indent < 36; indent++) {
putc(' ', fp);
}
#if DEBUG_DISPLAY_TYPES
fprintf(fp, " <");
name_of(fp, new->type);
if (!equiv_types(new->type, orig->type)) {
fprintf(fp, " -- ");
name_of(fp, orig->type);
}
fprintf(fp, "> ");
#endif
fprintf(fp, " @");
for(ptr = orig->occurance; ptr; ptr = ptr->parent) {
fprintf(fp, " %s,%s:%d.%d",
ptr->function,
ptr->filename,
ptr->line,
ptr->col);
}
fprintf(fp, "\n");
fflush(fp);
}
}
static int triple_is_pure(struct compile_state *state, struct triple *ins, unsigned id)
{
/* Does the triple have no side effects.
* I.e. Rexecuting the triple with the same arguments
* gives the same value.
*/
unsigned pure;
valid_ins(state, ins);
pure = PURE_BITS(table_ops[ins->op].flags);
if ((pure != PURE) && (pure != IMPURE)) {
internal_error(state, 0, "Purity of %s not known",
tops(ins->op));
}
return (pure == PURE) && !(id & TRIPLE_FLAG_VOLATILE);
}
static int triple_is_branch_type(struct compile_state *state,
struct triple *ins, unsigned type)
{
/* Is this one of the passed branch types? */
valid_ins(state, ins);
return (BRANCH_BITS(table_ops[ins->op].flags) == type);
}
static int triple_is_branch(struct compile_state *state, struct triple *ins)
{
/* Is this triple a branch instruction? */
valid_ins(state, ins);
return (BRANCH_BITS(table_ops[ins->op].flags) != 0);
}
static int triple_is_cbranch(struct compile_state *state, struct triple *ins)
{
/* Is this triple a conditional branch instruction? */
return triple_is_branch_type(state, ins, CBRANCH);
}
static int triple_is_ubranch(struct compile_state *state, struct triple *ins)
{
/* Is this triple a unconditional branch instruction? */
unsigned type;
valid_ins(state, ins);
type = BRANCH_BITS(table_ops[ins->op].flags);
return (type != 0) && (type != CBRANCH);
}
static int triple_is_call(struct compile_state *state, struct triple *ins)
{
/* Is this triple a call instruction? */
return triple_is_branch_type(state, ins, CALLBRANCH);
}
static int triple_is_ret(struct compile_state *state, struct triple *ins)
{
/* Is this triple a return instruction? */
return triple_is_branch_type(state, ins, RETBRANCH);
}
#if DEBUG_ROMCC_WARNING
static int triple_is_simple_ubranch(struct compile_state *state, struct triple *ins)
{
/* Is this triple an unconditional branch and not a call or a
* return? */
return triple_is_branch_type(state, ins, UBRANCH);
}
#endif
static int triple_is_end(struct compile_state *state, struct triple *ins)
{
return triple_is_branch_type(state, ins, ENDBRANCH);
}
static int triple_is_label(struct compile_state *state, struct triple *ins)
{
valid_ins(state, ins);
return (ins->op == OP_LABEL);
}
static struct triple *triple_to_block_start(
struct compile_state *state, struct triple *start)
{
while(!triple_is_branch(state, start->prev) &&
(!triple_is_label(state, start) || !start->use)) {
start = start->prev;
}
return start;
}
static int triple_is_def(struct compile_state *state, struct triple *ins)
{
/* This function is used to determine which triples need
* a register.
*/
int is_def;
valid_ins(state, ins);
is_def = (table_ops[ins->op].flags & DEF) == DEF;
if (ins->lhs >= 1) {
is_def = 0;
}
return is_def;
}
static int triple_is_structural(struct compile_state *state, struct triple *ins)
{
int is_structural;
valid_ins(state, ins);
is_structural = (table_ops[ins->op].flags & STRUCTURAL) == STRUCTURAL;
return is_structural;
}
static int triple_is_part(struct compile_state *state, struct triple *ins)
{
int is_part;
valid_ins(state, ins);
is_part = (table_ops[ins->op].flags & PART) == PART;
return is_part;
}
static int triple_is_auto_var(struct compile_state *state, struct triple *ins)
{
return (ins->op == OP_PIECE) && (MISC(ins, 0)->op == OP_ADECL);
}
static struct triple **triple_iter(struct compile_state *state,
size_t count, struct triple **vector,
struct triple *ins, struct triple **last)
{
struct triple **ret;
ret = 0;
if (count) {
if (!last) {
ret = vector;
}
else if ((last >= vector) && (last < (vector + count - 1))) {
ret = last + 1;
}
}
return ret;
}
static struct triple **triple_lhs(struct compile_state *state,
struct triple *ins, struct triple **last)
{
return triple_iter(state, ins->lhs, &LHS(ins,0),
ins, last);
}
static struct triple **triple_rhs(struct compile_state *state,
struct triple *ins, struct triple **last)
{
return triple_iter(state, ins->rhs, &RHS(ins,0),
ins, last);
}
static struct triple **triple_misc(struct compile_state *state,
struct triple *ins, struct triple **last)
{
return triple_iter(state, ins->misc, &MISC(ins,0),
ins, last);
}
static struct triple **do_triple_targ(struct compile_state *state,
struct triple *ins, struct triple **last, int call_edges, int next_edges)
{
size_t count;
struct triple **ret, **vector;
int next_is_targ;
ret = 0;
count = ins->targ;
next_is_targ = 0;
if (triple_is_cbranch(state, ins)) {
next_is_targ = 1;
}
if (!call_edges && triple_is_call(state, ins)) {
count = 0;
}
if (next_edges && triple_is_call(state, ins)) {
next_is_targ = 1;
}
vector = &TARG(ins, 0);
if (!ret && next_is_targ) {
if (!last) {
ret = &ins->next;
} else if (last == &ins->next) {
last = 0;
}
}
if (!ret && count) {
if (!last) {
ret = vector;
}
else if ((last >= vector) && (last < (vector + count - 1))) {
ret = last + 1;
}
else if (last == vector + count - 1) {
last = 0;
}
}
if (!ret && triple_is_ret(state, ins) && call_edges) {
struct triple_set *use;
for(use = ins->use; use; use = use->next) {
if (!triple_is_call(state, use->member)) {
continue;
}
if (!last) {
ret = &use->member->next;
break;
}
else if (last == &use->member->next) {
last = 0;
}
}
}
return ret;
}
static struct triple **triple_targ(struct compile_state *state,
struct triple *ins, struct triple **last)
{
return do_triple_targ(state, ins, last, 1, 1);
}
static struct triple **triple_edge_targ(struct compile_state *state,
struct triple *ins, struct triple **last)
{
return do_triple_targ(state, ins, last,
state->functions_joined, !state->functions_joined);
}
static struct triple *after_lhs(struct compile_state *state, struct triple *ins)
{
struct triple *next;
int lhs, i;
lhs = ins->lhs;
next = ins->next;
for(i = 0; i < lhs; i++) {
struct triple *piece;
piece = LHS(ins, i);
if (next != piece) {
internal_error(state, ins, "malformed lhs on %s",
tops(ins->op));
}
if (next->op != OP_PIECE) {
internal_error(state, ins, "bad lhs op %s at %d on %s",
tops(next->op), i, tops(ins->op));
}
if (next->u.cval != i) {
internal_error(state, ins, "bad u.cval of %d %d expected",
next->u.cval, i);
}
next = next->next;
}
return next;
}
/* Function piece accessor functions */
static struct triple *do_farg(struct compile_state *state,
struct triple *func, unsigned index)
{
struct type *ftype;
struct triple *first, *arg;
unsigned i;
ftype = func->type;
if((index < 0) || (index >= (ftype->elements + 2))) {
internal_error(state, func, "bad argument index: %d", index);
}
first = RHS(func, 0);
arg = first->next;
for(i = 0; i < index; i++, arg = after_lhs(state, arg)) {
/* do nothing */
}
if (arg->op != OP_ADECL) {
internal_error(state, 0, "arg not adecl?");
}
return arg;
}
static struct triple *fresult(struct compile_state *state, struct triple *func)
{
return do_farg(state, func, 0);
}
static struct triple *fretaddr(struct compile_state *state, struct triple *func)
{
return do_farg(state, func, 1);
}
static struct triple *farg(struct compile_state *state,
struct triple *func, unsigned index)
{
return do_farg(state, func, index + 2);
}
static void display_func(struct compile_state *state, FILE *fp, struct triple *func)
{
struct triple *first, *ins;
fprintf(fp, "display_func %s\n", func->type->type_ident->name);
first = ins = RHS(func, 0);
do {
if (triple_is_label(state, ins) && ins->use) {
fprintf(fp, "%p:\n", ins);
}
display_triple(fp, ins);
if (triple_is_branch(state, ins)) {
fprintf(fp, "\n");
}
if (ins->next->prev != ins) {
internal_error(state, ins->next, "bad prev");
}
ins = ins->next;
} while(ins != first);
}
static void verify_use(struct compile_state *state,
struct triple *user, struct triple *used)
{
int size, i;
size = TRIPLE_SIZE(user);
for(i = 0; i < size; i++) {
if (user->param[i] == used) {
break;
}
}
if (triple_is_branch(state, user)) {
if (user->next == used) {
i = -1;
}
}
if (i == size) {
internal_error(state, user, "%s(%p) does not use %s(%p)",
tops(user->op), user, tops(used->op), used);
}
}
static int find_rhs_use(struct compile_state *state,
struct triple *user, struct triple *used)
{
struct triple **param;
int size, i;
verify_use(state, user, used);
#if DEBUG_ROMCC_WARNINGS
#warning "AUDIT ME ->rhs"
#endif
size = user->rhs;
param = &RHS(user, 0);
for(i = 0; i < size; i++) {
if (param[i] == used) {
return i;
}
}
return -1;
}
static void free_triple(struct compile_state *state, struct triple *ptr)
{
size_t size;
size = sizeof(*ptr) - sizeof(ptr->param) +
(sizeof(ptr->param[0])*TRIPLE_SIZE(ptr));
ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;
if (ptr->use) {
internal_error(state, ptr, "ptr->use != 0");
}
put_occurance(ptr->occurance);
memset(ptr, -1, size);
xfree(ptr);
}
static void release_triple(struct compile_state *state, struct triple *ptr)
{
struct triple_set *set, *next;
struct triple **expr;
struct block *block;
if (ptr == &unknown_triple) {
return;
}
valid_ins(state, ptr);
/* Make certain the we are not the first or last element of a block */
block = block_of_triple(state, ptr);
if (block) {
if ((block->last == ptr) && (block->first == ptr)) {
block->last = block->first = 0;
}
else if (block->last == ptr) {
block->last = ptr->prev;
}
else if (block->first == ptr) {
block->first = ptr->next;
}
}
/* Remove ptr from use chains where it is the user */
expr = triple_rhs(state, ptr, 0);
for(; expr; expr = triple_rhs(state, ptr, expr)) {
if (*expr) {
unuse_triple(*expr, ptr);
}
}
expr = triple_lhs(state, ptr, 0);
for(; expr; expr = triple_lhs(state, ptr, expr)) {
if (*expr) {
unuse_triple(*expr, ptr);
}
}
expr = triple_misc(state, ptr, 0);
for(; expr; expr = triple_misc(state, ptr, expr)) {
if (*expr) {
unuse_triple(*expr, ptr);
}
}
expr = triple_targ(state, ptr, 0);
for(; expr; expr = triple_targ(state, ptr, expr)) {
if (*expr){
unuse_triple(*expr, ptr);
}
}
/* Reomve ptr from use chains where it is used */
for(set = ptr->use; set; set = next) {
next = set->next;
valid_ins(state, set->member);
expr = triple_rhs(state, set->member, 0);
for(; expr; expr = triple_rhs(state, set->member, expr)) {
if (*expr == ptr) {
*expr = &unknown_triple;
}
}
expr = triple_lhs(state, set->member, 0);
for(; expr; expr = triple_lhs(state, set->member, expr)) {
if (*expr == ptr) {
*expr = &unknown_triple;
}
}
expr = triple_misc(state, set->member, 0);
for(; expr; expr = triple_misc(state, set->member, expr)) {
if (*expr == ptr) {
*expr = &unknown_triple;
}
}
expr = triple_targ(state, set->member, 0);
for(; expr; expr = triple_targ(state, set->member, expr)) {
if (*expr == ptr) {
*expr = &unknown_triple;
}
}
unuse_triple(ptr, set->member);
}
free_triple(state, ptr);
}
static void print_triples(struct compile_state *state);
static void print_blocks(struct compile_state *state, const char *func, FILE *fp);
#define TOK_UNKNOWN 0
#define TOK_SPACE 1
#define TOK_SEMI 2
#define TOK_LBRACE 3
#define TOK_RBRACE 4
#define TOK_COMMA 5
#define TOK_EQ 6
#define TOK_COLON 7
#define TOK_LBRACKET 8
#define TOK_RBRACKET 9
#define TOK_LPAREN 10
#define TOK_RPAREN 11
#define TOK_STAR 12
#define TOK_DOTS 13
#define TOK_MORE 14
#define TOK_LESS 15
#define TOK_TIMESEQ 16
#define TOK_DIVEQ 17
#define TOK_MODEQ 18
#define TOK_PLUSEQ 19
#define TOK_MINUSEQ 20
#define TOK_SLEQ 21
#define TOK_SREQ 22
#define TOK_ANDEQ 23
#define TOK_XOREQ 24
#define TOK_OREQ 25
#define TOK_EQEQ 26
#define TOK_NOTEQ 27
#define TOK_QUEST 28
#define TOK_LOGOR 29
#define TOK_LOGAND 30
#define TOK_OR 31
#define TOK_AND 32
#define TOK_XOR 33
#define TOK_LESSEQ 34
#define TOK_MOREEQ 35
#define TOK_SL 36
#define TOK_SR 37
#define TOK_PLUS 38
#define TOK_MINUS 39
#define TOK_DIV 40
#define TOK_MOD 41
#define TOK_PLUSPLUS 42
#define TOK_MINUSMINUS 43
#define TOK_BANG 44
#define TOK_ARROW 45
#define TOK_DOT 46
#define TOK_TILDE 47
#define TOK_LIT_STRING 48
#define TOK_LIT_CHAR 49
#define TOK_LIT_INT 50
#define TOK_LIT_FLOAT 51
#define TOK_MACRO 52
#define TOK_CONCATENATE 53
#define TOK_IDENT 54
#define TOK_STRUCT_NAME 55
#define TOK_ENUM_CONST 56
#define TOK_TYPE_NAME 57
#define TOK_AUTO 58
#define TOK_BREAK 59
#define TOK_CASE 60
#define TOK_CHAR 61
#define TOK_CONST 62
#define TOK_CONTINUE 63
#define TOK_DEFAULT 64
#define TOK_DO 65
#define TOK_DOUBLE 66
#define TOK_ELSE 67
#define TOK_ENUM 68
#define TOK_EXTERN 69
#define TOK_FLOAT 70
#define TOK_FOR 71
#define TOK_GOTO 72
#define TOK_IF 73
#define TOK_INLINE 74
#define TOK_INT 75
#define TOK_LONG 76
#define TOK_REGISTER 77
#define TOK_RESTRICT 78
#define TOK_RETURN 79
#define TOK_SHORT 80
#define TOK_SIGNED 81
#define TOK_SIZEOF 82
#define TOK_STATIC 83
#define TOK_STRUCT 84
#define TOK_SWITCH 85
#define TOK_TYPEDEF 86
#define TOK_UNION 87
#define TOK_UNSIGNED 88
#define TOK_VOID 89
#define TOK_VOLATILE 90
#define TOK_WHILE 91
#define TOK_ASM 92
#define TOK_ATTRIBUTE 93
#define TOK_ALIGNOF 94
#define TOK_FIRST_KEYWORD TOK_AUTO
#define TOK_LAST_KEYWORD TOK_ALIGNOF
#define TOK_MDEFINE 100
#define TOK_MDEFINED 101
#define TOK_MUNDEF 102
#define TOK_MINCLUDE 103
#define TOK_MLINE 104
#define TOK_MERROR 105
#define TOK_MWARNING 106
#define TOK_MPRAGMA 107
#define TOK_MIFDEF 108
#define TOK_MIFNDEF 109
#define TOK_MELIF 110
#define TOK_MENDIF 111
#define TOK_FIRST_MACRO TOK_MDEFINE
#define TOK_LAST_MACRO TOK_MENDIF
#define TOK_MIF 112
#define TOK_MELSE 113
#define TOK_MIDENT 114
#define TOK_EOL 115
#define TOK_EOF 116
static const char *tokens[] = {
[TOK_UNKNOWN ] = ":unknown:",
[TOK_SPACE ] = ":space:",
[TOK_SEMI ] = ";",
[TOK_LBRACE ] = "{",
[TOK_RBRACE ] = "}",
[TOK_COMMA ] = ",",
[TOK_EQ ] = "=",
[TOK_COLON ] = ":",
[TOK_LBRACKET ] = "[",
[TOK_RBRACKET ] = "]",
[TOK_LPAREN ] = "(",
[TOK_RPAREN ] = ")",
[TOK_STAR ] = "*",
[TOK_DOTS ] = "...",
[TOK_MORE ] = ">",
[TOK_LESS ] = "<",
[TOK_TIMESEQ ] = "*=",
[TOK_DIVEQ ] = "/=",
[TOK_MODEQ ] = "%=",
[TOK_PLUSEQ ] = "+=",
[TOK_MINUSEQ ] = "-=",
[TOK_SLEQ ] = "<<=",
[TOK_SREQ ] = ">>=",
[TOK_ANDEQ ] = "&=",
[TOK_XOREQ ] = "^=",
[TOK_OREQ ] = "|=",
[TOK_EQEQ ] = "==",
[TOK_NOTEQ ] = "!=",
[TOK_QUEST ] = "?",
[TOK_LOGOR ] = "||",
[TOK_LOGAND ] = "&&",
[TOK_OR ] = "|",
[TOK_AND ] = "&",
[TOK_XOR ] = "^",
[TOK_LESSEQ ] = "<=",
[TOK_MOREEQ ] = ">=",
[TOK_SL ] = "<<",
[TOK_SR ] = ">>",
[TOK_PLUS ] = "+",
[TOK_MINUS ] = "-",
[TOK_DIV ] = "/",
[TOK_MOD ] = "%",
[TOK_PLUSPLUS ] = "++",
[TOK_MINUSMINUS ] = "--",
[TOK_BANG ] = "!",
[TOK_ARROW ] = "->",
[TOK_DOT ] = ".",
[TOK_TILDE ] = "~",
[TOK_LIT_STRING ] = ":string:",
[TOK_IDENT ] = ":ident:",
[TOK_TYPE_NAME ] = ":typename:",
[TOK_LIT_CHAR ] = ":char:",
[TOK_LIT_INT ] = ":integer:",
[TOK_LIT_FLOAT ] = ":float:",
[TOK_MACRO ] = "#",
[TOK_CONCATENATE ] = "##",
[TOK_AUTO ] = "auto",
[TOK_BREAK ] = "break",
[TOK_CASE ] = "case",
[TOK_CHAR ] = "char",
[TOK_CONST ] = "const",
[TOK_CONTINUE ] = "continue",
[TOK_DEFAULT ] = "default",
[TOK_DO ] = "do",
[TOK_DOUBLE ] = "double",
[TOK_ELSE ] = "else",
[TOK_ENUM ] = "enum",
[TOK_EXTERN ] = "extern",
[TOK_FLOAT ] = "float",
[TOK_FOR ] = "for",
[TOK_GOTO ] = "goto",
[TOK_IF ] = "if",
[TOK_INLINE ] = "inline",
[TOK_INT ] = "int",
[TOK_LONG ] = "long",
[TOK_REGISTER ] = "register",
[TOK_RESTRICT ] = "restrict",
[TOK_RETURN ] = "return",
[TOK_SHORT ] = "short",
[TOK_SIGNED ] = "signed",
[TOK_SIZEOF ] = "sizeof",
[TOK_STATIC ] = "static",
[TOK_STRUCT ] = "struct",
[TOK_SWITCH ] = "switch",
[TOK_TYPEDEF ] = "typedef",
[TOK_UNION ] = "union",
[TOK_UNSIGNED ] = "unsigned",
[TOK_VOID ] = "void",
[TOK_VOLATILE ] = "volatile",
[TOK_WHILE ] = "while",
[TOK_ASM ] = "asm",
[TOK_ATTRIBUTE ] = "__attribute__",
[TOK_ALIGNOF ] = "__alignof__",
[TOK_MDEFINE ] = "#define",
[TOK_MDEFINED ] = "#defined",
[TOK_MUNDEF ] = "#undef",
[TOK_MINCLUDE ] = "#include",
[TOK_MLINE ] = "#line",
[TOK_MERROR ] = "#error",
[TOK_MWARNING ] = "#warning",
[TOK_MPRAGMA ] = "#pragma",
[TOK_MIFDEF ] = "#ifdef",
[TOK_MIFNDEF ] = "#ifndef",
[TOK_MELIF ] = "#elif",
[TOK_MENDIF ] = "#endif",
[TOK_MIF ] = "#if",
[TOK_MELSE ] = "#else",
[TOK_MIDENT ] = "#:ident:",
[TOK_EOL ] = "EOL",
[TOK_EOF ] = "EOF",
};
static unsigned int hash(const char *str, int str_len)
{
unsigned int hash;
const char *end;
end = str + str_len;
hash = 0;
for(; str < end; str++) {
hash = (hash *263) + *str;
}
hash = hash & (HASH_TABLE_SIZE -1);
return hash;
}
static struct hash_entry *lookup(
struct compile_state *state, const char *name, int name_len)
{
struct hash_entry *entry;
unsigned int index;
index = hash(name, name_len);
entry = state->hash_table[index];
while(entry &&
((entry->name_len != name_len) ||
(memcmp(entry->name, name, name_len) != 0))) {
entry = entry->next;
}
if (!entry) {
char *new_name;
/* Get a private copy of the name */
new_name = xmalloc(name_len + 1, "hash_name");
memcpy(new_name, name, name_len);
new_name[name_len] = '\0';
/* Create a new hash entry */
entry = xcmalloc(sizeof(*entry), "hash_entry");
entry->next = state->hash_table[index];
entry->name = new_name;
entry->name_len = name_len;
/* Place the new entry in the hash table */
state->hash_table[index] = entry;
}
return entry;
}
static void ident_to_keyword(struct compile_state *state, struct token *tk)
{
struct hash_entry *entry;
entry = tk->ident;
if (entry && ((entry->tok == TOK_TYPE_NAME) ||
(entry->tok == TOK_ENUM_CONST) ||
((entry->tok >= TOK_FIRST_KEYWORD) &&
(entry->tok <= TOK_LAST_KEYWORD)))) {
tk->tok = entry->tok;
}
}
static void ident_to_macro(struct compile_state *state, struct token *tk)
{
struct hash_entry *entry;
entry = tk->ident;
if (!entry)
return;
if ((entry->tok >= TOK_FIRST_MACRO) && (entry->tok <= TOK_LAST_MACRO)) {
tk->tok = entry->tok;
}
else if (entry->tok == TOK_IF) {
tk->tok = TOK_MIF;
}
else if (entry->tok == TOK_ELSE) {
tk->tok = TOK_MELSE;
}
else {
tk->tok = TOK_MIDENT;
}
}
static void hash_keyword(
struct compile_state *state, const char *keyword, int tok)
{
struct hash_entry *entry;
entry = lookup(state, keyword, strlen(keyword));
if (entry && entry->tok != TOK_UNKNOWN) {
die("keyword %s already hashed", keyword);
}
entry->tok = tok;
}
static void romcc_symbol(
struct compile_state *state, struct hash_entry *ident,
struct symbol **chain, struct triple *def, struct type *type, int depth)
{
struct symbol *sym;
if (*chain && ((*chain)->scope_depth >= depth)) {
error(state, 0, "%s already defined", ident->name);
}
sym = xcmalloc(sizeof(*sym), "symbol");
sym->ident = ident;
sym->def = def;
sym->type = type;
sym->scope_depth = depth;
sym->next = *chain;
*chain = sym;
}
static void symbol(
struct compile_state *state, struct hash_entry *ident,
struct symbol **chain, struct triple *def, struct type *type)
{
romcc_symbol(state, ident, chain, def, type, state->scope_depth);
}
static void var_symbol(struct compile_state *state,
struct hash_entry *ident, struct triple *def)
{
if ((def->type->type & TYPE_MASK) == TYPE_PRODUCT) {
internal_error(state, 0, "bad var type");
}
symbol(state, ident, &ident->sym_ident, def, def->type);
}
static void label_symbol(struct compile_state *state,
struct hash_entry *ident, struct triple *label, int depth)
{
romcc_symbol(state, ident, &ident->sym_label, label, &void_type, depth);
}
static void start_scope(struct compile_state *state)
{
state->scope_depth++;
}
static void end_scope_syms(struct compile_state *state,
struct symbol **chain, int depth)
{
struct symbol *sym, *next;
sym = *chain;
while(sym && (sym->scope_depth == depth)) {
next = sym->next;
xfree(sym);
sym = next;
}
*chain = sym;
}
static void end_scope(struct compile_state *state)
{
int i;
int depth;
/* Walk through the hash table and remove all symbols
* in the current scope.
*/
depth = state->scope_depth;
for(i = 0; i < HASH_TABLE_SIZE; i++) {
struct hash_entry *entry;
entry = state->hash_table[i];
while(entry) {
end_scope_syms(state, &entry->sym_label, depth);
end_scope_syms(state, &entry->sym_tag, depth);
end_scope_syms(state, &entry->sym_ident, depth);
entry = entry->next;
}
}
state->scope_depth = depth - 1;
}
static void register_keywords(struct compile_state *state)
{
hash_keyword(state, "auto", TOK_AUTO);
hash_keyword(state, "break", TOK_BREAK);
hash_keyword(state, "case", TOK_CASE);
hash_keyword(state, "char", TOK_CHAR);
hash_keyword(state, "const", TOK_CONST);
hash_keyword(state, "continue", TOK_CONTINUE);
hash_keyword(state, "default", TOK_DEFAULT);
hash_keyword(state, "do", TOK_DO);
hash_keyword(state, "double", TOK_DOUBLE);
hash_keyword(state, "else", TOK_ELSE);
hash_keyword(state, "enum", TOK_ENUM);
hash_keyword(state, "extern", TOK_EXTERN);
hash_keyword(state, "float", TOK_FLOAT);
hash_keyword(state, "for", TOK_FOR);
hash_keyword(state, "goto", TOK_GOTO);
hash_keyword(state, "if", TOK_IF);
hash_keyword(state, "inline", TOK_INLINE);
hash_keyword(state, "int", TOK_INT);
hash_keyword(state, "long", TOK_LONG);
hash_keyword(state, "register", TOK_REGISTER);
hash_keyword(state, "restrict", TOK_RESTRICT);
hash_keyword(state, "return", TOK_RETURN);
hash_keyword(state, "short", TOK_SHORT);
hash_keyword(state, "signed", TOK_SIGNED);
hash_keyword(state, "sizeof", TOK_SIZEOF);
hash_keyword(state, "static", TOK_STATIC);
hash_keyword(state, "struct", TOK_STRUCT);
hash_keyword(state, "switch", TOK_SWITCH);
hash_keyword(state, "typedef", TOK_TYPEDEF);
hash_keyword(state, "union", TOK_UNION);
hash_keyword(state, "unsigned", TOK_UNSIGNED);
hash_keyword(state, "void", TOK_VOID);
hash_keyword(state, "volatile", TOK_VOLATILE);
hash_keyword(state, "__volatile__", TOK_VOLATILE);
hash_keyword(state, "while", TOK_WHILE);
hash_keyword(state, "asm", TOK_ASM);
hash_keyword(state, "__asm__", TOK_ASM);
hash_keyword(state, "__attribute__", TOK_ATTRIBUTE);
hash_keyword(state, "__alignof__", TOK_ALIGNOF);
}
static void register_macro_keywords(struct compile_state *state)
{
hash_keyword(state, "define", TOK_MDEFINE);
hash_keyword(state, "defined", TOK_MDEFINED);
hash_keyword(state, "undef", TOK_MUNDEF);
hash_keyword(state, "include", TOK_MINCLUDE);
hash_keyword(state, "line", TOK_MLINE);
hash_keyword(state, "error", TOK_MERROR);
hash_keyword(state, "warning", TOK_MWARNING);
hash_keyword(state, "pragma", TOK_MPRAGMA);
hash_keyword(state, "ifdef", TOK_MIFDEF);
hash_keyword(state, "ifndef", TOK_MIFNDEF);
hash_keyword(state, "elif", TOK_MELIF);
hash_keyword(state, "endif", TOK_MENDIF);
}
static void undef_macro(struct compile_state *state, struct hash_entry *ident)
{
if (ident->sym_define != 0) {
struct macro *macro;
struct macro_arg *arg, *anext;
macro = ident->sym_define;
ident->sym_define = 0;
/* Free the macro arguments... */
anext = macro->args;
while(anext) {
arg = anext;
anext = arg->next;
xfree(arg);
}
/* Free the macro buffer */
xfree(macro->buf);
/* Now free the macro itself */
xfree(macro);
}
}
static void do_define_macro(struct compile_state *state,
struct hash_entry *ident, const char *body,
int argc, struct macro_arg *args)
{
struct macro *macro;
struct macro_arg *arg;
size_t body_len;
/* Find the length of the body */
body_len = strlen(body);
macro = ident->sym_define;
if (macro != 0) {
int identical_bodies, identical_args;
struct macro_arg *oarg;
/* Explicitly allow identical redfinitions of the same macro */
identical_bodies =
(macro->buf_len == body_len) &&
(memcmp(macro->buf, body, body_len) == 0);
identical_args = macro->argc == argc;
oarg = macro->args;
arg = args;
while(identical_args && arg) {
identical_args = oarg->ident == arg->ident;
arg = arg->next;
oarg = oarg->next;
}
if (identical_bodies && identical_args) {
xfree(body);
return;
}
error(state, 0, "macro %s already defined\n", ident->name);
}
#if 0
fprintf(state->errout, "#define %s: `%*.*s'\n",
ident->name, body_len, body_len, body);
#endif
macro = xmalloc(sizeof(*macro), "macro");
macro->ident = ident;
macro->buf = body;
macro->buf_len = body_len;
macro->args = args;
macro->argc = argc;
ident->sym_define = macro;
}
static void define_macro(
struct compile_state *state,
struct hash_entry *ident,
const char *body, int body_len,
int argc, struct macro_arg *args)
{
char *buf;
buf = xmalloc(body_len + 1, "macro buf");
memcpy(buf, body, body_len);
buf[body_len] = '\0';
do_define_macro(state, ident, buf, argc, args);
}
static void register_builtin_macro(struct compile_state *state,
const char *name, const char *value)
{
struct hash_entry *ident;
if (value[0] == '(') {
internal_error(state, 0, "Builtin macros with arguments not supported");
}
ident = lookup(state, name, strlen(name));
define_macro(state, ident, value, strlen(value), -1, 0);
}
static void register_builtin_macros(struct compile_state *state)
{
char buf[30];
char scratch[30];
time_t now;
struct tm *tm;
now = time(NULL);
tm = localtime(&now);
register_builtin_macro(state, "__ROMCC__", VERSION_MAJOR);
register_builtin_macro(state, "__ROMCC_MINOR__", VERSION_MINOR);
register_builtin_macro(state, "__FILE__", "\"This should be the filename\"");
register_builtin_macro(state, "__LINE__", "54321");
strftime(scratch, sizeof(scratch), "%b %e %Y", tm);
sprintf(buf, "\"%s\"", scratch);
register_builtin_macro(state, "__DATE__", buf);
strftime(scratch, sizeof(scratch), "%H:%M:%S", tm);
sprintf(buf, "\"%s\"", scratch);
register_builtin_macro(state, "__TIME__", buf);
/* I can't be a conforming implementation of C :( */
register_builtin_macro(state, "__STDC__", "0");
/* In particular I don't conform to C99 */
register_builtin_macro(state, "__STDC_VERSION__", "199901L");
}
static void process_cmdline_macros(struct compile_state *state)
{
const char **macro, *name;
struct hash_entry *ident;
for(macro = state->compiler->defines; (name = *macro); macro++) {
const char *body;
size_t name_len;
name_len = strlen(name);
body = strchr(name, '=');
if (!body) {
body = "\0";
} else {
name_len = body - name;
body++;
}
ident = lookup(state, name, name_len);
define_macro(state, ident, body, strlen(body), -1, 0);
}
for(macro = state->compiler->undefs; (name = *macro); macro++) {
ident = lookup(state, name, strlen(name));
undef_macro(state, ident);
}
}
static int spacep(int c)
{
int ret = 0;
switch(c) {
case ' ':
case '\t':
case '\f':
case '\v':
case '\r':
ret = 1;
break;
}
return ret;
}
static int digitp(int c)
{
int ret = 0;
switch(c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
ret = 1;
break;
}
return ret;
}
static int digval(int c)
{
int val = -1;
if ((c >= '0') && (c <= '9')) {
val = c - '0';
}
return val;
}
static int hexdigitp(int c)
{
int ret = 0;
switch(c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
ret = 1;
break;
}
return ret;
}
static int hexdigval(int c)
{
int val = -1;
if ((c >= '0') && (c <= '9')) {
val = c - '0';
}
else if ((c >= 'A') && (c <= 'F')) {
val = 10 + (c - 'A');
}
else if ((c >= 'a') && (c <= 'f')) {
val = 10 + (c - 'a');
}
return val;
}
static int octdigitp(int c)
{
int ret = 0;
switch(c) {
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
ret = 1;
break;
}
return ret;
}
static int octdigval(int c)
{
int val = -1;
if ((c >= '0') && (c <= '7')) {
val = c - '0';
}
return val;
}
static int letterp(int c)
{
int ret = 0;
switch(c) {
case 'a': case 'b': case 'c': case 'd': case 'e':
case 'f': case 'g': case 'h': case 'i': case 'j':
case 'k': case 'l': case 'm': case 'n': case 'o':
case 'p': case 'q': case 'r': case 's': case 't':
case 'u': case 'v': case 'w': case 'x': case 'y':
case 'z':
case 'A': case 'B': case 'C': case 'D': case 'E':
case 'F': case 'G': case 'H': case 'I': case 'J':
case 'K': case 'L': case 'M': case 'N': case 'O':
case 'P': case 'Q': case 'R': case 'S': case 'T':
case 'U': case 'V': case 'W': case 'X': case 'Y':
case 'Z':
case '_':
ret = 1;
break;
}
return ret;
}
static const char *identifier(const char *str, const char *end)
{
if (letterp(*str)) {
for(; str < end; str++) {
int c;
c = *str;
if (!letterp(c) && !digitp(c)) {
break;
}
}
}
return str;
}
static int char_value(struct compile_state *state,
const signed char **strp, const signed char *end)
{
const signed char *str;
int c;
str = *strp;
c = *str++;
if ((c == '\\') && (str < end)) {
switch(*str) {
case 'n': c = '\n'; str++; break;
case 't': c = '\t'; str++; break;
case 'v': c = '\v'; str++; break;
case 'b': c = '\b'; str++; break;
case 'r': c = '\r'; str++; break;
case 'f': c = '\f'; str++; break;
case 'a': c = '\a'; str++; break;
case '\\': c = '\\'; str++; break;
case '?': c = '?'; str++; break;
case '\'': c = '\''; str++; break;
case '"': c = '"'; str++; break;
case 'x':
c = 0;
str++;
while((str < end) && hexdigitp(*str)) {
c <<= 4;
c += hexdigval(*str);
str++;
}
break;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
c = 0;
while((str < end) && octdigitp(*str)) {
c <<= 3;
c += octdigval(*str);
str++;
}
break;
default:
error(state, 0, "Invalid character constant");
break;
}
}
*strp = str;
return c;
}
static const char *next_char(struct file_state *file, const char *pos, int index)
{
const char *end = file->buf + file->size;
while(pos < end) {
/* Lookup the character */
int size = 1;
int c = *pos;
/* Is this a trigraph? */
if (file->trigraphs &&
(c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
{
switch(pos[2]) {
case '=': c = '#'; break;
case '/': c = '\\'; break;
case '\'': c = '^'; break;
case '(': c = '['; break;
case ')': c = ']'; break;
case '!': c = '!'; break;
case '<': c = '{'; break;
case '>': c = '}'; break;
case '-': c = '~'; break;
}
if (c != '?') {
size = 3;
}
}
/* Is this an escaped newline? */
if (file->join_lines &&
(c == '\\') && (pos + size < end) && ((pos[1] == '\n') || ((pos[1] == '\r') && (pos[2] == '\n'))))
{
int cr_offset = ((pos[1] == '\r') && (pos[2] == '\n'))?1:0;
/* At the start of a line just eat it */
if (pos == file->pos) {
file->line++;
file->report_line++;
file->line_start = pos + size + 1 + cr_offset;
}
pos += size + 1 + cr_offset;
}
/* Do I need to ga any farther? */
else if (index == 0) {
break;
}
/* Process a normal character */
else {
pos += size;
index -= 1;
}
}
return pos;
}
static int get_char(struct file_state *file, const char *pos)
{
const char *end = file->buf + file->size;
int c;
c = -1;
pos = next_char(file, pos, 0);
if (pos < end) {
/* Lookup the character */
c = *pos;
/* If it is a trigraph get the trigraph value */
if (file->trigraphs &&
(c == '?') && ((end - pos) >= 3) && (pos[1] == '?'))
{
switch(pos[2]) {
case '=': c = '#'; break;
case '/': c = '\\'; break;
case '\'': c = '^'; break;
case '(': c = '['; break;
case ')': c = ']'; break;
case '!': c = '!'; break;
case '<': c = '{'; break;
case '>': c = '}'; break;
case '-': c = '~'; break;
}
}
}
return c;
}
static void eat_chars(struct file_state *file, const char *targ)
{
const char *pos = file->pos;
while(pos < targ) {
/* Do we have a newline? */
if (pos[0] == '\n') {
file->line++;
file->report_line++;
file->line_start = pos + 1;
}
pos++;
}
file->pos = pos;
}
static size_t char_strlen(struct file_state *file, const char *src, const char *end)
{
size_t len;
len = 0;
while(src < end) {
src = next_char(file, src, 1);
len++;
}
return len;
}
static void char_strcpy(char *dest,
struct file_state *file, const char *src, const char *end)
{
while(src < end) {
int c;
c = get_char(file, src);
src = next_char(file, src, 1);
*dest++ = c;
}
}
static char *char_strdup(struct file_state *file,
const char *start, const char *end, const char *id)
{
char *str;
size_t str_len;
str_len = char_strlen(file, start, end);
str = xcmalloc(str_len + 1, id);
char_strcpy(str, file, start, end);
str[str_len] = '\0';
return str;
}
static const char *after_digits(struct file_state *file, const char *ptr)
{
while(digitp(get_char(file, ptr))) {
ptr = next_char(file, ptr, 1);
}
return ptr;
}
static const char *after_octdigits(struct file_state *file, const char *ptr)
{
while(octdigitp(get_char(file, ptr))) {
ptr = next_char(file, ptr, 1);
}
return ptr;
}
static const char *after_hexdigits(struct file_state *file, const char *ptr)
{
while(hexdigitp(get_char(file, ptr))) {
ptr = next_char(file, ptr, 1);
}
return ptr;
}
static const char *after_alnums(struct file_state *file, const char *ptr)
{
int c;
c = get_char(file, ptr);
while(letterp(c) || digitp(c)) {
ptr = next_char(file, ptr, 1);
c = get_char(file, ptr);
}
return ptr;
}
static void save_string(struct file_state *file,
struct token *tk, const char *start, const char *end, const char *id)
{
char *str;
/* Create a private copy of the string */
str = char_strdup(file, start, end, id);
/* Store the copy in the token */
tk->val.str = str;
tk->str_len = strlen(str);
}
static void raw_next_token(struct compile_state *state,
struct file_state *file, struct token *tk)
{
const char *token;
int c, c1, c2, c3;
const char *tokp;
int eat;
int tok;
tk->str_len = 0;
tk->ident = 0;
token = tokp = next_char(file, file->pos, 0);
tok = TOK_UNKNOWN;
c = get_char(file, tokp);
tokp = next_char(file, tokp, 1);
eat = 0;
c1 = get_char(file, tokp);
c2 = get_char(file, next_char(file, tokp, 1));
c3 = get_char(file, next_char(file, tokp, 2));
/* The end of the file */
if (c == -1) {
tok = TOK_EOF;
}
/* Whitespace */
else if (spacep(c)) {
tok = TOK_SPACE;
while (spacep(get_char(file, tokp))) {
tokp = next_char(file, tokp, 1);
}
}
/* EOL Comments */
else if ((c == '/') && (c1 == '/')) {
tok = TOK_SPACE;
tokp = next_char(file, tokp, 1);
while((c = get_char(file, tokp)) != -1) {
/* Advance to the next character only after we verify
* the current character is not a newline.
* EOL is special to the preprocessor so we don't
* want to loose any.
*/
if (c == '\n') {
break;
}
tokp = next_char(file, tokp, 1);
}
}
/* Comments */
else if ((c == '/') && (c1 == '*')) {
tokp = next_char(file, tokp, 2);
c = c2;
while((c1 = get_char(file, tokp)) != -1) {
tokp = next_char(file, tokp, 1);
if ((c == '*') && (c1 == '/')) {
tok = TOK_SPACE;
break;
}
c = c1;
}
if (tok == TOK_UNKNOWN) {
error(state, 0, "unterminated comment");
}
}
/* string constants */
else if ((c == '"') || ((c == 'L') && (c1 == '"'))) {
int multiline;
multiline = 0;
if (c == 'L') {
tokp = next_char(file, tokp, 1);
}
while((c = get_char(file, tokp)) != -1) {
tokp = next_char(file, tokp, 1);
if (c == '\n') {
multiline = 1;
}
else if (c == '\\') {
tokp = next_char(file, tokp, 1);
}
else if (c == '"') {
tok = TOK_LIT_STRING;
break;
}
}
if (tok == TOK_UNKNOWN) {
error(state, 0, "unterminated string constant");
}
if (multiline) {
warning(state, 0, "multiline string constant");
}
/* Save the string value */
save_string(file, tk, token, tokp, "literal string");
}
/* character constants */
else if ((c == '\'') || ((c == 'L') && (c1 == '\''))) {
int multiline;
multiline = 0;
if (c == 'L') {
tokp = next_char(file, tokp, 1);
}
while((c = get_char(file, tokp)) != -1) {
tokp = next_char(file, tokp, 1);
if (c == '\n') {
multiline = 1;
}
else if (c == '\\') {
tokp = next_char(file, tokp, 1);
}
else if (c == '\'') {
tok = TOK_LIT_CHAR;
break;
}
}
if (tok == TOK_UNKNOWN) {
error(state, 0, "unterminated character constant");
}
if (multiline) {
warning(state, 0, "multiline character constant");
}
/* Save the character value */
save_string(file, tk, token, tokp, "literal character");
}
/* integer and floating constants
* Integer Constants
* {digits}
* 0[Xx]{hexdigits}
* 0{octdigit}+
*
* Floating constants
* {digits}.{digits}[Ee][+-]?{digits}
* {digits}.{digits}
* {digits}[Ee][+-]?{digits}
* .{digits}[Ee][+-]?{digits}
* .{digits}
*/
else if (digitp(c) || ((c == '.') && (digitp(c1)))) {
const char *next;
int is_float;
int cn;
is_float = 0;
if (c != '.') {
next = after_digits(file, tokp);
}
else {
next = token;
}
cn = get_char(file, next);
if (cn == '.') {
next = next_char(file, next, 1);
next = after_digits(file, next);
is_float = 1;
}
cn = get_char(file, next);
if ((cn == 'e') || (cn == 'E')) {
const char *new;
next = next_char(file, next, 1);
cn = get_char(file, next);
if ((cn == '+') || (cn == '-')) {
next = next_char(file, next, 1);
}
new = after_digits(file, next);
is_float |= (new != next);
next = new;
}
if (is_float) {
tok = TOK_LIT_FLOAT;
cn = get_char(file, next);
if ((cn == 'f') || (cn == 'F') || (cn == 'l') || (cn == 'L')) {
next = next_char(file, next, 1);
}
}
if (!is_float && digitp(c)) {
tok = TOK_LIT_INT;
if ((c == '0') && ((c1 == 'x') || (c1 == 'X'))) {
next = next_char(file, tokp, 1);
next = after_hexdigits(file, next);
}
else if (c == '0') {
next = after_octdigits(file, tokp);
}
else {
next = after_digits(file, tokp);
}
/* crazy integer suffixes */
cn = get_char(file, next);
if ((cn == 'u') || (cn == 'U')) {
next = next_char(file, next, 1);
cn = get_char(file, next);
if ((cn == 'l') || (cn == 'L')) {
next = next_char(file, next, 1);
cn = get_char(file, next);
}
if ((cn == 'l') || (cn == 'L')) {
next = next_char(file, next, 1);
}
}
else if ((cn == 'l') || (cn == 'L')) {
next = next_char(file, next, 1);
cn = get_char(file, next);
if ((cn == 'l') || (cn == 'L')) {
next = next_char(file, next, 1);
cn = get_char(file, next);
}
if ((cn == 'u') || (cn == 'U')) {
next = next_char(file, next, 1);
}
}
}
tokp = next;
/* Save the integer/floating point value */
save_string(file, tk, token, tokp, "literal number");
}
/* identifiers */
else if (letterp(c)) {
tok = TOK_IDENT;
/* Find and save the identifier string */
tokp = after_alnums(file, tokp);
save_string(file, tk, token, tokp, "identifier");
/* Look up to see which identifier it is */
tk->ident = lookup(state, tk->val.str, tk->str_len);
/* Free the identifier string */
tk->str_len = 0;
xfree(tk->val.str);
/* See if this identifier can be macro expanded */
tk->val.notmacro = 0;
c = get_char(file, tokp);
if (c == '$') {
tokp = next_char(file, tokp, 1);
tk->val.notmacro = 1;
}
}
/* C99 alternate macro characters */
else if ((c == '%') && (c1 == ':') && (c2 == '%') && (c3 == ':')) {
eat += 3;
tok = TOK_CONCATENATE;
}
else if ((c == '.') && (c1 == '.') && (c2 == '.')) { eat += 2; tok = TOK_DOTS; }
else if ((c == '<') && (c1 == '<') && (c2 == '=')) { eat += 2; tok = TOK_SLEQ; }
else if ((c == '>') && (c1 == '>') && (c2 == '=')) { eat += 2; tok = TOK_SREQ; }
else if ((c == '*') && (c1 == '=')) { eat += 1; tok = TOK_TIMESEQ; }
else if ((c == '/') && (c1 == '=')) { eat += 1; tok = TOK_DIVEQ; }
else if ((c == '%') && (c1 == '=')) { eat += 1; tok = TOK_MODEQ; }
else if ((c == '+') && (c1 == '=')) { eat += 1; tok = TOK_PLUSEQ; }
else if ((c == '-') && (c1 == '=')) { eat += 1; tok = TOK_MINUSEQ; }
else if ((c == '&') && (c1 == '=')) { eat += 1; tok = TOK_ANDEQ; }
else if ((c == '^') && (c1 == '=')) { eat += 1; tok = TOK_XOREQ; }
else if ((c == '|') && (c1 == '=')) { eat += 1; tok = TOK_OREQ; }
else if ((c == '=') && (c1 == '=')) { eat += 1; tok = TOK_EQEQ; }
else if ((c == '!') && (c1 == '=')) { eat += 1; tok = TOK_NOTEQ; }
else if ((c == '|') && (c1 == '|')) { eat += 1; tok = TOK_LOGOR; }
else if ((c == '&') && (c1 == '&')) { eat += 1; tok = TOK_LOGAND; }
else if ((c == '<') && (c1 == '=')) { eat += 1; tok = TOK_LESSEQ; }
else if ((c == '>') && (c1 == '=')) { eat += 1; tok = TOK_MOREEQ; }
else if ((c == '<') && (c1 == '<')) { eat += 1; tok = TOK_SL; }
else if ((c == '>') && (c1 == '>')) { eat += 1; tok = TOK_SR; }
else if ((c == '+') && (c1 == '+')) { eat += 1; tok = TOK_PLUSPLUS; }
else if ((c == '-') && (c1 == '-')) { eat += 1; tok = TOK_MINUSMINUS; }
else if ((c == '-') && (c1 == '>')) { eat += 1; tok = TOK_ARROW; }
else if ((c == '<') && (c1 == ':')) { eat += 1; tok = TOK_LBRACKET; }
else if ((c == ':') && (c1 == '>')) { eat += 1; tok = TOK_RBRACKET; }
else if ((c == '<') && (c1 == '%')) { eat += 1; tok = TOK_LBRACE; }
else if ((c == '%') && (c1 == '>')) { eat += 1; tok = TOK_RBRACE; }
else if ((c == '%') && (c1 == ':')) { eat += 1; tok = TOK_MACRO; }
else if ((c == '#') && (c1 == '#')) { eat += 1; tok = TOK_CONCATENATE; }
else if (c == ';') { tok = TOK_SEMI; }
else if (c == '{') { tok = TOK_LBRACE; }
else if (c == '}') { tok = TOK_RBRACE; }
else if (c == ',') { tok = TOK_COMMA; }
else if (c == '=') { tok = TOK_EQ; }
else if (c == ':') { tok = TOK_COLON; }
else if (c == '[') { tok = TOK_LBRACKET; }
else if (c == ']') { tok = TOK_RBRACKET; }
else if (c == '(') { tok = TOK_LPAREN; }
else if (c == ')') { tok = TOK_RPAREN; }
else if (c == '*') { tok = TOK_STAR; }
else if (c == '>') { tok = TOK_MORE; }
else if (c == '<') { tok = TOK_LESS; }
else if (c == '?') { tok = TOK_QUEST; }
else if (c == '|') { tok = TOK_OR; }
else if (c == '&') { tok = TOK_AND; }
else if (c == '^') { tok = TOK_XOR; }
else if (c == '+') { tok = TOK_PLUS; }
else if (c == '-') { tok = TOK_MINUS; }
else if (c == '/') { tok = TOK_DIV; }
else if (c == '%') { tok = TOK_MOD; }
else if (c == '!') { tok = TOK_BANG; }
else if (c == '.') { tok = TOK_DOT; }
else if (c == '~') { tok = TOK_TILDE; }
else if (c == '#') { tok = TOK_MACRO; }
else if (c == '\n') { tok = TOK_EOL; }
tokp = next_char(file, tokp, eat);
eat_chars(file, tokp);
tk->tok = tok;
tk->pos = token;
}
static void check_tok(struct compile_state *state, struct token *tk, int tok)
{
if (tk->tok != tok) {
const char *name1, *name2;
name1 = tokens[tk->tok];
name2 = "";
if ((tk->tok == TOK_IDENT) || (tk->tok == TOK_MIDENT)) {
name2 = tk->ident->name;
}
error(state, 0, "\tfound %s %s expected %s",
name1, name2, tokens[tok]);
}
}
struct macro_arg_value {
struct hash_entry *ident;
char *value;
size_t len;
};
static struct macro_arg_value *read_macro_args(
struct compile_state *state, struct macro *macro,
struct file_state *file, struct token *tk)
{
struct macro_arg_value *argv;
struct macro_arg *arg;
int paren_depth;
int i;
if (macro->argc == 0) {
do {
raw_next_token(state, file, tk);
} while(tk->tok == TOK_SPACE);
return NULL;
}
argv = xcmalloc(sizeof(*argv) * macro->argc, "macro args");
for(i = 0, arg = macro->args; arg; arg = arg->next, i++) {
argv[i].value = 0;
argv[i].len = 0;
argv[i].ident = arg->ident;
}
paren_depth = 0;
i = 0;
for(;;) {
const char *start;
size_t len;
start = file->pos;
raw_next_token(state, file, tk);
if (!paren_depth && (tk->tok == TOK_COMMA) &&
(argv[i].ident != state->i___VA_ARGS__))
{
i++;
if (i >= macro->argc) {
error(state, 0, "too many args to %s\n",
macro->ident->name);
}
continue;
}
if (tk->tok == TOK_LPAREN) {
paren_depth++;
}
if (tk->tok == TOK_RPAREN) {
if (paren_depth == 0) {
break;
}
paren_depth--;
}
if (tk->tok == TOK_EOF) {
error(state, 0, "End of file encountered while parsing macro arguments");
}
len = char_strlen(file, start, file->pos);
argv[i].value = xrealloc(
argv[i].value, argv[i].len + len, "macro args");
char_strcpy((char *)argv[i].value + argv[i].len, file, start, file->pos);
argv[i].len += len;
}
if (i != macro->argc -1) {
error(state, 0, "missing %s arg %d\n",
macro->ident->name, i +2);
}
return argv;
}
static void free_macro_args(struct macro *macro, struct macro_arg_value *argv)
{
int i;
for(i = 0; i < macro->argc; i++) {
xfree(argv[i].value);
}
xfree(argv);
}
struct macro_buf {
char *str;
size_t len, pos;
};
static void grow_macro_buf(struct compile_state *state,
const char *id, struct macro_buf *buf,
size_t grow)
{
if ((buf->pos + grow) >= buf->len) {
buf->str = xrealloc(buf->str, buf->len + grow, id);
buf->len += grow;
}
}
static void append_macro_text(struct compile_state *state,
const char *id, struct macro_buf *buf,
const char *fstart, size_t flen)
{
grow_macro_buf(state, id, buf, flen);
memcpy(buf->str + buf->pos, fstart, flen);
#if 0
fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
buf->pos, buf->pos, buf->str,
flen, flen, buf->str + buf->pos);
#endif
buf->pos += flen;
}
static void append_macro_chars(struct compile_state *state,
const char *id, struct macro_buf *buf,
struct file_state *file, const char *start, const char *end)
{
size_t flen;
flen = char_strlen(file, start, end);
grow_macro_buf(state, id, buf, flen);
char_strcpy(buf->str + buf->pos, file, start, end);
#if 0
fprintf(state->errout, "append: `%*.*s' `%*.*s'\n",
buf->pos, buf->pos, buf->str,
flen, flen, buf->str + buf->pos);
#endif
buf->pos += flen;
}
static int compile_macro(struct compile_state *state,
struct file_state **filep, struct token *tk);
static void macro_expand_args(struct compile_state *state,
struct macro *macro, struct macro_arg_value *argv, struct token *tk)
{
int i;
for(i = 0; i < macro->argc; i++) {
struct file_state fmacro, *file;
struct macro_buf buf;
fmacro.prev = 0;
fmacro.basename = argv[i].ident->name;
fmacro.dirname = "";
fmacro.buf = (char *)argv[i].value;
fmacro.size = argv[i].len;
fmacro.pos = fmacro.buf;
fmacro.line = 1;
fmacro.line_start = fmacro.buf;
fmacro.report_line = 1;
fmacro.report_name = fmacro.basename;
fmacro.report_dir = fmacro.dirname;
fmacro.macro = 1;
fmacro.trigraphs = 0;
fmacro.join_lines = 0;
buf.len = argv[i].len;
buf.str = xmalloc(buf.len, argv[i].ident->name);
buf.pos = 0;
file = &fmacro;
for(;;) {
raw_next_token(state, file, tk);
/* If we have recursed into another macro body
* get out of it.
*/
if (tk->tok == TOK_EOF) {
struct file_state *old;
old = file;
file = file->prev;
if (!file) {
break;
}
/* old->basename is used keep it */
xfree(old->dirname);
xfree(old->buf);
xfree(old);
continue;
}
else if (tk->ident && tk->ident->sym_define) {
if (compile_macro(state, &file, tk)) {
continue;
}
}
append_macro_chars(state, macro->ident->name, &buf,
file, tk->pos, file->pos);
}
xfree(argv[i].value);
argv[i].value = buf.str;
argv[i].len = buf.pos;
}
return;
}
static void expand_macro(struct compile_state *state,
struct macro *macro, struct macro_buf *buf,
struct macro_arg_value *argv, struct token *tk)
{
struct file_state fmacro;
const char space[] = " ";
const char *fstart;
size_t flen;
int i, j;
/* Place the macro body in a dummy file */
fmacro.prev = 0;
fmacro.basename = macro->ident->name;
fmacro.dirname = "";
fmacro.buf = macro->buf;
fmacro.size = macro->buf_len;
fmacro.pos = fmacro.buf;
fmacro.line = 1;
fmacro.line_start = fmacro.buf;
fmacro.report_line = 1;
fmacro.report_name = fmacro.basename;
fmacro.report_dir = fmacro.dirname;
fmacro.macro = 1;
fmacro.trigraphs = 0;
fmacro.join_lines = 0;
/* Allocate a buffer to hold the macro expansion */
buf->len = macro->buf_len + 3;
buf->str = xmalloc(buf->len, macro->ident->name);
buf->pos = 0;
fstart = fmacro.pos;
raw_next_token(state, &fmacro, tk);
while(tk->tok != TOK_EOF) {
flen = fmacro.pos - fstart;
switch(tk->tok) {
case TOK_IDENT:
for(i = 0; i < macro->argc; i++) {
if (argv[i].ident == tk->ident) {
break;
}
}
if (i >= macro->argc) {
break;
}
/* Substitute macro parameter */
fstart = argv[i].value;
flen = argv[i].len;
break;
case TOK_MACRO:
if (macro->argc < 0) {
break;
}
do {
raw_next_token(state, &fmacro, tk);
} while(tk->tok == TOK_SPACE);
check_tok(state, tk, TOK_IDENT);
for(i = 0; i < macro->argc; i++) {
if (argv[i].ident == tk->ident) {
break;
}
}
if (i >= macro->argc) {
error(state, 0, "parameter `%s' not found",
tk->ident->name);
}
/* Stringize token */
append_macro_text(state, macro->ident->name, buf, "\"", 1);
for(j = 0; j < argv[i].len; j++) {
char *str = argv[i].value + j;
size_t len = 1;
if (*str == '\\') {
str = "\\";
len = 2;
}
else if (*str == '"') {
str = "\\\"";
len = 2;
}
append_macro_text(state, macro->ident->name, buf, str, len);
}
append_macro_text(state, macro->ident->name, buf, "\"", 1);
fstart = 0;
flen = 0;
break;
case TOK_CONCATENATE:
/* Concatenate tokens */
/* Delete the previous whitespace token */
if (buf->str[buf->pos - 1] == ' ') {
buf->pos -= 1;
}
/* Skip the next sequence of whitspace tokens */
do {
fstart = fmacro.pos;
raw_next_token(state, &fmacro, tk);
} while(tk->tok == TOK_SPACE);
/* Restart at the top of the loop.
* I need to process the non white space token.
*/
continue;
break;
case TOK_SPACE:
/* Collapse multiple spaces into one */
if (buf->str[buf->pos - 1] != ' ') {
fstart = space;
flen = 1;
} else {
fstart = 0;
flen = 0;
}
break;
default:
break;
}
append_macro_text(state, macro->ident->name, buf, fstart, flen);
fstart = fmacro.pos;
raw_next_token(state, &fmacro, tk);
}
}
static void tag_macro_name(struct compile_state *state,
struct macro *macro, struct macro_buf *buf,
struct token *tk)
{
/* Guard all instances of the macro name in the replacement
* text from further macro expansion.
*/
struct file_state fmacro;
const char *fstart;
size_t flen;
/* Put the old macro expansion buffer in a file */
fmacro.prev = 0;
fmacro.basename = macro->ident->name;
fmacro.dirname = "";
fmacro.buf = buf->str;
fmacro.size = buf->pos;
fmacro.pos = fmacro.buf;
fmacro.line = 1;
fmacro.line_start = fmacro.buf;
fmacro.report_line = 1;
fmacro.report_name = fmacro.basename;
fmacro.report_dir = fmacro.dirname;
fmacro.macro = 1;
fmacro.trigraphs = 0;
fmacro.join_lines = 0;
/* Allocate a new macro expansion buffer */
buf->len = macro->buf_len + 3;
buf->str = xmalloc(buf->len, macro->ident->name);
buf->pos = 0;
fstart = fmacro.pos;
raw_next_token(state, &fmacro, tk);
while(tk->tok != TOK_EOF) {
flen = fmacro.pos - fstart;
if ((tk->tok == TOK_IDENT) &&
(tk->ident == macro->ident) &&
(tk->val.notmacro == 0))
{
append_macro_text(state, macro->ident->name, buf, fstart, flen);
fstart = "$";
flen = 1;
}
append_macro_text(state, macro->ident->name, buf, fstart, flen);
fstart = fmacro.pos;
raw_next_token(state, &fmacro, tk);
}
xfree(fmacro.buf);
}
static int compile_macro(struct compile_state *state,
struct file_state **filep, struct token *tk)
{
struct file_state *file;
struct hash_entry *ident;
struct macro *macro;
struct macro_arg_value *argv;
struct macro_buf buf;
#if 0
fprintf(state->errout, "macro: %s\n", tk->ident->name);
#endif
ident = tk->ident;
macro = ident->sym_define;
/* If this token comes from a macro expansion ignore it */
if (tk->val.notmacro) {
return 0;
}
/* If I am a function like macro and the identifier is not followed
* by a left parenthesis, do nothing.
*/
if ((macro->argc >= 0) && (get_char(*filep, (*filep)->pos) != '(')) {
return 0;
}
/* Read in the macro arguments */
argv = 0;
if (macro->argc >= 0) {
raw_next_token(state, *filep, tk);
check_tok(state, tk, TOK_LPAREN);
argv = read_macro_args(state, macro, *filep, tk);
check_tok(state, tk, TOK_RPAREN);
}
/* Macro expand the macro arguments */
macro_expand_args(state, macro, argv, tk);
buf.str = 0;
buf.len = 0;
buf.pos = 0;
if (ident == state->i___FILE__) {
buf.len = strlen(state->file->basename) + 1 + 2 + 3;
buf.str = xmalloc(buf.len, ident->name);
sprintf(buf.str, "\"%s\"", state->file->basename);
buf.pos = strlen(buf.str);
}
else if (ident == state->i___LINE__) {
buf.len = 30;
buf.str = xmalloc(buf.len, ident->name);
sprintf(buf.str, "%d", state->file->line);
buf.pos = strlen(buf.str);
}
else {
expand_macro(state, macro, &buf, argv, tk);
}
/* Tag the macro name with a $ so it will no longer
* be regonized as a canidate for macro expansion.
*/
tag_macro_name(state, macro, &buf, tk);
#if 0
fprintf(state->errout, "%s: %d -> `%*.*s'\n",
ident->name, buf.pos, buf.pos, (int)(buf.pos), buf.str);
#endif
free_macro_args(macro, argv);
file = xmalloc(sizeof(*file), "file_state");
file->prev = *filep;
file->basename = xstrdup(ident->name);
file->dirname = xstrdup("");
file->buf = buf.str;
file->size = buf.pos;
file->pos = file->buf;
file->line = 1;
file->line_start = file->pos;
file->report_line = 1;
file->report_name = file->basename;
file->report_dir = file->dirname;
file->macro = 1;
file->trigraphs = 0;
file->join_lines = 0;
*filep = file;
return 1;
}
static void eat_tokens(struct compile_state *state, int targ_tok)
{
if (state->eat_depth > 0) {
internal_error(state, 0, "Already eating...");
}
state->eat_depth = state->if_depth;
state->eat_targ = targ_tok;
}
static int if_eat(struct compile_state *state)
{
return state->eat_depth > 0;
}
static int if_value(struct compile_state *state)
{
int index, offset;
index = state->if_depth / CHAR_BIT;
offset = state->if_depth % CHAR_BIT;
return !!(state->if_bytes[index] & (1 << (offset)));
}
static void set_if_value(struct compile_state *state, int value)
{
int index, offset;
index = state->if_depth / CHAR_BIT;
offset = state->if_depth % CHAR_BIT;
state->if_bytes[index] &= ~(1 << offset);
if (value) {
state->if_bytes[index] |= (1 << offset);
}
}
static void in_if(struct compile_state *state, const char *name)
{
if (state->if_depth <= 0) {
error(state, 0, "%s without #if", name);
}
}
static void enter_if(struct compile_state *state)
{
state->if_depth += 1;
if (state->if_depth > MAX_PP_IF_DEPTH) {
error(state, 0, "#if depth too great");
}
}
static void reenter_if(struct compile_state *state, const char *name)
{
in_if(state, name);
if ((state->eat_depth == state->if_depth) &&
(state->eat_targ == TOK_MELSE)) {
state->eat_depth = 0;
state->eat_targ = 0;
}
}
static void enter_else(struct compile_state *state, const char *name)
{
in_if(state, name);
if ((state->eat_depth == state->if_depth) &&
(state->eat_targ == TOK_MELSE)) {
state->eat_depth = 0;
state->eat_targ = 0;
}
}
static void exit_if(struct compile_state *state, const char *name)
{
in_if(state, name);
if (state->eat_depth == state->if_depth) {
state->eat_depth = 0;
state->eat_targ = 0;
}
state->if_depth -= 1;
}
static void raw_token(struct compile_state *state, struct token *tk)
{
struct file_state *file;
int rescan;
file = state->file;
raw_next_token(state, file, tk);
do {
rescan = 0;
file = state->file;
/* Exit out of an include directive or macro call */
if ((tk->tok == TOK_EOF) &&
(file != state->macro_file) && file->prev)
{
state->file = file->prev;
/* file->basename is used keep it */
xfree(file->dirname);
xfree(file->buf);
xfree(file);
file = 0;
raw_next_token(state, state->file, tk);
rescan = 1;
}
} while(rescan);
}
static void pp_token(struct compile_state *state, struct token *tk)
{
int rescan;
raw_token(state, tk);
do {
rescan = 0;
if (tk->tok == TOK_SPACE) {
raw_token(state, tk);
rescan = 1;
}
else if (tk->tok == TOK_IDENT) {
if (state->token_base == 0) {
ident_to_keyword(state, tk);
} else {
ident_to_macro(state, tk);
}
}
} while(rescan);
}
static void preprocess(struct compile_state *state, struct token *tk);
static void token(struct compile_state *state, struct token *tk)
{
int rescan;
pp_token(state, tk);
do {
rescan = 0;
/* Process a macro directive */
if (tk->tok == TOK_MACRO) {
/* Only match preprocessor directives at the start of a line */
const char *ptr;
ptr = state->file->line_start;
while((ptr < tk->pos)
&& spacep(get_char(state->file, ptr)))
{
ptr = next_char(state->file, ptr, 1);
}
if (ptr == tk->pos) {
preprocess(state, tk);
rescan = 1;
}
}
/* Expand a macro call */
else if (tk->ident && tk->ident->sym_define) {
rescan = compile_macro(state, &state->file, tk);
if (rescan) {
pp_token(state, tk);
}
}
/* Eat tokens disabled by the preprocessor
* (Unless we are parsing a preprocessor directive
*/
else if (if_eat(state) && (state->token_base == 0)) {
pp_token(state, tk);
rescan = 1;
}
/* Make certain EOL only shows up in preprocessor directives */
else if ((tk->tok == TOK_EOL) && (state->token_base == 0)) {
pp_token(state, tk);
rescan = 1;
}
/* Error on unknown tokens */
else if (tk->tok == TOK_UNKNOWN) {
error(state, 0, "unknown token");
}
} while(rescan);
}
static inline struct token *get_token(struct compile_state *state, int offset)
{
int index;
index = state->token_base + offset;
if (index >= sizeof(state->token)/sizeof(state->token[0])) {
internal_error(state, 0, "token array to small");
}
return &state->token[index];
}
static struct token *do_eat_token(struct compile_state *state, int tok)
{
struct token *tk;
int i;
check_tok(state, get_token(state, 1), tok);
/* Free the old token value */
tk = get_token(state, 0);
if (tk->str_len) {
memset((void *)tk->val.str, -1, tk->str_len);
xfree(tk->val.str);
}
/* Overwrite the old token with newer tokens */
for(i = state->token_base; i < sizeof(state->token)/sizeof(state->token[0]) - 1; i++) {
state->token[i] = state->token[i + 1];
}
/* Clear the last token */
memset(&state->token[i], 0, sizeof(state->token[i]));
state->token[i].tok = -1;
/* Return the token */
return tk;
}
static int raw_peek(struct compile_state *state)
{
struct token *tk1;
tk1 = get_token(state, 1);
if (tk1->tok == -1) {
raw_token(state, tk1);
}
return tk1->tok;
}
static struct token *raw_eat(struct compile_state *state, int tok)
{
raw_peek(state);
return do_eat_token(state, tok);
}
static int pp_peek(struct compile_state *state)
{
struct token *tk1;
tk1 = get_token(state, 1);
if (tk1->tok == -1) {
pp_token(state, tk1);
}
return tk1->tok;
}
static struct token *pp_eat(struct compile_state *state, int tok)
{
pp_peek(state);
return do_eat_token(state, tok);
}
static int peek(struct compile_state *state)
{
struct token *tk1;
tk1 = get_token(state, 1);
if (tk1->tok == -1) {
token(state, tk1);
}
return tk1->tok;
}
static int peek2(struct compile_state *state)
{
struct token *tk1, *tk2;
tk1 = get_token(state, 1);
tk2 = get_token(state, 2);
if (tk1->tok == -1) {
token(state, tk1);
}
if (tk2->tok == -1) {
token(state, tk2);
}
return tk2->tok;
}
static struct token *eat(struct compile_state *state, int tok)
{
peek(state);
return do_eat_token(state, tok);
}
static void compile_file(struct compile_state *state, const char *filename, int local)
{
char cwd[MAX_CWD_SIZE];
const char *subdir, *base;
int subdir_len;
struct file_state *file;
char *basename;
file = xmalloc(sizeof(*file), "file_state");
base = strrchr(filename, '/');
subdir = filename;
if (base != 0) {
subdir_len = base - filename;
base++;
}
else {
base = filename;
subdir_len = 0;
}
basename = xmalloc(strlen(base) +1, "basename");
strcpy(basename, base);
file->basename = basename;
if (getcwd(cwd, sizeof(cwd)) == 0) {
die("cwd buffer to small");
}
if ((subdir[0] == '/') || ((subdir[1] == ':') && ((subdir[2] == '/') || (subdir[2] == '\\')))) {
file->dirname = xmalloc(subdir_len + 1, "dirname");
memcpy(file->dirname, subdir, subdir_len);
file->dirname[subdir_len] = '\0';
}
else {
const char *dir;
int dirlen;
const char **path;
/* Find the appropriate directory... */
dir = 0;
if (!state->file && exists(cwd, filename)) {
dir = cwd;
}
if (local && state->file && exists(state->file->dirname, filename)) {
dir = state->file->dirname;
}
for(path = state->compiler->include_paths; !dir && *path; path++) {
if (exists(*path, filename)) {
dir = *path;
}
}
if (!dir) {
error(state, 0, "Cannot open `%s'\n", filename);
}
dirlen = strlen(dir);
file->dirname = xmalloc(dirlen + 1 + subdir_len + 1, "dirname");
memcpy(file->dirname, dir, dirlen);
file->dirname[dirlen] = '/';
memcpy(file->dirname + dirlen + 1, subdir, subdir_len);
file->dirname[dirlen + 1 + subdir_len] = '\0';
}
file->buf = slurp_file(file->dirname, file->basename, &file->size);
file->pos = file->buf;
file->line_start = file->pos;
file->line = 1;
file->report_line = 1;
file->report_name = file->basename;
file->report_dir = file->dirname;
file->macro = 0;
file->trigraphs = (state->compiler->flags & COMPILER_TRIGRAPHS)? 1: 0;
file->join_lines = 1;
file->prev = state->file;
state->file = file;
}
static struct triple *constant_expr(struct compile_state *state);
static void integral(struct compile_state *state, struct triple *def);
static int mcexpr(struct compile_state *state)
{
struct triple *cvalue;
cvalue = constant_expr(state);
integral(state, cvalue);
if (cvalue->op != OP_INTCONST) {
error(state, 0, "integer constant expected");
}
return cvalue->u.cval != 0;
}
static void preprocess(struct compile_state *state, struct token *current_token)
{
/* Doing much more with the preprocessor would require
* a parser and a major restructuring.
* Postpone that for later.
*/
int old_token_base;
int tok;
state->macro_file = state->file;
old_token_base = state->token_base;
state->token_base = current_token - state->token;
tok = pp_peek(state);
switch(tok) {
case TOK_LIT_INT:
{
struct token *tk;
int override_line;
tk = pp_eat(state, TOK_LIT_INT);
override_line = strtoul(tk->val.str, 0, 10);
/* I have a preprocessor line marker parse it */
if (pp_peek(state) == TOK_LIT_STRING) {
const char *token, *base;
char *name, *dir;
int name_len, dir_len;
tk = pp_eat(state, TOK_LIT_STRING);
name = xmalloc(tk->str_len, "report_name");
token = tk->val.str + 1;
base = strrchr(token, '/');
name_len = tk->str_len -2;
if (base != 0) {
dir_len = base - token;
base++;
name_len -= base - token;
} else {
dir_len = 0;
base = token;
}
memcpy(name, base, name_len);
name[name_len] = '\0';
dir = xmalloc(dir_len + 1, "report_dir");
memcpy(dir, token, dir_len);
dir[dir_len] = '\0';
state->file->report_line = override_line - 1;
state->file->report_name = name;
state->file->report_dir = dir;
state->file->macro = 0;
}
break;
}
case TOK_MLINE:
{
struct token *tk;
pp_eat(state, TOK_MLINE);
tk = eat(state, TOK_LIT_INT);
state->file->report_line = strtoul(tk->val.str, 0, 10) -1;
if (pp_peek(state) == TOK_LIT_STRING) {
const char *token, *base;
char *name, *dir;
int name_len, dir_len;
tk = pp_eat(state, TOK_LIT_STRING);
name = xmalloc(tk->str_len, "report_name");
token = tk->val.str + 1;
base = strrchr(token, '/');
name_len = tk->str_len - 2;
if (base != 0) {
dir_len = base - token;
base++;
name_len -= base - token;
} else {
dir_len = 0;
base = token;
}
memcpy(name, base, name_len);
name[name_len] = '\0';
dir = xmalloc(dir_len + 1, "report_dir");
memcpy(dir, token, dir_len);
dir[dir_len] = '\0';
state->file->report_name = name;
state->file->report_dir = dir;
state->file->macro = 0;
}
break;
}
case TOK_MUNDEF:
{
struct hash_entry *ident;
pp_eat(state, TOK_MUNDEF);
if (if_eat(state)) /* quit early when #if'd out */
break;
ident = pp_eat(state, TOK_MIDENT)->ident;
undef_macro(state, ident);
break;
}
case TOK_MPRAGMA:
pp_eat(state, TOK_MPRAGMA);
if (if_eat(state)) /* quit early when #if'd out */
break;
warning(state, 0, "Ignoring pragma");
break;
case TOK_MELIF:
pp_eat(state, TOK_MELIF);
reenter_if(state, "#elif");
if (if_eat(state)) /* quit early when #if'd out */
break;
/* If the #if was taken the #elif just disables the following code */
if (if_value(state)) {
eat_tokens(state, TOK_MENDIF);
}
/* If the previous #if was not taken see if the #elif enables the
* trailing code.
*/
else {
set_if_value(state, mcexpr(state));
if (!if_value(state)) {
eat_tokens(state, TOK_MELSE);
}
}
break;
case TOK_MIF:
pp_eat(state, TOK_MIF);
enter_if(state);
if (if_eat(state)) /* quit early when #if'd out */
break;
set_if_value(state, mcexpr(state));
if (!if_value(state)) {
eat_tokens(state, TOK_MELSE);
}
break;
case TOK_MIFNDEF:
{
struct hash_entry *ident;
pp_eat(state, TOK_MIFNDEF);
enter_if(state);
if (if_eat(state)) /* quit early when #if'd out */
break;
ident = pp_eat(state, TOK_MIDENT)->ident;
set_if_value(state, ident->sym_define == 0);
if (!if_value(state)) {
eat_tokens(state, TOK_MELSE);
}
break;
}
case TOK_MIFDEF:
{
struct hash_entry *ident;
pp_eat(state, TOK_MIFDEF);
enter_if(state);
if (if_eat(state)) /* quit early when #if'd out */
break;
ident = pp_eat(state, TOK_MIDENT)->ident;
set_if_value(state, ident->sym_define != 0);
if (!if_value(state)) {
eat_tokens(state, TOK_MELSE);
}
break;
}
case TOK_MELSE:
pp_eat(state, TOK_MELSE);
enter_else(state, "#else");
if (!if_eat(state) && if_value(state)) {
eat_tokens(state, TOK_MENDIF);
}
break;
case TOK_MENDIF:
pp_eat(state, TOK_MENDIF);
exit_if(state, "#endif");
break;
case TOK_MDEFINE:
{
struct hash_entry *ident;
struct macro_arg *args, **larg;
const char *mstart, *mend;
int argc;
pp_eat(state, TOK_MDEFINE);
if (if_eat(state)) /* quit early when #if'd out */
break;
ident = pp_eat(state, TOK_MIDENT)->ident;
argc = -1;
args = 0;
larg = &args;
/* Parse macro parameters */
if (raw_peek(state) == TOK_LPAREN) {
raw_eat(state, TOK_LPAREN);
argc += 1;
for(;;) {
struct macro_arg *narg, *arg;
struct hash_entry *aident;
int tok;
tok = pp_peek(state);
if (!args && (tok == TOK_RPAREN)) {
break;
}
else if (tok == TOK_DOTS) {
pp_eat(state, TOK_DOTS);
aident = state->i___VA_ARGS__;
}
else {
aident = pp_eat(state, TOK_MIDENT)->ident;
}
narg = xcmalloc(sizeof(*arg), "macro arg");
narg->ident = aident;
/* Verify I don't have a duplicate identifier */
for(arg = args; arg; arg = arg->next) {
if (arg->ident == narg->ident) {
error(state, 0, "Duplicate macro arg `%s'",
narg->ident->name);
}
}
/* Add the new argument to the end of the list */
*larg = narg;
larg = &narg->next;
argc += 1;
if ((aident == state->i___VA_ARGS__) ||
(pp_peek(state) != TOK_COMMA)) {
break;
}
pp_eat(state, TOK_COMMA);
}
pp_eat(state, TOK_RPAREN);
}
/* Remove leading whitespace */
while(raw_peek(state) == TOK_SPACE) {
raw_eat(state, TOK_SPACE);
}
/* Remember the start of the macro body */
tok = raw_peek(state);
mend = mstart = get_token(state, 1)->pos;
/* Find the end of the macro */
for(tok = raw_peek(state); tok != TOK_EOL; tok = raw_peek(state)) {
raw_eat(state, tok);
/* Remember the end of the last non space token */
raw_peek(state);
if (tok != TOK_SPACE) {
mend = get_token(state, 1)->pos;
}
}
/* Now that I have found the body defined the token */
do_define_macro(state, ident,
char_strdup(state->file, mstart, mend, "macro buf"),
argc, args);
break;
}
case TOK_MERROR:
{
const char *start, *end;
int len;
pp_eat(state, TOK_MERROR);
/* Find the start of the line */
raw_peek(state);
start = get_token(state, 1)->pos;
/* Find the end of the line */
while((tok = raw_peek(state)) != TOK_EOL) {
raw_eat(state, tok);
}
end = get_token(state, 1)->pos;
len = end - start;
if (!if_eat(state)) {
error(state, 0, "%*.*s", len, len, start);
}
break;
}
case TOK_MWARNING:
{
const char *start, *end;
int len;
pp_eat(state, TOK_MWARNING);
/* Find the start of the line */
raw_peek(state);
start = get_token(state, 1)->pos;
/* Find the end of the line */
while((tok = raw_peek(state)) != TOK_EOL) {
raw_eat(state, tok);
}
end = get_token(state, 1)->pos;
len = end - start;
if (!if_eat(state)) {
warning(state, 0, "%*.*s", len, len, start);
}
break;
}
case TOK_MINCLUDE:
{
char *name;
int local;
local = 0;
name = 0;
pp_eat(state, TOK_MINCLUDE);
if (if_eat(state)) {
/* Find the end of the line */
while((tok = raw_peek(state)) != TOK_EOL) {
raw_eat(state, tok);
}
break;
}
tok = peek(state);
if (tok == TOK_LIT_STRING) {
struct token *tk;
const char *token;
int name_len;
tk = eat(state, TOK_LIT_STRING);
name = xmalloc(tk->str_len, "include");
token = tk->val.str +1;
name_len = tk->str_len -2;
if (*token == '"') {
token++;
name_len--;
}
memcpy(name, token, name_len);
name[name_len] = '\0';
local = 1;
}
else if (tok == TOK_LESS) {
struct macro_buf buf;
eat(state, TOK_LESS);
buf.len = 40;
buf.str = xmalloc(buf.len, "include");
buf.pos = 0;
tok = peek(state);
while((tok != TOK_MORE) &&
(tok != TOK_EOL) && (tok != TOK_EOF))
{
struct token *tk;
tk = eat(state, tok);
append_macro_chars(state, "include", &buf,
state->file, tk->pos, state->file->pos);
tok = peek(state);
}
append_macro_text(state, "include", &buf, "\0", 1);
if (peek(state) != TOK_MORE) {
error(state, 0, "Unterminated include directive");
}
eat(state, TOK_MORE);
local = 0;
name = buf.str;
}
else {
error(state, 0, "Invalid include directive");
}
/* Error if there are any tokens after the include */
if (pp_peek(state) != TOK_EOL) {
error(state, 0, "garbage after include directive");
}
if (!if_eat(state)) {
compile_file(state, name, local);
}
xfree(name);
break;
}
case TOK_EOL:
/* Ignore # without a follwing ident */
break;
default:
{
const char *name1, *name2;
name1 = tokens[tok];
name2 = "";
if (tok == TOK_MIDENT) {
name2 = get_token(state, 1)->ident->name;
}
error(state, 0, "Invalid preprocessor directive: %s %s",
name1, name2);
break;
}
}
/* Consume the rest of the macro line */
do {
tok = pp_peek(state);
pp_eat(state, tok);
} while((tok != TOK_EOF) && (tok != TOK_EOL));
state->token_base = old_token_base;
state->macro_file = NULL;
return;
}
/* Type helper functions */
static struct type *new_type(
unsigned int type, struct type *left, struct type *right)
{
struct type *result;
result = xmalloc(sizeof(*result), "type");
result->type = type;
result->left = left;
result->right = right;
result->field_ident = 0;
result->type_ident = 0;
result->elements = 0;
return result;
}
static struct type *clone_type(unsigned int specifiers, struct type *old)
{
struct type *result;
result = xmalloc(sizeof(*result), "type");
memcpy(result, old, sizeof(*result));
result->type &= TYPE_MASK;
result->type |= specifiers;
return result;
}
static struct type *dup_type(struct compile_state *state, struct type *orig)
{
struct type *new;
new = xcmalloc(sizeof(*new), "type");
new->type = orig->type;
new->field_ident = orig->field_ident;
new->type_ident = orig->type_ident;
new->elements = orig->elements;
if (orig->left) {
new->left = dup_type(state, orig->left);
}
if (orig->right) {
new->right = dup_type(state, orig->right);
}
return new;
}
static struct type *invalid_type(struct compile_state *state, struct type *type)
{
struct type *invalid, *member;
invalid = 0;
if (!type) {
internal_error(state, 0, "type missing?");
}
switch(type->type & TYPE_MASK) {
case TYPE_VOID:
case TYPE_CHAR: case TYPE_UCHAR:
case TYPE_SHORT: case TYPE_USHORT:
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
case TYPE_LLONG: case TYPE_ULLONG:
case TYPE_POINTER:
case TYPE_ENUM:
break;
case TYPE_BITFIELD:
invalid = invalid_type(state, type->left);
break;
case TYPE_ARRAY:
invalid = invalid_type(state, type->left);
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
member = type->left;
while(member && (invalid == 0) &&
((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
invalid = invalid_type(state, member->left);
member = member->right;
}
if (!invalid) {
invalid = invalid_type(state, member);
}
break;
case TYPE_UNION:
case TYPE_JOIN:
member = type->left;
while(member && (invalid == 0) &&
((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
invalid = invalid_type(state, member->left);
member = member->right;
}
if (!invalid) {
invalid = invalid_type(state, member);
}
break;
default:
invalid = type;
break;
}
return invalid;
}
#define MASK_UCHAR(X) ((X) & ((ulong_t)0xff))
#define MASK_USHORT(X) ((X) & (((ulong_t)1 << (SIZEOF_SHORT)) - 1))
static inline ulong_t mask_uint(ulong_t x)
{
if (SIZEOF_INT < SIZEOF_LONG) {
ulong_t mask = (1ULL << ((ulong_t)(SIZEOF_INT))) -1;
x &= mask;
}
return x;
}
#define MASK_UINT(X) (mask_uint(X))
#define MASK_ULONG(X) (X)
static struct type void_type = { .type = TYPE_VOID };
static struct type char_type = { .type = TYPE_CHAR };
static struct type uchar_type = { .type = TYPE_UCHAR };
#if DEBUG_ROMCC_WARNING
static struct type short_type = { .type = TYPE_SHORT };
#endif
static struct type ushort_type = { .type = TYPE_USHORT };
static struct type int_type = { .type = TYPE_INT };
static struct type uint_type = { .type = TYPE_UINT };
static struct type long_type = { .type = TYPE_LONG };
static struct type ulong_type = { .type = TYPE_ULONG };
static struct type unknown_type = { .type = TYPE_UNKNOWN };
static struct type void_ptr_type = {
.type = TYPE_POINTER,
.left = &void_type,
};
#if DEBUG_ROMCC_WARNING
static struct type void_func_type = {
.type = TYPE_FUNCTION,
.left = &void_type,
.right = &void_type,
};
#endif
static size_t bits_to_bytes(size_t size)
{
return (size + SIZEOF_CHAR - 1)/SIZEOF_CHAR;
}
static struct triple *variable(struct compile_state *state, struct type *type)
{
struct triple *result;
if ((type->type & STOR_MASK) != STOR_PERM) {
result = triple(state, OP_ADECL, type, 0, 0);
generate_lhs_pieces(state, result);
}
else {
result = triple(state, OP_SDECL, type, 0, 0);
}
return result;
}
static void stor_of(FILE *fp, struct type *type)
{
switch(type->type & STOR_MASK) {
case STOR_AUTO:
fprintf(fp, "auto ");
break;
case STOR_STATIC:
fprintf(fp, "static ");
break;
case STOR_LOCAL:
fprintf(fp, "local ");
break;
case STOR_EXTERN:
fprintf(fp, "extern ");
break;
case STOR_REGISTER:
fprintf(fp, "register ");
break;
case STOR_TYPEDEF:
fprintf(fp, "typedef ");
break;
case STOR_INLINE | STOR_LOCAL:
fprintf(fp, "inline ");
break;
case STOR_INLINE | STOR_STATIC:
fprintf(fp, "static inline");
break;
case STOR_INLINE | STOR_EXTERN:
fprintf(fp, "extern inline");
break;
default:
fprintf(fp, "stor:%x", type->type & STOR_MASK);
break;
}
}
static void qual_of(FILE *fp, struct type *type)
{
if (type->type & QUAL_CONST) {
fprintf(fp, " const");
}
if (type->type & QUAL_VOLATILE) {
fprintf(fp, " volatile");
}
if (type->type & QUAL_RESTRICT) {
fprintf(fp, " restrict");
}
}
static void name_of(FILE *fp, struct type *type)
{
unsigned int base_type;
base_type = type->type & TYPE_MASK;
if ((base_type != TYPE_PRODUCT) && (base_type != TYPE_OVERLAP)) {
stor_of(fp, type);
}
switch(base_type) {
case TYPE_VOID:
fprintf(fp, "void");
qual_of(fp, type);
break;
case TYPE_CHAR:
fprintf(fp, "signed char");
qual_of(fp, type);
break;
case TYPE_UCHAR:
fprintf(fp, "unsigned char");
qual_of(fp, type);
break;
case TYPE_SHORT:
fprintf(fp, "signed short");
qual_of(fp, type);
break;
case TYPE_USHORT:
fprintf(fp, "unsigned short");
qual_of(fp, type);
break;
case TYPE_INT:
fprintf(fp, "signed int");
qual_of(fp, type);
break;
case TYPE_UINT:
fprintf(fp, "unsigned int");
qual_of(fp, type);
break;
case TYPE_LONG:
fprintf(fp, "signed long");
qual_of(fp, type);
break;
case TYPE_ULONG:
fprintf(fp, "unsigned long");
qual_of(fp, type);
break;
case TYPE_POINTER:
name_of(fp, type->left);
fprintf(fp, " * ");
qual_of(fp, type);
break;
case TYPE_PRODUCT:
name_of(fp, type->left);
fprintf(fp, ", ");
name_of(fp, type->right);
break;
case TYPE_OVERLAP:
name_of(fp, type->left);
fprintf(fp, ",| ");
name_of(fp, type->right);
break;
case TYPE_ENUM:
fprintf(fp, "enum %s",
(type->type_ident)? type->type_ident->name : "");
qual_of(fp, type);
break;
case TYPE_STRUCT:
fprintf(fp, "struct %s { ",
(type->type_ident)? type->type_ident->name : "");
name_of(fp, type->left);
fprintf(fp, " } ");
qual_of(fp, type);
break;
case TYPE_UNION:
fprintf(fp, "union %s { ",
(type->type_ident)? type->type_ident->name : "");
name_of(fp, type->left);
fprintf(fp, " } ");
qual_of(fp, type);
break;
case TYPE_FUNCTION:
name_of(fp, type->left);
fprintf(fp, " (*)(");
name_of(fp, type->right);
fprintf(fp, ")");
break;
case TYPE_ARRAY:
name_of(fp, type->left);
fprintf(fp, " [%ld]", (long)(type->elements));
break;
case TYPE_TUPLE:
fprintf(fp, "tuple { ");
name_of(fp, type->left);
fprintf(fp, " } ");
qual_of(fp, type);
break;
case TYPE_JOIN:
fprintf(fp, "join { ");
name_of(fp, type->left);
fprintf(fp, " } ");
qual_of(fp, type);
break;
case TYPE_BITFIELD:
name_of(fp, type->left);
fprintf(fp, " : %d ", type->elements);
qual_of(fp, type);
break;
case TYPE_UNKNOWN:
fprintf(fp, "unknown_t");
break;
default:
fprintf(fp, "????: %x", base_type);
break;
}
if (type->field_ident && type->field_ident->name) {
fprintf(fp, " .%s", type->field_ident->name);
}
}
static size_t align_of(struct compile_state *state, struct type *type)
{
size_t align;
align = 0;
switch(type->type & TYPE_MASK) {
case TYPE_VOID:
align = 1;
break;
case TYPE_BITFIELD:
align = 1;
break;
case TYPE_CHAR:
case TYPE_UCHAR:
align = ALIGNOF_CHAR;
break;
case TYPE_SHORT:
case TYPE_USHORT:
align = ALIGNOF_SHORT;
break;
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
align = ALIGNOF_INT;
break;
case TYPE_LONG:
case TYPE_ULONG:
align = ALIGNOF_LONG;
break;
case TYPE_POINTER:
align = ALIGNOF_POINTER;
break;
case TYPE_PRODUCT:
case TYPE_OVERLAP:
{
size_t left_align, right_align;
left_align = align_of(state, type->left);
right_align = align_of(state, type->right);
align = (left_align >= right_align) ? left_align : right_align;
break;
}
case TYPE_ARRAY:
align = align_of(state, type->left);
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
case TYPE_UNION:
case TYPE_JOIN:
align = align_of(state, type->left);
break;
default:
error(state, 0, "alignof not yet defined for type\n");
break;
}
return align;
}
static size_t reg_align_of(struct compile_state *state, struct type *type)
{
size_t align;
align = 0;
switch(type->type & TYPE_MASK) {
case TYPE_VOID:
align = 1;
break;
case TYPE_BITFIELD:
align = 1;
break;
case TYPE_CHAR:
case TYPE_UCHAR:
align = REG_ALIGNOF_CHAR;
break;
case TYPE_SHORT:
case TYPE_USHORT:
align = REG_ALIGNOF_SHORT;
break;
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
align = REG_ALIGNOF_INT;
break;
case TYPE_LONG:
case TYPE_ULONG:
align = REG_ALIGNOF_LONG;
break;
case TYPE_POINTER:
align = REG_ALIGNOF_POINTER;
break;
case TYPE_PRODUCT:
case TYPE_OVERLAP:
{
size_t left_align, right_align;
left_align = reg_align_of(state, type->left);
right_align = reg_align_of(state, type->right);
align = (left_align >= right_align) ? left_align : right_align;
break;
}
case TYPE_ARRAY:
align = reg_align_of(state, type->left);
break;
case TYPE_STRUCT:
case TYPE_UNION:
case TYPE_TUPLE:
case TYPE_JOIN:
align = reg_align_of(state, type->left);
break;
default:
error(state, 0, "alignof not yet defined for type\n");
break;
}
return align;
}
static size_t align_of_in_bytes(struct compile_state *state, struct type *type)
{
return bits_to_bytes(align_of(state, type));
}
static size_t size_of(struct compile_state *state, struct type *type);
static size_t reg_size_of(struct compile_state *state, struct type *type);
static size_t needed_padding(struct compile_state *state,
struct type *type, size_t offset)
{
size_t padding, align;
align = align_of(state, type);
/* Align to the next machine word if the bitfield does completely
* fit into the current word.
*/
if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
size_t size;
size = size_of(state, type);
if ((offset + type->elements)/size != offset/size) {
align = size;
}
}
padding = 0;
if (offset % align) {
padding = align - (offset % align);
}
return padding;
}
static size_t reg_needed_padding(struct compile_state *state,
struct type *type, size_t offset)
{
size_t padding, align;
align = reg_align_of(state, type);
/* Align to the next register word if the bitfield does completely
* fit into the current register.
*/
if (((type->type & TYPE_MASK) == TYPE_BITFIELD) &&
(((offset + type->elements)/REG_SIZEOF_REG) != (offset/REG_SIZEOF_REG)))
{
align = REG_SIZEOF_REG;
}
padding = 0;
if (offset % align) {
padding = align - (offset % align);
}
return padding;
}
static size_t size_of(struct compile_state *state, struct type *type)
{
size_t size;
size = 0;
switch(type->type & TYPE_MASK) {
case TYPE_VOID:
size = 0;
break;
case TYPE_BITFIELD:
size = type->elements;
break;
case TYPE_CHAR:
case TYPE_UCHAR:
size = SIZEOF_CHAR;
break;
case TYPE_SHORT:
case TYPE_USHORT:
size = SIZEOF_SHORT;
break;
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
size = SIZEOF_INT;
break;
case TYPE_LONG:
case TYPE_ULONG:
size = SIZEOF_LONG;
break;
case TYPE_POINTER:
size = SIZEOF_POINTER;
break;
case TYPE_PRODUCT:
{
size_t pad;
size = 0;
while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
pad = needed_padding(state, type->left, size);
size = size + pad + size_of(state, type->left);
type = type->right;
}
pad = needed_padding(state, type, size);
size = size + pad + size_of(state, type);
break;
}
case TYPE_OVERLAP:
{
size_t size_left, size_right;
size_left = size_of(state, type->left);
size_right = size_of(state, type->right);
size = (size_left >= size_right)? size_left : size_right;
break;
}
case TYPE_ARRAY:
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
internal_error(state, 0, "Invalid array type");
} else {
size = size_of(state, type->left) * type->elements;
}
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
{
size_t pad;
size = size_of(state, type->left);
/* Pad structures so their size is a multiples of their alignment */
pad = needed_padding(state, type, size);
size = size + pad;
break;
}
case TYPE_UNION:
case TYPE_JOIN:
{
size_t pad;
size = size_of(state, type->left);
/* Pad unions so their size is a multiple of their alignment */
pad = needed_padding(state, type, size);
size = size + pad;
break;
}
default:
internal_error(state, 0, "sizeof not yet defined for type");
break;
}
return size;
}
static size_t reg_size_of(struct compile_state *state, struct type *type)
{
size_t size;
size = 0;
switch(type->type & TYPE_MASK) {
case TYPE_VOID:
size = 0;
break;
case TYPE_BITFIELD:
size = type->elements;
break;
case TYPE_CHAR:
case TYPE_UCHAR:
size = REG_SIZEOF_CHAR;
break;
case TYPE_SHORT:
case TYPE_USHORT:
size = REG_SIZEOF_SHORT;
break;
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
size = REG_SIZEOF_INT;
break;
case TYPE_LONG:
case TYPE_ULONG:
size = REG_SIZEOF_LONG;
break;
case TYPE_POINTER:
size = REG_SIZEOF_POINTER;
break;
case TYPE_PRODUCT:
{
size_t pad;
size = 0;
while((type->type & TYPE_MASK) == TYPE_PRODUCT) {
pad = reg_needed_padding(state, type->left, size);
size = size + pad + reg_size_of(state, type->left);
type = type->right;
}
pad = reg_needed_padding(state, type, size);
size = size + pad + reg_size_of(state, type);
break;
}
case TYPE_OVERLAP:
{
size_t size_left, size_right;
size_left = reg_size_of(state, type->left);
size_right = reg_size_of(state, type->right);
size = (size_left >= size_right)? size_left : size_right;
break;
}
case TYPE_ARRAY:
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
internal_error(state, 0, "Invalid array type");
} else {
size = reg_size_of(state, type->left) * type->elements;
}
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
{
size_t pad;
size = reg_size_of(state, type->left);
/* Pad structures so their size is a multiples of their alignment */
pad = reg_needed_padding(state, type, size);
size = size + pad;
break;
}
case TYPE_UNION:
case TYPE_JOIN:
{
size_t pad;
size = reg_size_of(state, type->left);
/* Pad unions so their size is a multiple of their alignment */
pad = reg_needed_padding(state, type, size);
size = size + pad;
break;
}
default:
internal_error(state, 0, "sizeof not yet defined for type");
break;
}
return size;
}
static size_t registers_of(struct compile_state *state, struct type *type)
{
size_t registers;
registers = reg_size_of(state, type);
registers += REG_SIZEOF_REG - 1;
registers /= REG_SIZEOF_REG;
return registers;
}
static size_t size_of_in_bytes(struct compile_state *state, struct type *type)
{
return bits_to_bytes(size_of(state, type));
}
static size_t field_offset(struct compile_state *state,
struct type *type, struct hash_entry *field)
{
struct type *member;
size_t size;
size = 0;
member = 0;
if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
size += needed_padding(state, member->left, size);
if (member->left->field_ident == field) {
member = member->left;
break;
}
size += size_of(state, member->left);
member = member->right;
}
size += needed_padding(state, member, size);
}
else if ((type->type & TYPE_MASK) == TYPE_UNION) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (member->left->field_ident == field) {
member = member->left;
break;
}
member = member->right;
}
}
else {
internal_error(state, 0, "field_offset only works on structures and unions");
}
if (!member || (member->field_ident != field)) {
error(state, 0, "member %s not present", field->name);
}
return size;
}
static size_t field_reg_offset(struct compile_state *state,
struct type *type, struct hash_entry *field)
{
struct type *member;
size_t size;
size = 0;
member = 0;
if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
size += reg_needed_padding(state, member->left, size);
if (member->left->field_ident == field) {
member = member->left;
break;
}
size += reg_size_of(state, member->left);
member = member->right;
}
}
else if ((type->type & TYPE_MASK) == TYPE_UNION) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (member->left->field_ident == field) {
member = member->left;
break;
}
member = member->right;
}
}
else {
internal_error(state, 0, "field_reg_offset only works on structures and unions");
}
size += reg_needed_padding(state, member, size);
if (!member || (member->field_ident != field)) {
error(state, 0, "member %s not present", field->name);
}
return size;
}
static struct type *field_type(struct compile_state *state,
struct type *type, struct hash_entry *field)
{
struct type *member;
member = 0;
if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
if (member->left->field_ident == field) {
member = member->left;
break;
}
member = member->right;
}
}
else if ((type->type & TYPE_MASK) == TYPE_UNION) {
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (member->left->field_ident == field) {
member = member->left;
break;
}
member = member->right;
}
}
else {
internal_error(state, 0, "field_type only works on structures and unions");
}
if (!member || (member->field_ident != field)) {
error(state, 0, "member %s not present", field->name);
}
return member;
}
static size_t index_offset(struct compile_state *state,
struct type *type, ulong_t index)
{
struct type *member;
size_t size;
size = 0;
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
size = size_of(state, type->left) * index;
}
else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
ulong_t i;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
size += needed_padding(state, member->left, size);
if (i == index) {
member = member->left;
break;
}
size += size_of(state, member->left);
i++;
member = member->right;
}
size += needed_padding(state, member, size);
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
ulong_t i;
size = 0;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (i == index) {
member = member->left;
break;
}
i++;
member = member->right;
}
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else {
internal_error(state, 0,
"request for index %u in something not an array, tuple or join",
index);
}
return size;
}
static size_t index_reg_offset(struct compile_state *state,
struct type *type, ulong_t index)
{
struct type *member;
size_t size;
size = 0;
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
size = reg_size_of(state, type->left) * index;
}
else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
ulong_t i;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
size += reg_needed_padding(state, member->left, size);
if (i == index) {
member = member->left;
break;
}
size += reg_size_of(state, member->left);
i++;
member = member->right;
}
size += reg_needed_padding(state, member, size);
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
ulong_t i;
size = 0;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (i == index) {
member = member->left;
break;
}
i++;
member = member->right;
}
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else {
internal_error(state, 0,
"request for index %u in something not an array, tuple or join",
index);
}
return size;
}
static struct type *index_type(struct compile_state *state,
struct type *type, ulong_t index)
{
struct type *member;
if (index >= type->elements) {
internal_error(state, 0, "Invalid element %u requested", index);
}
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
member = type->left;
}
else if ((type->type & TYPE_MASK) == TYPE_TUPLE) {
ulong_t i;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
if (i == index) {
member = member->left;
break;
}
i++;
member = member->right;
}
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else if ((type->type & TYPE_MASK) == TYPE_JOIN) {
ulong_t i;
member = type->left;
i = 0;
while(member && ((member->type & TYPE_MASK) == TYPE_OVERLAP)) {
if (i == index) {
member = member->left;
break;
}
i++;
member = member->right;
}
if (i != index) {
internal_error(state, 0, "Missing member index: %u", index);
}
}
else {
member = 0;
internal_error(state, 0,
"request for index %u in something not an array, tuple or join",
index);
}
return member;
}
static struct type *unpack_type(struct compile_state *state, struct type *type)
{
/* If I have a single register compound type not a bit-field
* find the real type.
*/
struct type *start_type;
size_t size;
/* Get out early if I need multiple registers for this type */
size = reg_size_of(state, type);
if (size > REG_SIZEOF_REG) {
return type;
}
/* Get out early if I don't need any registers for this type */
if (size == 0) {
return &void_type;
}
/* Loop until I have no more layers I can remove */
do {
start_type = type;
switch(type->type & TYPE_MASK) {
case TYPE_ARRAY:
/* If I have a single element the unpacked type
* is that element.
*/
if (type->elements == 1) {
type = type->left;
}
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
/* If I have a single element the unpacked type
* is that element.
*/
if (type->elements == 1) {
type = type->left;
}
/* If I have multiple elements the unpacked
* type is the non-void element.
*/
else {
struct type *next, *member;
struct type *sub_type;
sub_type = 0;
next = type->left;
while(next) {
member = next;
next = 0;
if ((member->type & TYPE_MASK) == TYPE_PRODUCT) {
next = member->right;
member = member->left;
}
if (reg_size_of(state, member) > 0) {
if (sub_type) {
internal_error(state, 0, "true compound type in a register");
}
sub_type = member;
}
}
if (sub_type) {
type = sub_type;
}
}
break;
case TYPE_UNION:
case TYPE_JOIN:
/* If I have a single element the unpacked type
* is that element.
*/
if (type->elements == 1) {
type = type->left;
}
/* I can't in general unpack union types */
break;
default:
/* If I'm not a compound type I can't unpack it */
break;
}
} while(start_type != type);
switch(type->type & TYPE_MASK) {
case TYPE_STRUCT:
case TYPE_ARRAY:
case TYPE_TUPLE:
internal_error(state, 0, "irredicible type?");
break;
}
return type;
}
static int equiv_types(struct type *left, struct type *right);
static int is_compound_type(struct type *type);
static struct type *reg_type(
struct compile_state *state, struct type *type, int reg_offset)
{
struct type *member;
size_t size;
#if 1
struct type *invalid;
invalid = invalid_type(state, type);
if (invalid) {
fprintf(state->errout, "type: ");
name_of(state->errout, type);
fprintf(state->errout, "\n");
fprintf(state->errout, "invalid: ");
name_of(state->errout, invalid);
fprintf(state->errout, "\n");
internal_error(state, 0, "bad input type?");
}
#endif
size = reg_size_of(state, type);
if (reg_offset > size) {
member = 0;
fprintf(state->errout, "type: ");
name_of(state->errout, type);
fprintf(state->errout, "\n");
internal_error(state, 0, "offset outside of type");
}
else {
switch(type->type & TYPE_MASK) {
/* Don't do anything with the basic types */
case TYPE_VOID:
case TYPE_CHAR: case TYPE_UCHAR:
case TYPE_SHORT: case TYPE_USHORT:
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
case TYPE_LLONG: case TYPE_ULLONG:
case TYPE_FLOAT: case TYPE_DOUBLE:
case TYPE_LDOUBLE:
case TYPE_POINTER:
case TYPE_ENUM:
case TYPE_BITFIELD:
member = type;
break;
case TYPE_ARRAY:
member = type->left;
size = reg_size_of(state, member);
if (size > REG_SIZEOF_REG) {
member = reg_type(state, member, reg_offset % size);
}
break;
case TYPE_STRUCT:
case TYPE_TUPLE:
{
size_t offset;
offset = 0;
member = type->left;
while(member && ((member->type & TYPE_MASK) == TYPE_PRODUCT)) {
size = reg_size_of(state, member->left);
offset += reg_needed_padding(state, member->left, offset);
if ((offset + size) > reg_offset) {
member = member->left;
break;
}
offset += size;
member = member->right;
}
offset += reg_needed_padding(state, member, offset);
member = reg_type(state, member, reg_offset - offset);
break;
}
case TYPE_UNION:
case TYPE_JOIN:
{
struct type *join, **jnext, *mnext;
join = new_type(TYPE_JOIN, 0, 0);
jnext = &join->left;
mnext = type->left;
while(mnext) {
size_t size;
member = mnext;
mnext = 0;
if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
mnext = member->right;
member = member->left;
}
size = reg_size_of(state, member);
if (size > reg_offset) {
struct type *part, *hunt;
part = reg_type(state, member, reg_offset);
/* See if this type is already in the union */
hunt = join->left;
while(hunt) {
struct type *test = hunt;
hunt = 0;
if ((test->type & TYPE_MASK) == TYPE_OVERLAP) {
hunt = test->right;
test = test->left;
}
if (equiv_types(part, test)) {
goto next;
}
}
/* Nope add it */
if (!*jnext) {
*jnext = part;
} else {
*jnext = new_type(TYPE_OVERLAP, *jnext, part);
jnext = &(*jnext)->right;
}
join->elements++;
}
next:
;
}
if (join->elements == 0) {
internal_error(state, 0, "No elements?");
}
member = join;
break;
}
default:
member = 0;
fprintf(state->errout, "type: ");
name_of(state->errout, type);
fprintf(state->errout, "\n");
internal_error(state, 0, "reg_type not yet defined for type");
}
}
/* If I have a single register compound type not a bit-field
* find the real type.
*/
member = unpack_type(state, member);
;
size = reg_size_of(state, member);
if (size > REG_SIZEOF_REG) {
internal_error(state, 0, "Cannot find type of single register");
}
#if 1
invalid = invalid_type(state, member);
if (invalid) {
fprintf(state->errout, "type: ");
name_of(state->errout, member);
fprintf(state->errout, "\n");
fprintf(state->errout, "invalid: ");
name_of(state->errout, invalid);
fprintf(state->errout, "\n");
internal_error(state, 0, "returning bad type?");
}
#endif
return member;
}
static struct type *next_field(struct compile_state *state,
struct type *type, struct type *prev_member)
{
struct type *member;
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
internal_error(state, 0, "next_field only works on structures");
}
member = type->left;
while((member->type & TYPE_MASK) == TYPE_PRODUCT) {
if (!prev_member) {
member = member->left;
break;
}
if (member->left == prev_member) {
prev_member = 0;
}
member = member->right;
}
if (member == prev_member) {
prev_member = 0;
}
if (prev_member) {
internal_error(state, 0, "prev_member %s not present",
prev_member->field_ident->name);
}
return member;
}
typedef void (*walk_type_fields_cb_t)(struct compile_state *state, struct type *type,
size_t ret_offset, size_t mem_offset, void *arg);
static void walk_type_fields(struct compile_state *state,
struct type *type, size_t reg_offset, size_t mem_offset,
walk_type_fields_cb_t cb, void *arg);
static void walk_struct_fields(struct compile_state *state,
struct type *type, size_t reg_offset, size_t mem_offset,
walk_type_fields_cb_t cb, void *arg)
{
struct type *tptr;
ulong_t i;
if ((type->type & TYPE_MASK) != TYPE_STRUCT) {
internal_error(state, 0, "walk_struct_fields only works on structures");
}
tptr = type->left;
for(i = 0; i < type->elements; i++) {
struct type *mtype;
mtype = tptr;
if ((mtype->type & TYPE_MASK) == TYPE_PRODUCT) {
mtype = mtype->left;
}
walk_type_fields(state, mtype,
reg_offset +
field_reg_offset(state, type, mtype->field_ident),
mem_offset +
field_offset(state, type, mtype->field_ident),
cb, arg);
tptr = tptr->right;
}
}
static void walk_type_fields(struct compile_state *state,
struct type *type, size_t reg_offset, size_t mem_offset,
walk_type_fields_cb_t cb, void *arg)
{
switch(type->type & TYPE_MASK) {
case TYPE_STRUCT:
walk_struct_fields(state, type, reg_offset, mem_offset, cb, arg);
break;
case TYPE_CHAR:
case TYPE_UCHAR:
case TYPE_SHORT:
case TYPE_USHORT:
case TYPE_INT:
case TYPE_UINT:
case TYPE_LONG:
case TYPE_ULONG:
cb(state, type, reg_offset, mem_offset, arg);
break;
case TYPE_VOID:
break;
default:
internal_error(state, 0, "walk_type_fields not yet implemented for type");
}
}
static void arrays_complete(struct compile_state *state, struct type *type)
{
if ((type->type & TYPE_MASK) == TYPE_ARRAY) {
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
error(state, 0, "array size not specified");
}
arrays_complete(state, type->left);
}
}
static unsigned int get_basic_type(struct type *type)
{
unsigned int basic;
basic = type->type & TYPE_MASK;
/* Convert enums to ints */
if (basic == TYPE_ENUM) {
basic = TYPE_INT;
}
/* Convert bitfields to standard types */
else if (basic == TYPE_BITFIELD) {
if (type->elements <= SIZEOF_CHAR) {
basic = TYPE_CHAR;
}
else if (type->elements <= SIZEOF_SHORT) {
basic = TYPE_SHORT;
}
else if (type->elements <= SIZEOF_INT) {
basic = TYPE_INT;
}
else if (type->elements <= SIZEOF_LONG) {
basic = TYPE_LONG;
}
if (!TYPE_SIGNED(type->left->type)) {
basic += 1;
}
}
return basic;
}
static unsigned int do_integral_promotion(unsigned int type)
{
if (TYPE_INTEGER(type) && (TYPE_RANK(type) < TYPE_RANK(TYPE_INT))) {
type = TYPE_INT;
}
return type;
}
static unsigned int do_arithmetic_conversion(
unsigned int left, unsigned int right)
{
if ((left == TYPE_LDOUBLE) || (right == TYPE_LDOUBLE)) {
return TYPE_LDOUBLE;
}
else if ((left == TYPE_DOUBLE) || (right == TYPE_DOUBLE)) {
return TYPE_DOUBLE;
}
else if ((left == TYPE_FLOAT) || (right == TYPE_FLOAT)) {
return TYPE_FLOAT;
}
left = do_integral_promotion(left);
right = do_integral_promotion(right);
/* If both operands have the same size done */
if (left == right) {
return left;
}
/* If both operands have the same signedness pick the larger */
else if (!!TYPE_UNSIGNED(left) == !!TYPE_UNSIGNED(right)) {
return (TYPE_RANK(left) >= TYPE_RANK(right)) ? left : right;
}
/* If the signed type can hold everything use it */
else if (TYPE_SIGNED(left) && (TYPE_RANK(left) > TYPE_RANK(right))) {
return left;
}
else if (TYPE_SIGNED(right) && (TYPE_RANK(right) > TYPE_RANK(left))) {
return right;
}
/* Convert to the unsigned type with the same rank as the signed type */
else if (TYPE_SIGNED(left)) {
return TYPE_MKUNSIGNED(left);
}
else {
return TYPE_MKUNSIGNED(right);
}
}
/* see if two types are the same except for qualifiers */
static int equiv_types(struct type *left, struct type *right)
{
unsigned int type;
/* Error if the basic types do not match */
if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
return 0;
}
type = left->type & TYPE_MASK;
/* If the basic types match and it is a void type we are done */
if (type == TYPE_VOID) {
return 1;
}
/* For bitfields we need to compare the sizes */
else if (type == TYPE_BITFIELD) {
return (left->elements == right->elements) &&
(TYPE_SIGNED(left->left->type) == TYPE_SIGNED(right->left->type));
}
/* if the basic types match and it is an arithmetic type we are done */
else if (TYPE_ARITHMETIC(type)) {
return 1;
}
/* If it is a pointer type recurse and keep testing */
else if (type == TYPE_POINTER) {
return equiv_types(left->left, right->left);
}
else if (type == TYPE_ARRAY) {
return (left->elements == right->elements) &&
equiv_types(left->left, right->left);
}
/* test for struct equality */
else if (type == TYPE_STRUCT) {
return left->type_ident == right->type_ident;
}
/* test for union equality */
else if (type == TYPE_UNION) {
return left->type_ident == right->type_ident;
}
/* Test for equivalent functions */
else if (type == TYPE_FUNCTION) {
return equiv_types(left->left, right->left) &&
equiv_types(left->right, right->right);
}
/* We only see TYPE_PRODUCT as part of function equivalence matching */
/* We also see TYPE_PRODUCT as part of of tuple equivalence matchin */
else if (type == TYPE_PRODUCT) {
return equiv_types(left->left, right->left) &&
equiv_types(left->right, right->right);
}
/* We should see TYPE_OVERLAP when comparing joins */
else if (type == TYPE_OVERLAP) {
return equiv_types(left->left, right->left) &&
equiv_types(left->right, right->right);
}
/* Test for equivalence of tuples */
else if (type == TYPE_TUPLE) {
return (left->elements == right->elements) &&
equiv_types(left->left, right->left);
}
/* Test for equivalence of joins */
else if (type == TYPE_JOIN) {
return (left->elements == right->elements) &&
equiv_types(left->left, right->left);
}
else {
return 0;
}
}
static int equiv_ptrs(struct type *left, struct type *right)
{
if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
((right->type & TYPE_MASK) != TYPE_POINTER)) {
return 0;
}
return equiv_types(left->left, right->left);
}
static struct type *compatible_types(struct type *left, struct type *right)
{
struct type *result;
unsigned int type, qual_type;
/* Error if the basic types do not match */
if ((left->type & TYPE_MASK) != (right->type & TYPE_MASK)) {
return 0;
}
type = left->type & TYPE_MASK;
qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
result = 0;
/* if the basic types match and it is an arithmetic type we are done */
if (TYPE_ARITHMETIC(type)) {
result = new_type(qual_type, 0, 0);
}
/* If it is a pointer type recurse and keep testing */
else if (type == TYPE_POINTER) {
result = compatible_types(left->left, right->left);
if (result) {
result = new_type(qual_type, result, 0);
}
}
/* test for struct equality */
else if (type == TYPE_STRUCT) {
if (left->type_ident == right->type_ident) {
result = left;
}
}
/* test for union equality */
else if (type == TYPE_UNION) {
if (left->type_ident == right->type_ident) {
result = left;
}
}
/* Test for equivalent functions */
else if (type == TYPE_FUNCTION) {
struct type *lf, *rf;
lf = compatible_types(left->left, right->left);
rf = compatible_types(left->right, right->right);
if (lf && rf) {
result = new_type(qual_type, lf, rf);
}
}
/* We only see TYPE_PRODUCT as part of function equivalence matching */
else if (type == TYPE_PRODUCT) {
struct type *lf, *rf;
lf = compatible_types(left->left, right->left);
rf = compatible_types(left->right, right->right);
if (lf && rf) {
result = new_type(qual_type, lf, rf);
}
}
else {
/* Nothing else is compatible */
}
return result;
}
/* See if left is a equivalent to right or right is a union member of left */
static int is_subset_type(struct type *left, struct type *right)
{
if (equiv_types(left, right)) {
return 1;
}
if ((left->type & TYPE_MASK) == TYPE_JOIN) {
struct type *member, *mnext;
mnext = left->left;
while(mnext) {
member = mnext;
mnext = 0;
if ((member->type & TYPE_MASK) == TYPE_OVERLAP) {
mnext = member->right;
member = member->left;
}
if (is_subset_type( member, right)) {
return 1;
}
}
}
return 0;
}
static struct type *compatible_ptrs(struct type *left, struct type *right)
{
struct type *result;
if (((left->type & TYPE_MASK) != TYPE_POINTER) ||
((right->type & TYPE_MASK) != TYPE_POINTER)) {
return 0;
}
result = compatible_types(left->left, right->left);
if (result) {
unsigned int qual_type;
qual_type = (left->type & ~STOR_MASK) | (right->type & ~STOR_MASK);
result = new_type(qual_type, result, 0);
}
return result;
}
static struct triple *integral_promotion(
struct compile_state *state, struct triple *def)
{
struct type *type;
type = def->type;
/* As all operations are carried out in registers
* the values are converted on load I just convert
* logical type of the operand.
*/
if (TYPE_INTEGER(type->type)) {
unsigned int int_type;
int_type = type->type & ~TYPE_MASK;
int_type |= do_integral_promotion(get_basic_type(type));
if (int_type != type->type) {
if (def->op != OP_LOAD) {
def->type = new_type(int_type, 0, 0);
}
else {
def = triple(state, OP_CONVERT,
new_type(int_type, 0, 0), def, 0);
}
}
}
return def;
}
static void arithmetic(struct compile_state *state, struct triple *def)
{
if (!TYPE_ARITHMETIC(def->type->type)) {
error(state, 0, "arithmetic type expexted");
}
}
static void ptr_arithmetic(struct compile_state *state, struct triple *def)
{
if (!TYPE_PTR(def->type->type) && !TYPE_ARITHMETIC(def->type->type)) {
error(state, def, "pointer or arithmetic type expected");
}
}
static int is_integral(struct triple *ins)
{
return TYPE_INTEGER(ins->type->type);
}
static void integral(struct compile_state *state, struct triple *def)
{
if (!is_integral(def)) {
error(state, 0, "integral type expected");
}
}
static void bool(struct compile_state *state, struct triple *def)
{
if (!TYPE_ARITHMETIC(def->type->type) &&
((def->type->type & TYPE_MASK) != TYPE_POINTER)) {
error(state, 0, "arithmetic or pointer type expected");
}
}
static int is_signed(struct type *type)
{
if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
type = type->left;
}
return !!TYPE_SIGNED(type->type);
}
static int is_compound_type(struct type *type)
{
int is_compound;
switch((type->type & TYPE_MASK)) {
case TYPE_ARRAY:
case TYPE_STRUCT:
case TYPE_TUPLE:
case TYPE_UNION:
case TYPE_JOIN:
is_compound = 1;
break;
default:
is_compound = 0;
break;
}
return is_compound;
}
/* Is this value located in a register otherwise it must be in memory */
static int is_in_reg(struct compile_state *state, struct triple *def)
{
int in_reg;
if (def->op == OP_ADECL) {
in_reg = 1;
}
else if ((def->op == OP_SDECL) || (def->op == OP_DEREF)) {
in_reg = 0;
}
else if (triple_is_part(state, def)) {
in_reg = is_in_reg(state, MISC(def, 0));
}
else {
internal_error(state, def, "unknown expr storage location");
in_reg = -1;
}
return in_reg;
}
/* Is this an auto or static variable location? Something that can
* be assigned to. Otherwise it must must be a pure value, a temporary.
*/
static int is_lvalue(struct compile_state *state, struct triple *def)
{
int ret;
ret = 0;
if (!def) {
return 0;
}
if ((def->op == OP_ADECL) ||
(def->op == OP_SDECL) ||
(def->op == OP_DEREF) ||
(def->op == OP_BLOBCONST) ||
(def->op == OP_LIST)) {
ret = 1;
}
else if (triple_is_part(state, def)) {
ret = is_lvalue(state, MISC(def, 0));
}
return ret;
}
static void clvalue(struct compile_state *state, struct triple *def)
{
if (!def) {
internal_error(state, def, "nothing where lvalue expected?");
}
if (!is_lvalue(state, def)) {
error(state, def, "lvalue expected");
}
}
static void lvalue(struct compile_state *state, struct triple *def)
{
clvalue(state, def);
if (def->type->type & QUAL_CONST) {
error(state, def, "modifable lvalue expected");
}
}
static int is_pointer(struct triple *def)
{
return (def->type->type & TYPE_MASK) == TYPE_POINTER;
}
static void pointer(struct compile_state *state, struct triple *def)
{
if (!is_pointer(def)) {
error(state, def, "pointer expected");
}
}
static struct triple *int_const(
struct compile_state *state, struct type *type, ulong_t value)
{
struct triple *result;
switch(type->type & TYPE_MASK) {
case TYPE_CHAR:
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
break;
default:
internal_error(state, 0, "constant for unknown type");
}
result = triple(state, OP_INTCONST, type, 0, 0);
result->u.cval = value;
return result;
}
static struct triple *read_expr(struct compile_state *state, struct triple *def);
static struct triple *do_mk_addr_expr(struct compile_state *state,
struct triple *expr, struct type *type, ulong_t offset)
{
struct triple *result;
struct type *ptr_type;
clvalue(state, expr);
ptr_type = new_type(TYPE_POINTER | (type->type & QUAL_MASK), type, 0);
result = 0;
if (expr->op == OP_ADECL) {
error(state, expr, "address of auto variables not supported");
}
else if (expr->op == OP_SDECL) {
result = triple(state, OP_ADDRCONST, ptr_type, 0, 0);
MISC(result, 0) = expr;
result->u.cval = offset;
}
else if (expr->op == OP_DEREF) {
result = triple(state, OP_ADD, ptr_type,
RHS(expr, 0),
int_const(state, &ulong_type, offset));
}
else if (expr->op == OP_BLOBCONST) {
FINISHME();
internal_error(state, expr, "not yet implemented");
}
else if (expr->op == OP_LIST) {
error(state, 0, "Function addresses not supported");
}
else if (triple_is_part(state, expr)) {
struct triple *part;
part = expr;
expr = MISC(expr, 0);
if (part->op == OP_DOT) {
offset += bits_to_bytes(
field_offset(state, expr->type, part->u.field));
}
else if (part->op == OP_INDEX) {
offset += bits_to_bytes(
index_offset(state, expr->type, part->u.cval));
}
else {
internal_error(state, part, "unhandled part type");
}
result = do_mk_addr_expr(state, expr, type, offset);
}
if (!result) {
internal_error(state, expr, "cannot take address of expression");
}
return result;
}
static struct triple *mk_addr_expr(
struct compile_state *state, struct triple *expr, ulong_t offset)
{
return do_mk_addr_expr(state, expr, expr->type, offset);
}
static struct triple *mk_deref_expr(
struct compile_state *state, struct triple *expr)
{
struct type *base_type;
pointer(state, expr);
base_type = expr->type->left;
return triple(state, OP_DEREF, base_type, expr, 0);
}
/* lvalue conversions always apply except when certain operators
* are applied. So I apply apply it when I know no more
* operators will be applied.
*/
static struct triple *lvalue_conversion(struct compile_state *state, struct triple *def)
{
/* Tranform an array to a pointer to the first element */
if ((def->type->type & TYPE_MASK) == TYPE_ARRAY) {
struct type *type;
type = new_type(
TYPE_POINTER | (def->type->type & QUAL_MASK),
def->type->left, 0);
if ((def->op == OP_SDECL) || IS_CONST_OP(def->op)) {
struct triple *addrconst;
if ((def->op != OP_SDECL) && (def->op != OP_BLOBCONST)) {
internal_error(state, def, "bad array constant");
}
addrconst = triple(state, OP_ADDRCONST, type, 0, 0);
MISC(addrconst, 0) = def;
def = addrconst;
}
else {
def = triple(state, OP_CONVERT, type, def, 0);
}
}
/* Transform a function to a pointer to it */
else if ((def->type->type & TYPE_MASK) == TYPE_FUNCTION) {
def = mk_addr_expr(state, def, 0);
}
return def;
}
static struct triple *deref_field(
struct compile_state *state, struct triple *expr, struct hash_entry *field)
{
struct triple *result;
struct type *type, *member;
ulong_t offset;
if (!field) {
internal_error(state, 0, "No field passed to deref_field");
}
result = 0;
type = expr->type;
if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
((type->type & TYPE_MASK) != TYPE_UNION)) {
error(state, 0, "request for member %s in something not a struct or union",
field->name);
}
member = field_type(state, type, field);
if ((type->type & STOR_MASK) == STOR_PERM) {
/* Do the pointer arithmetic to get a deref the field */
offset = bits_to_bytes(field_offset(state, type, field));
result = do_mk_addr_expr(state, expr, member, offset);
result = mk_deref_expr(state, result);
}
else {
/* Find the variable for the field I want. */
result = triple(state, OP_DOT, member, expr, 0);
result->u.field = field;
}
return result;
}
static struct triple *deref_index(
struct compile_state *state, struct triple *expr, size_t index)
{
struct triple *result;
struct type *type, *member;
ulong_t offset;
result = 0;
type = expr->type;
member = index_type(state, type, index);
if ((type->type & STOR_MASK) == STOR_PERM) {
offset = bits_to_bytes(index_offset(state, type, index));
result = do_mk_addr_expr(state, expr, member, offset);
result = mk_deref_expr(state, result);
}
else {
result = triple(state, OP_INDEX, member, expr, 0);
result->u.cval = index;
}
return result;
}
static struct triple *read_expr(struct compile_state *state, struct triple *def)
{
int op;
if (!def) {
return 0;
}
#if DEBUG_ROMCC_WARNINGS
#warning "CHECK_ME is this the only place I need to do lvalue conversions?"
#endif
/* Transform lvalues into something we can read */
def = lvalue_conversion(state, def);
if (!is_lvalue(state, def)) {
return def;
}
if (is_in_reg(state, def)) {
op = OP_READ;
} else {
if (def->op == OP_SDECL) {
def = mk_addr_expr(state, def, 0);
def = mk_deref_expr(state, def);
}
op = OP_LOAD;
}
def = triple(state, op, def->type, def, 0);
if (def->type->type & QUAL_VOLATILE) {
def->id |= TRIPLE_FLAG_VOLATILE;
}
return def;
}
int is_write_compatible(struct compile_state *state,
struct type *dest, struct type *rval)
{
int compatible = 0;
/* Both operands have arithmetic type */
if (TYPE_ARITHMETIC(dest->type) && TYPE_ARITHMETIC(rval->type)) {
compatible = 1;
}
/* One operand is a pointer and the other is a pointer to void */
else if (((dest->type & TYPE_MASK) == TYPE_POINTER) &&
((rval->type & TYPE_MASK) == TYPE_POINTER) &&
(((dest->left->type & TYPE_MASK) == TYPE_VOID) ||
((rval->left->type & TYPE_MASK) == TYPE_VOID))) {
compatible = 1;
}
/* If both types are the same without qualifiers we are good */
else if (equiv_ptrs(dest, rval)) {
compatible = 1;
}
/* test for struct/union equality */
else if (equiv_types(dest, rval)) {
compatible = 1;
}
return compatible;
}
static void write_compatible(struct compile_state *state,
struct type *dest, struct type *rval)
{
if (!is_write_compatible(state, dest, rval)) {
FILE *fp = state->errout;
fprintf(fp, "dest: ");
name_of(fp, dest);
fprintf(fp,"\nrval: ");
name_of(fp, rval);
fprintf(fp, "\n");
error(state, 0, "Incompatible types in assignment");
}
}
static int is_init_compatible(struct compile_state *state,
struct type *dest, struct type *rval)
{
int compatible = 0;
if (is_write_compatible(state, dest, rval)) {
compatible = 1;
}
else if (equiv_types(dest, rval)) {
compatible = 1;
}
return compatible;
}
static struct triple *write_expr(
struct compile_state *state, struct triple *dest, struct triple *rval)
{
struct triple *def;
def = 0;
if (!rval) {
internal_error(state, 0, "missing rval");
}
if (rval->op == OP_LIST) {
internal_error(state, 0, "expression of type OP_LIST?");
}
if (!is_lvalue(state, dest)) {
internal_error(state, 0, "writing to a non lvalue?");
}
if (dest->type->type & QUAL_CONST) {
internal_error(state, 0, "modifable lvalue expexted");
}
write_compatible(state, dest->type, rval->type);
if (!equiv_types(dest->type, rval->type)) {
rval = triple(state, OP_CONVERT, dest->type, rval, 0);
}
/* Now figure out which assignment operator to use */
if (is_in_reg(state, dest)) {
def = triple(state, OP_WRITE, dest->type, rval, dest);
if (MISC(def, 0) != dest) {
internal_error(state, def, "huh?");
}
if (RHS(def, 0) != rval) {
internal_error(state, def, "huh?");
}
} else {
def = triple(state, OP_STORE, dest->type, dest, rval);
}
if (def->type->type & QUAL_VOLATILE) {
def->id |= TRIPLE_FLAG_VOLATILE;
}
return def;
}
static struct triple *init_expr(
struct compile_state *state, struct triple *dest, struct triple *rval)
{
struct triple *def;
def = 0;
if (!rval) {
internal_error(state, 0, "missing rval");
}
if ((dest->type->type & STOR_MASK) != STOR_PERM) {
rval = read_expr(state, rval);
def = write_expr(state, dest, rval);
}
else {
/* Fill in the array size if necessary */
if (((dest->type->type & TYPE_MASK) == TYPE_ARRAY) &&
((rval->type->type & TYPE_MASK) == TYPE_ARRAY)) {
if (dest->type->elements == ELEMENT_COUNT_UNSPECIFIED) {
dest->type->elements = rval->type->elements;
}
}
if (!equiv_types(dest->type, rval->type)) {
error(state, 0, "Incompatible types in inializer");
}
MISC(dest, 0) = rval;
insert_triple(state, dest, rval);
rval->id |= TRIPLE_FLAG_FLATTENED;
use_triple(MISC(dest, 0), dest);
}
return def;
}
struct type *arithmetic_result(
struct compile_state *state, struct triple *left, struct triple *right)
{
struct type *type;
/* Sanity checks to ensure I am working with arithmetic types */
arithmetic(state, left);
arithmetic(state, right);
type = new_type(
do_arithmetic_conversion(
get_basic_type(left->type),
get_basic_type(right->type)),
0, 0);
return type;
}
struct type *ptr_arithmetic_result(
struct compile_state *state, struct triple *left, struct triple *right)
{
struct type *type;
/* Sanity checks to ensure I am working with the proper types */
ptr_arithmetic(state, left);
arithmetic(state, right);
if (TYPE_ARITHMETIC(left->type->type) &&
TYPE_ARITHMETIC(right->type->type)) {
type = arithmetic_result(state, left, right);
}
else if (TYPE_PTR(left->type->type)) {
type = left->type;
}
else {
internal_error(state, 0, "huh?");
type = 0;
}
return type;
}
/* boolean helper function */
static struct triple *ltrue_expr(struct compile_state *state,
struct triple *expr)
{
switch(expr->op) {
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
/* If the expression is already boolean do nothing */
break;
default:
expr = triple(state, OP_LTRUE, &int_type, expr, 0);
break;
}
return expr;
}
static struct triple *lfalse_expr(struct compile_state *state,
struct triple *expr)
{
return triple(state, OP_LFALSE, &int_type, expr, 0);
}
static struct triple *mkland_expr(
struct compile_state *state,
struct triple *left, struct triple *right)
{
struct triple *def, *val, *var, *jmp, *mid, *end;
struct triple *lstore, *rstore;
/* Generate some intermediate triples */
end = label(state);
var = variable(state, &int_type);
/* Store the left hand side value */
lstore = write_expr(state, var, left);
/* Jump if the value is false */
jmp = branch(state, end,
lfalse_expr(state, read_expr(state, var)));
mid = label(state);
/* Store the right hand side value */
rstore = write_expr(state, var, right);
/* An expression for the computed value */
val = read_expr(state, var);
/* Generate the prog for a logical and */
def = mkprog(state, var, lstore, jmp, mid, rstore, end, val, 0UL);
return def;
}
static struct triple *mklor_expr(
struct compile_state *state,
struct triple *left, struct triple *right)
{
struct triple *def, *val, *var, *jmp, *mid, *end;
/* Generate some intermediate triples */
end = label(state);
var = variable(state, &int_type);
/* Store the left hand side value */
left = write_expr(state, var, left);
/* Jump if the value is true */
jmp = branch(state, end, read_expr(state, var));
mid = label(state);
/* Store the right hand side value */
right = write_expr(state, var, right);
/* An expression for the computed value*/
val = read_expr(state, var);
/* Generate the prog for a logical or */
def = mkprog(state, var, left, jmp, mid, right, end, val, 0UL);
return def;
}
static struct triple *mkcond_expr(
struct compile_state *state,
struct triple *test, struct triple *left, struct triple *right)
{
struct triple *def, *val, *var, *jmp1, *jmp2, *top, *mid, *end;
struct type *result_type;
unsigned int left_type, right_type;
bool(state, test);
left_type = left->type->type;
right_type = right->type->type;
result_type = 0;
/* Both operands have arithmetic type */
if (TYPE_ARITHMETIC(left_type) && TYPE_ARITHMETIC(right_type)) {
result_type = arithmetic_result(state, left, right);
}
/* Both operands have void type */
else if (((left_type & TYPE_MASK) == TYPE_VOID) &&
((right_type & TYPE_MASK) == TYPE_VOID)) {
result_type = &void_type;
}
/* pointers to the same type... */
else if ((result_type = compatible_ptrs(left->type, right->type))) {
;
}
/* Both operands are pointers and left is a pointer to void */
else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
((right_type & TYPE_MASK) == TYPE_POINTER) &&
((left->type->left->type & TYPE_MASK) == TYPE_VOID)) {
result_type = right->type;
}
/* Both operands are pointers and right is a pointer to void */
else if (((left_type & TYPE_MASK) == TYPE_POINTER) &&
((right_type & TYPE_MASK) == TYPE_POINTER) &&
((right->type->left->type & TYPE_MASK) == TYPE_VOID)) {
result_type = left->type;
}
if (!result_type) {
error(state, 0, "Incompatible types in conditional expression");
}
/* Generate some intermediate triples */
mid = label(state);
end = label(state);
var = variable(state, result_type);
/* Branch if the test is false */
jmp1 = branch(state, mid, lfalse_expr(state, read_expr(state, test)));
top = label(state);
/* Store the left hand side value */
left = write_expr(state, var, left);
/* Branch to the end */
jmp2 = branch(state, end, 0);
/* Store the right hand side value */
right = write_expr(state, var, right);
/* An expression for the computed value */
val = read_expr(state, var);
/* Generate the prog for a conditional expression */
def = mkprog(state, var, jmp1, top, left, jmp2, mid, right, end, val, 0UL);
return def;
}
static int expr_depth(struct compile_state *state, struct triple *ins)
{
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME move optimal ordering of subexpressions into the optimizer"
#endif
int count;
count = 0;
if (!ins || (ins->id & TRIPLE_FLAG_FLATTENED)) {
count = 0;
}
else if (ins->op == OP_DEREF) {
count = expr_depth(state, RHS(ins, 0)) - 1;
}
else if (ins->op == OP_VAL) {
count = expr_depth(state, RHS(ins, 0)) - 1;
}
else if (ins->op == OP_FCALL) {
/* Don't figure the depth of a call just guess it is huge */
count = 1000;
}
else {
struct triple **expr;
expr = triple_rhs(state, ins, 0);
for(;expr; expr = triple_rhs(state, ins, expr)) {
if (*expr) {
int depth;
depth = expr_depth(state, *expr);
if (depth > count) {
count = depth;
}
}
}
}
return count + 1;
}
static struct triple *flatten_generic(
struct compile_state *state, struct triple *first, struct triple *ptr,
int ignored)
{
struct rhs_vector {
int depth;
struct triple **ins;
} vector[MAX_RHS];
int i, rhs, lhs;
/* Only operations with just a rhs and a lhs should come here */
rhs = ptr->rhs;
lhs = ptr->lhs;
if (TRIPLE_SIZE(ptr) != lhs + rhs + ignored) {
internal_error(state, ptr, "unexpected args for: %d %s",
ptr->op, tops(ptr->op));
}
/* Find the depth of the rhs elements */
for(i = 0; i < rhs; i++) {
vector[i].ins = &RHS(ptr, i);
vector[i].depth = expr_depth(state, *vector[i].ins);
}
/* Selection sort the rhs */
for(i = 0; i < rhs; i++) {
int j, max = i;
for(j = i + 1; j < rhs; j++ ) {
if (vector[j].depth > vector[max].depth) {
max = j;
}
}
if (max != i) {
struct rhs_vector tmp;
tmp = vector[i];
vector[i] = vector[max];
vector[max] = tmp;
}
}
/* Now flatten the rhs elements */
for(i = 0; i < rhs; i++) {
*vector[i].ins = flatten(state, first, *vector[i].ins);
use_triple(*vector[i].ins, ptr);
}
if (lhs) {
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
/* Now flatten the lhs elements */
for(i = 0; i < lhs; i++) {
struct triple **ins = &LHS(ptr, i);
*ins = flatten(state, first, *ins);
use_triple(*ins, ptr);
}
}
return ptr;
}
static struct triple *flatten_prog(
struct compile_state *state, struct triple *first, struct triple *ptr)
{
struct triple *head, *body, *val;
head = RHS(ptr, 0);
RHS(ptr, 0) = 0;
val = head->prev;
body = head->next;
release_triple(state, head);
release_triple(state, ptr);
val->next = first;
body->prev = first->prev;
body->prev->next = body;
val->next->prev = val;
if (triple_is_cbranch(state, body->prev) ||
triple_is_call(state, body->prev)) {
unuse_triple(first, body->prev);
use_triple(body, body->prev);
}
if (!(val->id & TRIPLE_FLAG_FLATTENED)) {
internal_error(state, val, "val not flattened?");
}
return val;
}
static struct triple *flatten_part(
struct compile_state *state, struct triple *first, struct triple *ptr)
{
if (!triple_is_part(state, ptr)) {
internal_error(state, ptr, "not a part");
}
if (ptr->rhs || ptr->lhs || ptr->targ || (ptr->misc != 1)) {
internal_error(state, ptr, "unexpected args for: %d %s",
ptr->op, tops(ptr->op));
}
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
use_triple(MISC(ptr, 0), ptr);
return flatten_generic(state, first, ptr, 1);
}
static struct triple *flatten(
struct compile_state *state, struct triple *first, struct triple *ptr)
{
struct triple *orig_ptr;
if (!ptr)
return 0;
do {
orig_ptr = ptr;
/* Only flatten triples once */
if (ptr->id & TRIPLE_FLAG_FLATTENED) {
return ptr;
}
switch(ptr->op) {
case OP_VAL:
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
return MISC(ptr, 0);
break;
case OP_PROG:
ptr = flatten_prog(state, first, ptr);
break;
case OP_FCALL:
ptr = flatten_generic(state, first, ptr, 1);
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
if (ptr->next != ptr) {
use_triple(ptr->next, ptr);
}
break;
case OP_READ:
case OP_LOAD:
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
use_triple(RHS(ptr, 0), ptr);
break;
case OP_WRITE:
ptr = flatten_generic(state, first, ptr, 1);
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
use_triple(MISC(ptr, 0), ptr);
break;
case OP_BRANCH:
use_triple(TARG(ptr, 0), ptr);
break;
case OP_CBRANCH:
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
use_triple(RHS(ptr, 0), ptr);
use_triple(TARG(ptr, 0), ptr);
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
if (ptr->next != ptr) {
use_triple(ptr->next, ptr);
}
break;
case OP_CALL:
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
use_triple(MISC(ptr, 0), ptr);
use_triple(TARG(ptr, 0), ptr);
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
if (ptr->next != ptr) {
use_triple(ptr->next, ptr);
}
break;
case OP_RET:
RHS(ptr, 0) = flatten(state, first, RHS(ptr, 0));
use_triple(RHS(ptr, 0), ptr);
break;
case OP_BLOBCONST:
insert_triple(state, state->global_pool, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
ptr = triple(state, OP_SDECL, ptr->type, ptr, 0);
use_triple(MISC(ptr, 0), ptr);
break;
case OP_DEREF:
/* Since OP_DEREF is just a marker delete it when I flatten it */
ptr = RHS(ptr, 0);
RHS(orig_ptr, 0) = 0;
free_triple(state, orig_ptr);
break;
case OP_DOT:
if (RHS(ptr, 0)->op == OP_DEREF) {
struct triple *base, *left;
ulong_t offset;
base = MISC(ptr, 0);
offset = bits_to_bytes(field_offset(state, base->type, ptr->u.field));
left = RHS(base, 0);
ptr = triple(state, OP_ADD, left->type,
read_expr(state, left),
int_const(state, &ulong_type, offset));
free_triple(state, base);
}
else {
ptr = flatten_part(state, first, ptr);
}
break;
case OP_INDEX:
if (RHS(ptr, 0)->op == OP_DEREF) {
struct triple *base, *left;
ulong_t offset;
base = MISC(ptr, 0);
offset = bits_to_bytes(index_offset(state, base->type, ptr->u.cval));
left = RHS(base, 0);
ptr = triple(state, OP_ADD, left->type,
read_expr(state, left),
int_const(state, &long_type, offset));
free_triple(state, base);
}
else {
ptr = flatten_part(state, first, ptr);
}
break;
case OP_PIECE:
ptr = flatten_part(state, first, ptr);
use_triple(ptr, MISC(ptr, 0));
break;
case OP_ADDRCONST:
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
use_triple(MISC(ptr, 0), ptr);
break;
case OP_SDECL:
first = state->global_pool;
MISC(ptr, 0) = flatten(state, first, MISC(ptr, 0));
use_triple(MISC(ptr, 0), ptr);
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
return ptr;
case OP_ADECL:
ptr = flatten_generic(state, first, ptr, 0);
break;
default:
/* Flatten the easy cases we don't override */
ptr = flatten_generic(state, first, ptr, 0);
break;
}
} while(ptr && (ptr != orig_ptr));
if (ptr && !(ptr->id & TRIPLE_FLAG_FLATTENED)) {
insert_triple(state, first, ptr);
ptr->id |= TRIPLE_FLAG_FLATTENED;
ptr->id &= ~TRIPLE_FLAG_LOCAL;
}
return ptr;
}
static void release_expr(struct compile_state *state, struct triple *expr)
{
struct triple *head;
head = label(state);
flatten(state, head, expr);
while(head->next != head) {
release_triple(state, head->next);
}
free_triple(state, head);
}
static int replace_rhs_use(struct compile_state *state,
struct triple *orig, struct triple *new, struct triple *use)
{
struct triple **expr;
int found;
found = 0;
expr = triple_rhs(state, use, 0);
for(;expr; expr = triple_rhs(state, use, expr)) {
if (*expr == orig) {
*expr = new;
found = 1;
}
}
if (found) {
unuse_triple(orig, use);
use_triple(new, use);
}
return found;
}
static int replace_lhs_use(struct compile_state *state,
struct triple *orig, struct triple *new, struct triple *use)
{
struct triple **expr;
int found;
found = 0;
expr = triple_lhs(state, use, 0);
for(;expr; expr = triple_lhs(state, use, expr)) {
if (*expr == orig) {
*expr = new;
found = 1;
}
}
if (found) {
unuse_triple(orig, use);
use_triple(new, use);
}
return found;
}
static int replace_misc_use(struct compile_state *state,
struct triple *orig, struct triple *new, struct triple *use)
{
struct triple **expr;
int found;
found = 0;
expr = triple_misc(state, use, 0);
for(;expr; expr = triple_misc(state, use, expr)) {
if (*expr == orig) {
*expr = new;
found = 1;
}
}
if (found) {
unuse_triple(orig, use);
use_triple(new, use);
}
return found;
}
static int replace_targ_use(struct compile_state *state,
struct triple *orig, struct triple *new, struct triple *use)
{
struct triple **expr;
int found;
found = 0;
expr = triple_targ(state, use, 0);
for(;expr; expr = triple_targ(state, use, expr)) {
if (*expr == orig) {
*expr = new;
found = 1;
}
}
if (found) {
unuse_triple(orig, use);
use_triple(new, use);
}
return found;
}
static void replace_use(struct compile_state *state,
struct triple *orig, struct triple *new, struct triple *use)
{
int found;
found = 0;
found |= replace_rhs_use(state, orig, new, use);
found |= replace_lhs_use(state, orig, new, use);
found |= replace_misc_use(state, orig, new, use);
found |= replace_targ_use(state, orig, new, use);
if (!found) {
internal_error(state, use, "use without use");
}
}
static void propogate_use(struct compile_state *state,
struct triple *orig, struct triple *new)
{
struct triple_set *user, *next;
for(user = orig->use; user; user = next) {
/* Careful replace_use modifies the use chain and
* removes use. So we must get a copy of the next
* entry early.
*/
next = user->next;
replace_use(state, orig, new, user->member);
}
if (orig->use) {
internal_error(state, orig, "used after propogate_use");
}
}
/*
* Code generators
* ===========================
*/
static struct triple *mk_cast_expr(
struct compile_state *state, struct type *type, struct triple *expr)
{
struct triple *def;
def = read_expr(state, expr);
def = triple(state, OP_CONVERT, type, def, 0);
return def;
}
static struct triple *mk_add_expr(
struct compile_state *state, struct triple *left, struct triple *right)
{
struct type *result_type;
/* Put pointer operands on the left */
if (is_pointer(right)) {
struct triple *tmp;
tmp = left;
left = right;
right = tmp;
}
left = read_expr(state, left);
right = read_expr(state, right);
result_type = ptr_arithmetic_result(state, left, right);
if (is_pointer(left)) {
struct type *ptr_math;
int op;
if (is_signed(right->type)) {
ptr_math = &long_type;
op = OP_SMUL;
} else {
ptr_math = &ulong_type;
op = OP_UMUL;
}
if (!equiv_types(right->type, ptr_math)) {
right = mk_cast_expr(state, ptr_math, right);
}
right = triple(state, op, ptr_math, right,
int_const(state, ptr_math,
size_of_in_bytes(state, left->type->left)));
}
return triple(state, OP_ADD, result_type, left, right);
}
static struct triple *mk_sub_expr(
struct compile_state *state, struct triple *left, struct triple *right)
{
struct type *result_type;
result_type = ptr_arithmetic_result(state, left, right);
left = read_expr(state, left);
right = read_expr(state, right);
if (is_pointer(left)) {
struct type *ptr_math;
int op;
if (is_signed(right->type)) {
ptr_math = &long_type;
op = OP_SMUL;
} else {
ptr_math = &ulong_type;
op = OP_UMUL;
}
if (!equiv_types(right->type, ptr_math)) {
right = mk_cast_expr(state, ptr_math, right);
}
right = triple(state, op, ptr_math, right,
int_const(state, ptr_math,
size_of_in_bytes(state, left->type->left)));
}
return triple(state, OP_SUB, result_type, left, right);
}
static struct triple *mk_pre_inc_expr(
struct compile_state *state, struct triple *def)
{
struct triple *val;
lvalue(state, def);
val = mk_add_expr(state, def, int_const(state, &int_type, 1));
return triple(state, OP_VAL, def->type,
write_expr(state, def, val),
val);
}
static struct triple *mk_pre_dec_expr(
struct compile_state *state, struct triple *def)
{
struct triple *val;
lvalue(state, def);
val = mk_sub_expr(state, def, int_const(state, &int_type, 1));
return triple(state, OP_VAL, def->type,
write_expr(state, def, val),
val);
}
static struct triple *mk_post_inc_expr(
struct compile_state *state, struct triple *def)
{
struct triple *val;
lvalue(state, def);
val = read_expr(state, def);
return triple(state, OP_VAL, def->type,
write_expr(state, def,
mk_add_expr(state, val, int_const(state, &int_type, 1)))
, val);
}
static struct triple *mk_post_dec_expr(
struct compile_state *state, struct triple *def)
{
struct triple *val;
lvalue(state, def);
val = read_expr(state, def);
return triple(state, OP_VAL, def->type,
write_expr(state, def,
mk_sub_expr(state, val, int_const(state, &int_type, 1)))
, val);
}
static struct triple *mk_subscript_expr(
struct compile_state *state, struct triple *left, struct triple *right)
{
left = read_expr(state, left);
right = read_expr(state, right);
if (!is_pointer(left) && !is_pointer(right)) {
error(state, left, "subscripted value is not a pointer");
}
return mk_deref_expr(state, mk_add_expr(state, left, right));
}
/*
* Compile time evaluation
* ===========================
*/
static int is_const(struct triple *ins)
{
return IS_CONST_OP(ins->op);
}
static int is_simple_const(struct triple *ins)
{
/* Is this a constant that u.cval has the value.
* Or equivalently is this a constant that read_const
* works on.
* So far only OP_INTCONST qualifies.
*/
return (ins->op == OP_INTCONST);
}
static int constants_equal(struct compile_state *state,
struct triple *left, struct triple *right)
{
int equal;
if ((left->op == OP_UNKNOWNVAL) || (right->op == OP_UNKNOWNVAL)) {
equal = 0;
}
else if (!is_const(left) || !is_const(right)) {
equal = 0;
}
else if (left->op != right->op) {
equal = 0;
}
else if (!equiv_types(left->type, right->type)) {
equal = 0;
}
else {
equal = 0;
switch(left->op) {
case OP_INTCONST:
if (left->u.cval == right->u.cval) {
equal = 1;
}
break;
case OP_BLOBCONST:
{
size_t lsize, rsize, bytes;
lsize = size_of(state, left->type);
rsize = size_of(state, right->type);
if (lsize != rsize) {
break;
}
bytes = bits_to_bytes(lsize);
if (memcmp(left->u.blob, right->u.blob, bytes) == 0) {
equal = 1;
}
break;
}
case OP_ADDRCONST:
if ((MISC(left, 0) == MISC(right, 0)) &&
(left->u.cval == right->u.cval)) {
equal = 1;
}
break;
default:
internal_error(state, left, "uknown constant type");
break;
}
}
return equal;
}
static int is_zero(struct triple *ins)
{
return is_simple_const(ins) && (ins->u.cval == 0);
}
static int is_one(struct triple *ins)
{
return is_simple_const(ins) && (ins->u.cval == 1);
}
#if DEBUG_ROMCC_WARNING
static long_t bit_count(ulong_t value)
{
int count;
int i;
count = 0;
for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
ulong_t mask;
mask = 1;
mask <<= i;
if (value & mask) {
count++;
}
}
return count;
}
#endif
static long_t bsr(ulong_t value)
{
int i;
for(i = (sizeof(ulong_t)*8) -1; i >= 0; i--) {
ulong_t mask;
mask = 1;
mask <<= i;
if (value & mask) {
return i;
}
}
return -1;
}
static long_t bsf(ulong_t value)
{
int i;
for(i = 0; i < (sizeof(ulong_t)*8); i++) {
ulong_t mask;
mask = 1;
mask <<= 1;
if (value & mask) {
return i;
}
}
return -1;
}
static long_t ilog2(ulong_t value)
{
return bsr(value);
}
static long_t tlog2(struct triple *ins)
{
return ilog2(ins->u.cval);
}
static int is_pow2(struct triple *ins)
{
ulong_t value, mask;
long_t log;
if (!is_const(ins)) {
return 0;
}
value = ins->u.cval;
log = ilog2(value);
if (log == -1) {
return 0;
}
mask = 1;
mask <<= log;
return ((value & mask) == value);
}
static ulong_t read_const(struct compile_state *state,
struct triple *ins, struct triple *rhs)
{
switch(rhs->type->type &TYPE_MASK) {
case TYPE_CHAR:
case TYPE_SHORT:
case TYPE_INT:
case TYPE_LONG:
case TYPE_UCHAR:
case TYPE_USHORT:
case TYPE_UINT:
case TYPE_ULONG:
case TYPE_POINTER:
case TYPE_BITFIELD:
break;
default:
fprintf(state->errout, "type: ");
name_of(state->errout, rhs->type);
fprintf(state->errout, "\n");
internal_warning(state, rhs, "bad type to read_const");
break;
}
if (!is_simple_const(rhs)) {
internal_error(state, rhs, "bad op to read_const");
}
return rhs->u.cval;
}
static long_t read_sconst(struct compile_state *state,
struct triple *ins, struct triple *rhs)
{
return (long_t)(rhs->u.cval);
}
int const_ltrue(struct compile_state *state, struct triple *ins, struct triple *rhs)
{
if (!is_const(rhs)) {
internal_error(state, 0, "non const passed to const_true");
}
return !is_zero(rhs);
}
int const_eq(struct compile_state *state, struct triple *ins,
struct triple *left, struct triple *right)
{
int result;
if (!is_const(left) || !is_const(right)) {
internal_warning(state, ins, "non const passed to const_eq");
result = -1;
}
else if (left == right) {
result = 1;
}
else if (is_simple_const(left) && is_simple_const(right)) {
ulong_t lval, rval;
lval = read_const(state, ins, left);
rval = read_const(state, ins, right);
result = (lval == rval);
}
else if ((left->op == OP_ADDRCONST) &&
(right->op == OP_ADDRCONST)) {
result = (MISC(left, 0) == MISC(right, 0)) &&
(left->u.cval == right->u.cval);
}
else {
internal_warning(state, ins, "incomparable constants passed to const_eq");
result = -1;
}
return result;
}
int const_ucmp(struct compile_state *state, struct triple *ins,
struct triple *left, struct triple *right)
{
int result;
if (!is_const(left) || !is_const(right)) {
internal_warning(state, ins, "non const past to const_ucmp");
result = -2;
}
else if (left == right) {
result = 0;
}
else if (is_simple_const(left) && is_simple_const(right)) {
ulong_t lval, rval;
lval = read_const(state, ins, left);
rval = read_const(state, ins, right);
result = 0;
if (lval > rval) {
result = 1;
} else if (rval > lval) {
result = -1;
}
}
else if ((left->op == OP_ADDRCONST) &&
(right->op == OP_ADDRCONST) &&
(MISC(left, 0) == MISC(right, 0))) {
result = 0;
if (left->u.cval > right->u.cval) {
result = 1;
} else if (left->u.cval < right->u.cval) {
result = -1;
}
}
else {
internal_warning(state, ins, "incomparable constants passed to const_ucmp");
result = -2;
}
return result;
}
int const_scmp(struct compile_state *state, struct triple *ins,
struct triple *left, struct triple *right)
{
int result;
if (!is_const(left) || !is_const(right)) {
internal_warning(state, ins, "non const past to ucmp_const");
result = -2;
}
else if (left == right) {
result = 0;
}
else if (is_simple_const(left) && is_simple_const(right)) {
long_t lval, rval;
lval = read_sconst(state, ins, left);
rval = read_sconst(state, ins, right);
result = 0;
if (lval > rval) {
result = 1;
} else if (rval > lval) {
result = -1;
}
}
else {
internal_warning(state, ins, "incomparable constants passed to const_scmp");
result = -2;
}
return result;
}
static void unuse_rhs(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_rhs(state, ins, 0);
for(;expr;expr = triple_rhs(state, ins, expr)) {
if (*expr) {
unuse_triple(*expr, ins);
*expr = 0;
}
}
}
static void unuse_lhs(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_lhs(state, ins, 0);
for(;expr;expr = triple_lhs(state, ins, expr)) {
unuse_triple(*expr, ins);
*expr = 0;
}
}
#if DEBUG_ROMCC_WARNING
static void unuse_misc(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_misc(state, ins, 0);
for(;expr;expr = triple_misc(state, ins, expr)) {
unuse_triple(*expr, ins);
*expr = 0;
}
}
static void unuse_targ(struct compile_state *state, struct triple *ins)
{
int i;
struct triple **slot;
slot = &TARG(ins, 0);
for(i = 0; i < ins->targ; i++) {
unuse_triple(slot[i], ins);
slot[i] = 0;
}
}
static void check_lhs(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_lhs(state, ins, 0);
for(;expr;expr = triple_lhs(state, ins, expr)) {
internal_error(state, ins, "unexpected lhs");
}
}
#endif
static void check_misc(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_misc(state, ins, 0);
for(;expr;expr = triple_misc(state, ins, expr)) {
if (*expr) {
internal_error(state, ins, "unexpected misc");
}
}
}
static void check_targ(struct compile_state *state, struct triple *ins)
{
struct triple **expr;
expr = triple_targ(state, ins, 0);
for(;expr;expr = triple_targ(state, ins, expr)) {
internal_error(state, ins, "unexpected targ");
}
}
static void wipe_ins(struct compile_state *state, struct triple *ins)
{
/* Becareful which instructions you replace the wiped
* instruction with, as there are not enough slots
* in all instructions to hold all others.
*/
check_targ(state, ins);
check_misc(state, ins);
unuse_rhs(state, ins);
unuse_lhs(state, ins);
ins->lhs = 0;
ins->rhs = 0;
ins->misc = 0;
ins->targ = 0;
}
#if DEBUG_ROMCC_WARNING
static void wipe_branch(struct compile_state *state, struct triple *ins)
{
/* Becareful which instructions you replace the wiped
* instruction with, as there are not enough slots
* in all instructions to hold all others.
*/
unuse_rhs(state, ins);
unuse_lhs(state, ins);
unuse_misc(state, ins);
unuse_targ(state, ins);
ins->lhs = 0;
ins->rhs = 0;
ins->misc = 0;
ins->targ = 0;
}
#endif
static void mkcopy(struct compile_state *state,
struct triple *ins, struct triple *rhs)
{
struct block *block;
if (!equiv_types(ins->type, rhs->type)) {
FILE *fp = state->errout;
fprintf(fp, "src type: ");
name_of(fp, rhs->type);
fprintf(fp, "\ndst type: ");
name_of(fp, ins->type);
fprintf(fp, "\n");
internal_error(state, ins, "mkcopy type mismatch");
}
block = block_of_triple(state, ins);
wipe_ins(state, ins);
ins->op = OP_COPY;
ins->rhs = 1;
ins->u.block = block;
RHS(ins, 0) = rhs;
use_triple(RHS(ins, 0), ins);
}
static void mkconst(struct compile_state *state,
struct triple *ins, ulong_t value)
{
if (!is_integral(ins) && !is_pointer(ins)) {
fprintf(state->errout, "type: ");
name_of(state->errout, ins->type);
fprintf(state->errout, "\n");
internal_error(state, ins, "unknown type to make constant value: %ld",
value);
}
wipe_ins(state, ins);
ins->op = OP_INTCONST;
ins->u.cval = value;
}
static void mkaddr_const(struct compile_state *state,
struct triple *ins, struct triple *sdecl, ulong_t value)
{
if ((sdecl->op != OP_SDECL) && (sdecl->op != OP_LABEL)) {
internal_error(state, ins, "bad base for addrconst");
}
wipe_ins(state, ins);
ins->op = OP_ADDRCONST;
ins->misc = 1;
MISC(ins, 0) = sdecl;
ins->u.cval = value;
use_triple(sdecl, ins);
}
#if DEBUG_DECOMPOSE_PRINT_TUPLES
static void print_tuple(struct compile_state *state,
struct triple *ins, struct triple *tuple)
{
FILE *fp = state->dbgout;
fprintf(fp, "%5s %p tuple: %p ", tops(ins->op), ins, tuple);
name_of(fp, tuple->type);
if (tuple->lhs > 0) {
fprintf(fp, " lhs: ");
name_of(fp, LHS(tuple, 0)->type);
}
fprintf(fp, "\n");
}
#endif
static struct triple *decompose_with_tuple(struct compile_state *state,
struct triple *ins, struct triple *tuple)
{
struct triple *next;
next = ins->next;
flatten(state, next, tuple);
#if DEBUG_DECOMPOSE_PRINT_TUPLES
print_tuple(state, ins, tuple);
#endif
if (!is_compound_type(tuple->type) && (tuple->lhs > 0)) {
struct triple *tmp;
if (tuple->lhs != 1) {
internal_error(state, tuple, "plain type in multiple registers?");
}
tmp = LHS(tuple, 0);
release_triple(state, tuple);
tuple = tmp;
}
propogate_use(state, ins, tuple);
release_triple(state, ins);
return next;
}
static struct triple *decompose_unknownval(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple;
ulong_t i;
#if DEBUG_DECOMPOSE_HIRES
FILE *fp = state->dbgout;
fprintf(fp, "unknown type: ");
name_of(fp, ins->type);
fprintf(fp, "\n");
#endif
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
ins->occurance);
for(i = 0; i < tuple->lhs; i++) {
struct type *piece_type;
struct triple *unknown;
piece_type = reg_type(state, ins->type, i * REG_SIZEOF_REG);
get_occurance(tuple->occurance);
unknown = alloc_triple(state, OP_UNKNOWNVAL, piece_type, 0, 0,
tuple->occurance);
LHS(tuple, i) = unknown;
}
return decompose_with_tuple(state, ins, tuple);
}
static struct triple *decompose_read(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple, *lval;
ulong_t i;
lval = RHS(ins, 0);
if (lval->op == OP_PIECE) {
return ins->next;
}
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, lval->type, -1, -1,
ins->occurance);
if ((tuple->lhs != lval->lhs) &&
(!triple_is_def(state, lval) || (tuple->lhs != 1)))
{
internal_error(state, ins, "lhs size inconsistency?");
}
for(i = 0; i < tuple->lhs; i++) {
struct triple *piece, *read, *bitref;
if ((i != 0) || !triple_is_def(state, lval)) {
piece = LHS(lval, i);
} else {
piece = lval;
}
/* See if the piece is really a bitref */
bitref = 0;
if (piece->op == OP_BITREF) {
bitref = piece;
piece = RHS(bitref, 0);
}
get_occurance(tuple->occurance);
read = alloc_triple(state, OP_READ, piece->type, -1, -1,
tuple->occurance);
RHS(read, 0) = piece;
if (bitref) {
struct triple *extract;
int op;
if (is_signed(bitref->type->left)) {
op = OP_SEXTRACT;
} else {
op = OP_UEXTRACT;
}
get_occurance(tuple->occurance);
extract = alloc_triple(state, op, bitref->type, -1, -1,
tuple->occurance);
RHS(extract, 0) = read;
extract->u.bitfield.size = bitref->u.bitfield.size;
extract->u.bitfield.offset = bitref->u.bitfield.offset;
read = extract;
}
LHS(tuple, i) = read;
}
return decompose_with_tuple(state, ins, tuple);
}
static struct triple *decompose_write(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple, *lval, *val;
ulong_t i;
lval = MISC(ins, 0);
val = RHS(ins, 0);
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
ins->occurance);
if ((tuple->lhs != lval->lhs) &&
(!triple_is_def(state, lval) || tuple->lhs != 1))
{
internal_error(state, ins, "lhs size inconsistency?");
}
for(i = 0; i < tuple->lhs; i++) {
struct triple *piece, *write, *pval, *bitref;
if ((i != 0) || !triple_is_def(state, lval)) {
piece = LHS(lval, i);
} else {
piece = lval;
}
if ((i == 0) && (tuple->lhs == 1) && (val->lhs == 0)) {
pval = val;
}
else {
if (i > val->lhs) {
internal_error(state, ins, "lhs size inconsistency?");
}
pval = LHS(val, i);
}
/* See if the piece is really a bitref */
bitref = 0;
if (piece->op == OP_BITREF) {
struct triple *read, *deposit;
bitref = piece;
piece = RHS(bitref, 0);
/* Read the destination register */
get_occurance(tuple->occurance);
read = alloc_triple(state, OP_READ, piece->type, -1, -1,
tuple->occurance);
RHS(read, 0) = piece;
/* Deposit the new bitfield value */
get_occurance(tuple->occurance);
deposit = alloc_triple(state, OP_DEPOSIT, piece->type, -1, -1,
tuple->occurance);
RHS(deposit, 0) = read;
RHS(deposit, 1) = pval;
deposit->u.bitfield.size = bitref->u.bitfield.size;
deposit->u.bitfield.offset = bitref->u.bitfield.offset;
/* Now write the newly generated value */
pval = deposit;
}
get_occurance(tuple->occurance);
write = alloc_triple(state, OP_WRITE, piece->type, -1, -1,
tuple->occurance);
MISC(write, 0) = piece;
RHS(write, 0) = pval;
LHS(tuple, i) = write;
}
return decompose_with_tuple(state, ins, tuple);
}
struct decompose_load_info {
struct occurance *occurance;
struct triple *lval;
struct triple *tuple;
};
static void decompose_load_cb(struct compile_state *state,
struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
{
struct decompose_load_info *info = arg;
struct triple *load;
if (reg_offset > info->tuple->lhs) {
internal_error(state, info->tuple, "lhs to small?");
}
get_occurance(info->occurance);
load = alloc_triple(state, OP_LOAD, type, -1, -1, info->occurance);
RHS(load, 0) = mk_addr_expr(state, info->lval, mem_offset);
LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = load;
}
static struct triple *decompose_load(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple;
struct decompose_load_info info;
if (!is_compound_type(ins->type)) {
return ins->next;
}
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
ins->occurance);
info.occurance = ins->occurance;
info.lval = RHS(ins, 0);
info.tuple = tuple;
walk_type_fields(state, ins->type, 0, 0, decompose_load_cb, &info);
return decompose_with_tuple(state, ins, tuple);
}
struct decompose_store_info {
struct occurance *occurance;
struct triple *lval;
struct triple *val;
struct triple *tuple;
};
static void decompose_store_cb(struct compile_state *state,
struct type *type, size_t reg_offset, size_t mem_offset, void *arg)
{
struct decompose_store_info *info = arg;
struct triple *store;
if (reg_offset > info->tuple->lhs) {
internal_error(state, info->tuple, "lhs to small?");
}
get_occurance(info->occurance);
store = alloc_triple(state, OP_STORE, type, -1, -1, info->occurance);
RHS(store, 0) = mk_addr_expr(state, info->lval, mem_offset);
RHS(store, 1) = LHS(info->val, reg_offset);
LHS(info->tuple, reg_offset/REG_SIZEOF_REG) = store;
}
static struct triple *decompose_store(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple;
struct decompose_store_info info;
if (!is_compound_type(ins->type)) {
return ins->next;
}
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, ins->type, -1, -1,
ins->occurance);
info.occurance = ins->occurance;
info.lval = RHS(ins, 0);
info.val = RHS(ins, 1);
info.tuple = tuple;
walk_type_fields(state, ins->type, 0, 0, decompose_store_cb, &info);
return decompose_with_tuple(state, ins, tuple);
}
static struct triple *decompose_dot(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple, *lval;
struct type *type;
size_t reg_offset;
int i, idx;
lval = MISC(ins, 0);
reg_offset = field_reg_offset(state, lval->type, ins->u.field);
idx = reg_offset/REG_SIZEOF_REG;
type = field_type(state, lval->type, ins->u.field);
#if DEBUG_DECOMPOSE_HIRES
{
FILE *fp = state->dbgout;
fprintf(fp, "field type: ");
name_of(fp, type);
fprintf(fp, "\n");
}
#endif
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
ins->occurance);
if (((ins->type->type & TYPE_MASK) == TYPE_BITFIELD) &&
(tuple->lhs != 1))
{
internal_error(state, ins, "multi register bitfield?");
}
for(i = 0; i < tuple->lhs; i++, idx++) {
struct triple *piece;
if (!triple_is_def(state, lval)) {
if (idx > lval->lhs) {
internal_error(state, ins, "inconsistent lhs count");
}
piece = LHS(lval, idx);
} else {
if (idx != 0) {
internal_error(state, ins, "bad reg_offset into def");
}
if (i != 0) {
internal_error(state, ins, "bad reg count from def");
}
piece = lval;
}
/* Remember the offset of the bitfield */
if ((type->type & TYPE_MASK) == TYPE_BITFIELD) {
get_occurance(ins->occurance);
piece = build_triple(state, OP_BITREF, type, piece, 0,
ins->occurance);
piece->u.bitfield.size = size_of(state, type);
piece->u.bitfield.offset = reg_offset % REG_SIZEOF_REG;
}
else if ((reg_offset % REG_SIZEOF_REG) != 0) {
internal_error(state, ins,
"request for a nonbitfield sub register?");
}
LHS(tuple, i) = piece;
}
return decompose_with_tuple(state, ins, tuple);
}
static struct triple *decompose_index(struct compile_state *state,
struct triple *ins)
{
struct triple *tuple, *lval;
struct type *type;
int i, idx;
lval = MISC(ins, 0);
idx = index_reg_offset(state, lval->type, ins->u.cval)/REG_SIZEOF_REG;
type = index_type(state, lval->type, ins->u.cval);
#if DEBUG_DECOMPOSE_HIRES
{
FILE *fp = state->dbgout;
fprintf(fp, "index type: ");
name_of(fp, type);
fprintf(fp, "\n");
}
#endif
get_occurance(ins->occurance);
tuple = alloc_triple(state, OP_TUPLE, type, -1, -1,
ins->occurance);
for(i = 0; i < tuple->lhs; i++, idx++) {
struct triple *piece;
if (!triple_is_def(state, lval)) {
if (idx > lval->lhs) {
internal_error(state, ins, "inconsistent lhs count");
}
piece = LHS(lval, idx);
} else {
if (idx != 0) {
internal_error(state, ins, "bad reg_offset into def");
}
if (i != 0) {
internal_error(state, ins, "bad reg count from def");
}
piece = lval;
}
LHS(tuple, i) = piece;
}
return decompose_with_tuple(state, ins, tuple);
}
static void decompose_compound_types(struct compile_state *state)
{
struct triple *ins, *next, *first;
first = state->first;
ins = first;
/* Pass one expand compound values into pseudo registers.
*/
next = first;
do {
ins = next;
next = ins->next;
switch(ins->op) {
case OP_UNKNOWNVAL:
next = decompose_unknownval(state, ins);
break;
case OP_READ:
next = decompose_read(state, ins);
break;
case OP_WRITE:
next = decompose_write(state, ins);
break;
/* Be very careful with the load/store logic. These
* operations must convert from the in register layout
* to the in memory layout, which is nontrivial.
*/
case OP_LOAD:
next = decompose_load(state, ins);
break;
case OP_STORE:
next = decompose_store(state, ins);
break;
case OP_DOT:
next = decompose_dot(state, ins);
break;
case OP_INDEX:
next = decompose_index(state, ins);
break;
}
#if DEBUG_DECOMPOSE_HIRES
fprintf(fp, "decompose next: %p \n", next);
fflush(fp);
fprintf(fp, "next->op: %d %s\n",
next->op, tops(next->op));
/* High resolution debugging mode */
print_triples(state);
#endif
} while (next != first);
/* Pass two remove the tuples.
*/
ins = first;
do {
next = ins->next;
if (ins->op == OP_TUPLE) {
if (ins->use) {
internal_error(state, ins, "tuple used");
}
else {
release_triple(state, ins);
}
}
ins = next;
} while(ins != first);
ins = first;
do {
next = ins->next;
if (ins->op == OP_BITREF) {
if (ins->use) {
internal_error(state, ins, "bitref used");
}
else {
release_triple(state, ins);
}
}
ins = next;
} while(ins != first);
/* Pass three verify the state and set ->id to 0.
*/
next = first;
do {
ins = next;
next = ins->next;
ins->id &= ~TRIPLE_FLAG_FLATTENED;
if (triple_stores_block(state, ins)) {
ins->u.block = 0;
}
if (triple_is_def(state, ins)) {
if (reg_size_of(state, ins->type) > REG_SIZEOF_REG) {
internal_error(state, ins, "multi register value remains?");
}
}
if (ins->op == OP_DOT) {
internal_error(state, ins, "OP_DOT remains?");
}
if (ins->op == OP_INDEX) {
internal_error(state, ins, "OP_INDEX remains?");
}
if (ins->op == OP_BITREF) {
internal_error(state, ins, "OP_BITREF remains?");
}
if (ins->op == OP_TUPLE) {
internal_error(state, ins, "OP_TUPLE remains?");
}
} while(next != first);
}
/* For those operations that cannot be simplified */
static void simplify_noop(struct compile_state *state, struct triple *ins)
{
return;
}
static void simplify_smul(struct compile_state *state, struct triple *ins)
{
if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
struct triple *tmp;
tmp = RHS(ins, 0);
RHS(ins, 0) = RHS(ins, 1);
RHS(ins, 1) = tmp;
}
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
long_t left, right;
left = read_sconst(state, ins, RHS(ins, 0));
right = read_sconst(state, ins, RHS(ins, 1));
mkconst(state, ins, left * right);
}
else if (is_zero(RHS(ins, 1))) {
mkconst(state, ins, 0);
}
else if (is_one(RHS(ins, 1))) {
mkcopy(state, ins, RHS(ins, 0));
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
ins->op = OP_SL;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_umul(struct compile_state *state, struct triple *ins)
{
if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
struct triple *tmp;
tmp = RHS(ins, 0);
RHS(ins, 0) = RHS(ins, 1);
RHS(ins, 1) = tmp;
}
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left * right);
}
else if (is_zero(RHS(ins, 1))) {
mkconst(state, ins, 0);
}
else if (is_one(RHS(ins, 1))) {
mkcopy(state, ins, RHS(ins, 0));
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
ins->op = OP_SL;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_sdiv(struct compile_state *state, struct triple *ins)
{
if (is_const(RHS(ins, 0)) && is_const(RHS(ins, 1))) {
long_t left, right;
left = read_sconst(state, ins, RHS(ins, 0));
right = read_sconst(state, ins, RHS(ins, 1));
mkconst(state, ins, left / right);
}
else if (is_zero(RHS(ins, 0))) {
mkconst(state, ins, 0);
}
else if (is_zero(RHS(ins, 1))) {
error(state, ins, "division by zero");
}
else if (is_one(RHS(ins, 1))) {
mkcopy(state, ins, RHS(ins, 0));
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
ins->op = OP_SSR;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_udiv(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left / right);
}
else if (is_zero(RHS(ins, 0))) {
mkconst(state, ins, 0);
}
else if (is_zero(RHS(ins, 1))) {
error(state, ins, "division by zero");
}
else if (is_one(RHS(ins, 1))) {
mkcopy(state, ins, RHS(ins, 0));
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, tlog2(RHS(ins, 1)));
ins->op = OP_USR;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_smod(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
long_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left % right);
}
else if (is_zero(RHS(ins, 0))) {
mkconst(state, ins, 0);
}
else if (is_zero(RHS(ins, 1))) {
error(state, ins, "division by zero");
}
else if (is_one(RHS(ins, 1))) {
mkconst(state, ins, 0);
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
ins->op = OP_AND;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_umod(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left % right);
}
else if (is_zero(RHS(ins, 0))) {
mkconst(state, ins, 0);
}
else if (is_zero(RHS(ins, 1))) {
error(state, ins, "division by zero");
}
else if (is_one(RHS(ins, 1))) {
mkconst(state, ins, 0);
}
else if (is_pow2(RHS(ins, 1))) {
struct triple *val;
val = int_const(state, ins->type, RHS(ins, 1)->u.cval - 1);
ins->op = OP_AND;
insert_triple(state, state->global_pool, val);
unuse_triple(RHS(ins, 1), ins);
use_triple(val, ins);
RHS(ins, 1) = val;
}
}
static void simplify_add(struct compile_state *state, struct triple *ins)
{
/* start with the pointer on the left */
if (is_pointer(RHS(ins, 1))) {
struct triple *tmp;
tmp = RHS(ins, 0);
RHS(ins, 0) = RHS(ins, 1);
RHS(ins, 1) = tmp;
}
if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
if (RHS(ins, 0)->op == OP_INTCONST) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left + right);
}
else if (RHS(ins, 0)->op == OP_ADDRCONST) {
struct triple *sdecl;
ulong_t left, right;
sdecl = MISC(RHS(ins, 0), 0);
left = RHS(ins, 0)->u.cval;
right = RHS(ins, 1)->u.cval;
mkaddr_const(state, ins, sdecl, left + right);
}
else {
internal_warning(state, ins, "Optimize me!");
}
}
else if (is_const(RHS(ins, 0)) && !is_const(RHS(ins, 1))) {
struct triple *tmp;
tmp = RHS(ins, 1);
RHS(ins, 1) = RHS(ins, 0);
RHS(ins, 0) = tmp;
}
}
static void simplify_sub(struct compile_state *state, struct triple *ins)
{
if (is_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
if (RHS(ins, 0)->op == OP_INTCONST) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left - right);
}
else if (RHS(ins, 0)->op == OP_ADDRCONST) {
struct triple *sdecl;
ulong_t left, right;
sdecl = MISC(RHS(ins, 0), 0);
left = RHS(ins, 0)->u.cval;
right = RHS(ins, 1)->u.cval;
mkaddr_const(state, ins, sdecl, left - right);
}
else {
internal_warning(state, ins, "Optimize me!");
}
}
}
static void simplify_sl(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 1))) {
ulong_t right;
right = read_const(state, ins, RHS(ins, 1));
if (right >= (size_of(state, ins->type))) {
warning(state, ins, "left shift count >= width of type");
}
}
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left << right);
}
}
static void simplify_usr(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 1))) {
ulong_t right;
right = read_const(state, ins, RHS(ins, 1));
if (right >= (size_of(state, ins->type))) {
warning(state, ins, "right shift count >= width of type");
}
}
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left >> right);
}
}
static void simplify_ssr(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 1))) {
ulong_t right;
right = read_const(state, ins, RHS(ins, 1));
if (right >= (size_of(state, ins->type))) {
warning(state, ins, "right shift count >= width of type");
}
}
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
long_t left, right;
left = read_sconst(state, ins, RHS(ins, 0));
right = read_sconst(state, ins, RHS(ins, 1));
mkconst(state, ins, left >> right);
}
}
static void simplify_and(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_simple_const(left) && is_simple_const(right)) {
ulong_t lval, rval;
lval = read_const(state, ins, left);
rval = read_const(state, ins, right);
mkconst(state, ins, lval & rval);
}
else if (is_zero(right) || is_zero(left)) {
mkconst(state, ins, 0);
}
}
static void simplify_or(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_simple_const(left) && is_simple_const(right)) {
ulong_t lval, rval;
lval = read_const(state, ins, left);
rval = read_const(state, ins, right);
mkconst(state, ins, lval | rval);
}
#if 0 /* I need to handle type mismatches here... */
else if (is_zero(right)) {
mkcopy(state, ins, left);
}
else if (is_zero(left)) {
mkcopy(state, ins, right);
}
#endif
}
static void simplify_xor(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t left, right;
left = read_const(state, ins, RHS(ins, 0));
right = read_const(state, ins, RHS(ins, 1));
mkconst(state, ins, left ^ right);
}
}
static void simplify_pos(struct compile_state *state, struct triple *ins)
{
if (is_const(RHS(ins, 0))) {
mkconst(state, ins, RHS(ins, 0)->u.cval);
}
else {
mkcopy(state, ins, RHS(ins, 0));
}
}
static void simplify_neg(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t left;
left = read_const(state, ins, RHS(ins, 0));
mkconst(state, ins, -left);
}
else if (RHS(ins, 0)->op == OP_NEG) {
mkcopy(state, ins, RHS(RHS(ins, 0), 0));
}
}
static void simplify_invert(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t left;
left = read_const(state, ins, RHS(ins, 0));
mkconst(state, ins, ~left);
}
}
static void simplify_eq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_eq(state, ins, left, right);
if (val >= 0) {
mkconst(state, ins, val == 1);
}
}
else if (left == right) {
mkconst(state, ins, 1);
}
}
static void simplify_noteq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_eq(state, ins, left, right);
if (val >= 0) {
mkconst(state, ins, val != 1);
}
}
if (left == right) {
mkconst(state, ins, 0);
}
}
static void simplify_sless(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_scmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val < 0);
}
}
else if (left == right) {
mkconst(state, ins, 0);
}
}
static void simplify_uless(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_ucmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val < 0);
}
}
else if (is_zero(right)) {
mkconst(state, ins, 0);
}
else if (left == right) {
mkconst(state, ins, 0);
}
}
static void simplify_smore(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_scmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val > 0);
}
}
else if (left == right) {
mkconst(state, ins, 0);
}
}
static void simplify_umore(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_ucmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val > 0);
}
}
else if (is_zero(left)) {
mkconst(state, ins, 0);
}
else if (left == right) {
mkconst(state, ins, 0);
}
}
static void simplify_slesseq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_scmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val <= 0);
}
}
else if (left == right) {
mkconst(state, ins, 1);
}
}
static void simplify_ulesseq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_ucmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val <= 0);
}
}
else if (is_zero(left)) {
mkconst(state, ins, 1);
}
else if (left == right) {
mkconst(state, ins, 1);
}
}
static void simplify_smoreeq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_scmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val >= 0);
}
}
else if (left == right) {
mkconst(state, ins, 1);
}
}
static void simplify_umoreeq(struct compile_state *state, struct triple *ins)
{
struct triple *left, *right;
left = RHS(ins, 0);
right = RHS(ins, 1);
if (is_const(left) && is_const(right)) {
int val;
val = const_ucmp(state, ins, left, right);
if ((val >= -1) && (val <= 1)) {
mkconst(state, ins, val >= 0);
}
}
else if (is_zero(right)) {
mkconst(state, ins, 1);
}
else if (left == right) {
mkconst(state, ins, 1);
}
}
static void simplify_lfalse(struct compile_state *state, struct triple *ins)
{
struct triple *rhs;
rhs = RHS(ins, 0);
if (is_const(rhs)) {
mkconst(state, ins, !const_ltrue(state, ins, rhs));
}
/* Otherwise if I am the only user... */
else if ((rhs->use) &&
(rhs->use->member == ins) && (rhs->use->next == 0)) {
int need_copy = 1;
/* Invert a boolean operation */
switch(rhs->op) {
case OP_LTRUE: rhs->op = OP_LFALSE; break;
case OP_LFALSE: rhs->op = OP_LTRUE; break;
case OP_EQ: rhs->op = OP_NOTEQ; break;
case OP_NOTEQ: rhs->op = OP_EQ; break;
case OP_SLESS: rhs->op = OP_SMOREEQ; break;
case OP_ULESS: rhs->op = OP_UMOREEQ; break;
case OP_SMORE: rhs->op = OP_SLESSEQ; break;
case OP_UMORE: rhs->op = OP_ULESSEQ; break;
case OP_SLESSEQ: rhs->op = OP_SMORE; break;
case OP_ULESSEQ: rhs->op = OP_UMORE; break;
case OP_SMOREEQ: rhs->op = OP_SLESS; break;
case OP_UMOREEQ: rhs->op = OP_ULESS; break;
default:
need_copy = 0;
break;
}
if (need_copy) {
mkcopy(state, ins, rhs);
}
}
}
static void simplify_ltrue (struct compile_state *state, struct triple *ins)
{
struct triple *rhs;
rhs = RHS(ins, 0);
if (is_const(rhs)) {
mkconst(state, ins, const_ltrue(state, ins, rhs));
}
else switch(rhs->op) {
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
mkcopy(state, ins, rhs);
}
}
static void simplify_load(struct compile_state *state, struct triple *ins)
{
struct triple *addr, *sdecl, *blob;
/* If I am doing a load with a constant pointer from a constant
* table get the value.
*/
addr = RHS(ins, 0);
if ((addr->op == OP_ADDRCONST) && (sdecl = MISC(addr, 0)) &&
(sdecl->op == OP_SDECL) && (blob = MISC(sdecl, 0)) &&
(blob->op == OP_BLOBCONST)) {
unsigned char buffer[SIZEOF_WORD];
size_t reg_size, mem_size;
const char *src, *end;
ulong_t val;
reg_size = reg_size_of(state, ins->type);
if (reg_size > REG_SIZEOF_REG) {
internal_error(state, ins, "load size greater than register");
}
mem_size = size_of(state, ins->type);
end = blob->u.blob;
end += bits_to_bytes(size_of(state, sdecl->type));
src = blob->u.blob;
src += addr->u.cval;
if (src > end) {
error(state, ins, "Load address out of bounds");
}
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, src, bits_to_bytes(mem_size));
switch(mem_size) {
case SIZEOF_I8: val = *((uint8_t *) buffer); break;
case SIZEOF_I16: val = *((uint16_t *)buffer); break;
case SIZEOF_I32: val = *((uint32_t *)buffer); break;
case SIZEOF_I64: val = *((uint64_t *)buffer); break;
default:
internal_error(state, ins, "mem_size: %d not handled",
mem_size);
val = 0;
break;
}
mkconst(state, ins, val);
}
}
static void simplify_uextract(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t val;
ulong_t mask;
val = read_const(state, ins, RHS(ins, 0));
mask = 1;
mask <<= ins->u.bitfield.size;
mask -= 1;
val >>= ins->u.bitfield.offset;
val &= mask;
mkconst(state, ins, val);
}
}
static void simplify_sextract(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t val;
ulong_t mask;
long_t sval;
val = read_const(state, ins, RHS(ins, 0));
mask = 1;
mask <<= ins->u.bitfield.size;
mask -= 1;
val >>= ins->u.bitfield.offset;
val &= mask;
val <<= (SIZEOF_LONG - ins->u.bitfield.size);
sval = val;
sval >>= (SIZEOF_LONG - ins->u.bitfield.size);
mkconst(state, ins, sval);
}
}
static void simplify_deposit(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0)) && is_simple_const(RHS(ins, 1))) {
ulong_t targ, val;
ulong_t mask;
targ = read_const(state, ins, RHS(ins, 0));
val = read_const(state, ins, RHS(ins, 1));
mask = 1;
mask <<= ins->u.bitfield.size;
mask -= 1;
mask <<= ins->u.bitfield.offset;
targ &= ~mask;
val <<= ins->u.bitfield.offset;
val &= mask;
targ |= val;
mkconst(state, ins, targ);
}
}
static void simplify_copy(struct compile_state *state, struct triple *ins)
{
struct triple *right;
right = RHS(ins, 0);
if (is_subset_type(ins->type, right->type)) {
ins->type = right->type;
}
if (equiv_types(ins->type, right->type)) {
ins->op = OP_COPY;/* I don't need to convert if the types match */
} else {
if (ins->op == OP_COPY) {
internal_error(state, ins, "type mismatch on copy");
}
}
if (is_const(right) && (right->op == OP_ADDRCONST) && is_pointer(ins)) {
struct triple *sdecl;
ulong_t offset;
sdecl = MISC(right, 0);
offset = right->u.cval;
mkaddr_const(state, ins, sdecl, offset);
}
else if (is_const(right) && is_write_compatible(state, ins->type, right->type)) {
switch(right->op) {
case OP_INTCONST:
{
ulong_t left;
left = read_const(state, ins, right);
/* Ensure I have not overflowed the destination. */
if (size_of(state, right->type) > size_of(state, ins->type)) {
ulong_t mask;
mask = 1;
mask <<= size_of(state, ins->type);
mask -= 1;
left &= mask;
}
/* Ensure I am properly sign extended */
if (size_of(state, right->type) < size_of(state, ins->type) &&
is_signed(right->type)) {
long_t val;
int shift;
shift = SIZEOF_LONG - size_of(state, right->type);
val = left;
val <<= shift;
val >>= shift;
left = val;
}
mkconst(state, ins, left);
break;
}
default:
internal_error(state, ins, "uknown constant");
break;
}
}
}
static int phi_present(struct block *block)
{
struct triple *ptr;
if (!block) {
return 0;
}
ptr = block->first;
do {
if (ptr->op == OP_PHI) {
return 1;
}
ptr = ptr->next;
} while(ptr != block->last);
return 0;
}
static int phi_dependency(struct block *block)
{
/* A block has a phi dependency if a phi function
* depends on that block to exist, and makes a block
* that is otherwise useless unsafe to remove.
*/
if (block) {
struct block_set *edge;
for(edge = block->edges; edge; edge = edge->next) {
if (phi_present(edge->member)) {
return 1;
}
}
}
return 0;
}
static struct triple *branch_target(struct compile_state *state, struct triple *ins)
{
struct triple *targ;
targ = TARG(ins, 0);
/* During scc_transform temporary triples are allocated that
* loop back onto themselves. If I see one don't advance the
* target.
*/
while(triple_is_structural(state, targ) &&
(targ->next != targ) && (targ->next != state->first)) {
targ = targ->next;
}
return targ;
}
static void simplify_branch(struct compile_state *state, struct triple *ins)
{
int simplified, loops;
if ((ins->op != OP_BRANCH) && (ins->op != OP_CBRANCH)) {
internal_error(state, ins, "not branch");
}
if (ins->use != 0) {
internal_error(state, ins, "branch use");
}
/* The challenge here with simplify branch is that I need to
* make modifications to the control flow graph as well
* as to the branch instruction itself. That is handled
* by rebuilding the basic blocks after simplify all is called.
*/
/* If we have a branch to an unconditional branch update
* our target. But watch out for dependencies from phi
* functions.
* Also only do this a limited number of times so
* we don't get into an infinite loop.
*/
loops = 0;
do {
struct triple *targ;
simplified = 0;
targ = branch_target(state, ins);
if ((targ != ins) && (targ->op == OP_BRANCH) &&
!phi_dependency(targ->u.block))
{
unuse_triple(TARG(ins, 0), ins);
TARG(ins, 0) = TARG(targ, 0);
use_triple(TARG(ins, 0), ins);
simplified = 1;
}
} while(simplified && (++loops < 20));
/* If we have a conditional branch with a constant condition
* make it an unconditional branch.
*/
if ((ins->op == OP_CBRANCH) && is_simple_const(RHS(ins, 0))) {
struct triple *targ;
ulong_t value;
value = read_const(state, ins, RHS(ins, 0));
unuse_triple(RHS(ins, 0), ins);
targ = TARG(ins, 0);
ins->rhs = 0;
ins->targ = 1;
ins->op = OP_BRANCH;
if (value) {
unuse_triple(ins->next, ins);
TARG(ins, 0) = targ;
}
else {
unuse_triple(targ, ins);
TARG(ins, 0) = ins->next;
}
}
/* If we have a branch to the next instruction,
* make it a noop.
*/
if (TARG(ins, 0) == ins->next) {
unuse_triple(TARG(ins, 0), ins);
if (ins->op == OP_CBRANCH) {
unuse_triple(RHS(ins, 0), ins);
unuse_triple(ins->next, ins);
}
ins->lhs = 0;
ins->rhs = 0;
ins->misc = 0;
ins->targ = 0;
ins->op = OP_NOOP;
if (ins->use) {
internal_error(state, ins, "noop use != 0");
}
}
}
static void simplify_label(struct compile_state *state, struct triple *ins)
{
/* Ignore volatile labels */
if (!triple_is_pure(state, ins, ins->id)) {
return;
}
if (ins->use == 0) {
ins->op = OP_NOOP;
}
else if (ins->prev->op == OP_LABEL) {
/* In general it is not safe to merge one label that
* imediately follows another. The problem is that the empty
* looking block may have phi functions that depend on it.
*/
if (!phi_dependency(ins->prev->u.block)) {
struct triple_set *user, *next;
ins->op = OP_NOOP;
for(user = ins->use; user; user = next) {
struct triple *use, **expr;
next = user->next;
use = user->member;
expr = triple_targ(state, use, 0);
for(;expr; expr = triple_targ(state, use, expr)) {
if (*expr == ins) {
*expr = ins->prev;
unuse_triple(ins, use);
use_triple(ins->prev, use);
}
}
}
if (ins->use) {
internal_error(state, ins, "noop use != 0");
}
}
}
}
static void simplify_phi(struct compile_state *state, struct triple *ins)
{
struct triple **slot;
struct triple *value;
int zrhs, i;
ulong_t cvalue;
slot = &RHS(ins, 0);
zrhs = ins->rhs;
if (zrhs == 0) {
return;
}
/* See if all of the rhs members of a phi have the same value */
if (slot[0] && is_simple_const(slot[0])) {
cvalue = read_const(state, ins, slot[0]);
for(i = 1; i < zrhs; i++) {
if ( !slot[i] ||
!is_simple_const(slot[i]) ||
!equiv_types(slot[0]->type, slot[i]->type) ||
(cvalue != read_const(state, ins, slot[i]))) {
break;
}
}
if (i == zrhs) {
mkconst(state, ins, cvalue);
return;
}
}
/* See if all of rhs members of a phi are the same */
value = slot[0];
for(i = 1; i < zrhs; i++) {
if (slot[i] != value) {
break;
}
}
if (i == zrhs) {
/* If the phi has a single value just copy it */
if (!is_subset_type(ins->type, value->type)) {
internal_error(state, ins, "bad input type to phi");
}
/* Make the types match */
if (!equiv_types(ins->type, value->type)) {
ins->type = value->type;
}
/* Now make the actual copy */
mkcopy(state, ins, value);
return;
}
}
static void simplify_bsf(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t left;
left = read_const(state, ins, RHS(ins, 0));
mkconst(state, ins, bsf(left));
}
}
static void simplify_bsr(struct compile_state *state, struct triple *ins)
{
if (is_simple_const(RHS(ins, 0))) {
ulong_t left;
left = read_const(state, ins, RHS(ins, 0));
mkconst(state, ins, bsr(left));
}
}
typedef void (*simplify_t)(struct compile_state *state, struct triple *ins);
static const struct simplify_table {
simplify_t func;
unsigned long flag;
} table_simplify[] = {
#define simplify_sdivt simplify_noop
#define simplify_udivt simplify_noop
#define simplify_piece simplify_noop
[OP_SDIVT ] = { simplify_sdivt, COMPILER_SIMPLIFY_ARITH },
[OP_UDIVT ] = { simplify_udivt, COMPILER_SIMPLIFY_ARITH },
[OP_SMUL ] = { simplify_smul, COMPILER_SIMPLIFY_ARITH },
[OP_UMUL ] = { simplify_umul, COMPILER_SIMPLIFY_ARITH },
[OP_SDIV ] = { simplify_sdiv, COMPILER_SIMPLIFY_ARITH },
[OP_UDIV ] = { simplify_udiv, COMPILER_SIMPLIFY_ARITH },
[OP_SMOD ] = { simplify_smod, COMPILER_SIMPLIFY_ARITH },
[OP_UMOD ] = { simplify_umod, COMPILER_SIMPLIFY_ARITH },
[OP_ADD ] = { simplify_add, COMPILER_SIMPLIFY_ARITH },
[OP_SUB ] = { simplify_sub, COMPILER_SIMPLIFY_ARITH },
[OP_SL ] = { simplify_sl, COMPILER_SIMPLIFY_SHIFT },
[OP_USR ] = { simplify_usr, COMPILER_SIMPLIFY_SHIFT },
[OP_SSR ] = { simplify_ssr, COMPILER_SIMPLIFY_SHIFT },
[OP_AND ] = { simplify_and, COMPILER_SIMPLIFY_BITWISE },
[OP_XOR ] = { simplify_xor, COMPILER_SIMPLIFY_BITWISE },
[OP_OR ] = { simplify_or, COMPILER_SIMPLIFY_BITWISE },
[OP_POS ] = { simplify_pos, COMPILER_SIMPLIFY_ARITH },
[OP_NEG ] = { simplify_neg, COMPILER_SIMPLIFY_ARITH },
[OP_INVERT ] = { simplify_invert, COMPILER_SIMPLIFY_BITWISE },
[OP_EQ ] = { simplify_eq, COMPILER_SIMPLIFY_LOGICAL },
[OP_NOTEQ ] = { simplify_noteq, COMPILER_SIMPLIFY_LOGICAL },
[OP_SLESS ] = { simplify_sless, COMPILER_SIMPLIFY_LOGICAL },
[OP_ULESS ] = { simplify_uless, COMPILER_SIMPLIFY_LOGICAL },
[OP_SMORE ] = { simplify_smore, COMPILER_SIMPLIFY_LOGICAL },
[OP_UMORE ] = { simplify_umore, COMPILER_SIMPLIFY_LOGICAL },
[OP_SLESSEQ ] = { simplify_slesseq, COMPILER_SIMPLIFY_LOGICAL },
[OP_ULESSEQ ] = { simplify_ulesseq, COMPILER_SIMPLIFY_LOGICAL },
[OP_SMOREEQ ] = { simplify_smoreeq, COMPILER_SIMPLIFY_LOGICAL },
[OP_UMOREEQ ] = { simplify_umoreeq, COMPILER_SIMPLIFY_LOGICAL },
[OP_LFALSE ] = { simplify_lfalse, COMPILER_SIMPLIFY_LOGICAL },
[OP_LTRUE ] = { simplify_ltrue, COMPILER_SIMPLIFY_LOGICAL },
[OP_LOAD ] = { simplify_load, COMPILER_SIMPLIFY_OP },
[OP_STORE ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_UEXTRACT ] = { simplify_uextract, COMPILER_SIMPLIFY_BITFIELD },
[OP_SEXTRACT ] = { simplify_sextract, COMPILER_SIMPLIFY_BITFIELD },
[OP_DEPOSIT ] = { simplify_deposit, COMPILER_SIMPLIFY_BITFIELD },
[OP_NOOP ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_INTCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_BLOBCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_ADDRCONST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_UNKNOWNVAL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_WRITE ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_READ ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_COPY ] = { simplify_copy, COMPILER_SIMPLIFY_COPY },
[OP_CONVERT ] = { simplify_copy, COMPILER_SIMPLIFY_COPY },
[OP_PIECE ] = { simplify_piece, COMPILER_SIMPLIFY_OP },
[OP_ASM ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_DOT ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_INDEX ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_LIST ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_BRANCH ] = { simplify_branch, COMPILER_SIMPLIFY_BRANCH },
[OP_CBRANCH ] = { simplify_branch, COMPILER_SIMPLIFY_BRANCH },
[OP_CALL ] = { simplify_noop, COMPILER_SIMPLIFY_BRANCH },
[OP_RET ] = { simplify_noop, COMPILER_SIMPLIFY_BRANCH },
[OP_LABEL ] = { simplify_label, COMPILER_SIMPLIFY_LABEL },
[OP_ADECL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_SDECL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_PHI ] = { simplify_phi, COMPILER_SIMPLIFY_PHI },
[OP_INB ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_INW ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_INL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_OUTB ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_OUTW ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_OUTL ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_BSF ] = { simplify_bsf, COMPILER_SIMPLIFY_OP },
[OP_BSR ] = { simplify_bsr, COMPILER_SIMPLIFY_OP },
[OP_RDMSR ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_WRMSR ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
[OP_HLT ] = { simplify_noop, COMPILER_SIMPLIFY_OP },
};
static inline void debug_simplify(struct compile_state *state,
simplify_t do_simplify, struct triple *ins)
{
#if DEBUG_SIMPLIFY_HIRES
if (state->functions_joined && (do_simplify != simplify_noop)) {
/* High resolution debugging mode */
fprintf(state->dbgout, "simplifing: ");
display_triple(state->dbgout, ins);
}
#endif
do_simplify(state, ins);
#if DEBUG_SIMPLIFY_HIRES
if (state->functions_joined && (do_simplify != simplify_noop)) {
/* High resolution debugging mode */
fprintf(state->dbgout, "simplified: ");
display_triple(state->dbgout, ins);
}
#endif
}
static void simplify(struct compile_state *state, struct triple *ins)
{
int op;
simplify_t do_simplify;
if (ins == &unknown_triple) {
internal_error(state, ins, "simplifying the unknown triple?");
}
do {
op = ins->op;
do_simplify = 0;
if ((op < 0) || (op > sizeof(table_simplify)/sizeof(table_simplify[0]))) {
do_simplify = 0;
}
else {
do_simplify = table_simplify[op].func;
}
if (do_simplify &&
!(state->compiler->flags & table_simplify[op].flag)) {
do_simplify = simplify_noop;
}
if (do_simplify && (ins->id & TRIPLE_FLAG_VOLATILE)) {
do_simplify = simplify_noop;
}
if (!do_simplify) {
internal_error(state, ins, "cannot simplify op: %d %s",
op, tops(op));
return;
}
debug_simplify(state, do_simplify, ins);
} while(ins->op != op);
}
static void rebuild_ssa_form(struct compile_state *state);
static void simplify_all(struct compile_state *state)
{
struct triple *ins, *first;
if (!(state->compiler->flags & COMPILER_SIMPLIFY)) {
return;
}
first = state->first;
ins = first->prev;
do {
simplify(state, ins);
ins = ins->prev;
} while(ins != first->prev);
ins = first;
do {
simplify(state, ins);
ins = ins->next;
}while(ins != first);
rebuild_ssa_form(state);
print_blocks(state, __func__, state->dbgout);
}
/*
* Builtins....
* ============================
*/
static void register_builtin_function(struct compile_state *state,
const char *name, int op, struct type *rtype, ...)
{
struct type *ftype, *atype, *ctype, *crtype, *param, **next;
struct triple *def, *result, *work, *first, *retvar, *ret;
struct hash_entry *ident;
struct file_state file;
int parameters;
int name_len;
va_list args;
int i;
/* Dummy file state to get debug handling right */
memset(&file, 0, sizeof(file));
file.basename = "<built-in>";
file.line = 1;
file.report_line = 1;
file.report_name = file.basename;
file.prev = state->file;
state->file = &file;
state->function = name;
/* Find the Parameter count */
valid_op(state, op);
parameters = table_ops[op].rhs;
if (parameters < 0 ) {
internal_error(state, 0, "Invalid builtin parameter count");
}
/* Find the function type */
ftype = new_type(TYPE_FUNCTION | STOR_INLINE | STOR_STATIC, rtype, 0);
ftype->elements = parameters;
next = &ftype->right;
va_start(args, rtype);
for(i = 0; i < parameters; i++) {
atype = va_arg(args, struct type *);
if (!*next) {
*next = atype;
} else {
*next = new_type(TYPE_PRODUCT, *next, atype);
next = &((*next)->right);
}
}
if (!*next) {
*next = &void_type;
}
va_end(args);
/* Get the initial closure type */
ctype = new_type(TYPE_JOIN, &void_type, 0);
ctype->elements = 1;
/* Get the return type */
crtype = new_type(TYPE_TUPLE, new_type(TYPE_PRODUCT, ctype, rtype), 0);
crtype->elements = 2;
/* Generate the needed triples */
def = triple(state, OP_LIST, ftype, 0, 0);
first = label(state);
RHS(def, 0) = first;
result = flatten(state, first, variable(state, crtype));
retvar = flatten(state, first, variable(state, &void_ptr_type));
ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
/* Now string them together */
param = ftype->right;
for(i = 0; i < parameters; i++) {
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
atype = param->left;
} else {
atype = param;
}
flatten(state, first, variable(state, atype));
param = param->right;
}
work = new_triple(state, op, rtype, -1, parameters);
generate_lhs_pieces(state, work);
for(i = 0; i < parameters; i++) {
RHS(work, i) = read_expr(state, farg(state, def, i));
}
if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
work = write_expr(state, deref_index(state, result, 1), work);
}
work = flatten(state, first, work);
flatten(state, first, label(state));
ret = flatten(state, first, ret);
name_len = strlen(name);
ident = lookup(state, name, name_len);
ftype->type_ident = ident;
symbol(state, ident, &ident->sym_ident, def, ftype);
state->file = file.prev;
state->function = 0;
state->main_function = 0;
if (!state->functions) {
state->functions = def;
} else {
insert_triple(state, state->functions, def);
}
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->dbgout;
fprintf(fp, "\n");
loc(fp, state, 0);
fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
display_func(state, fp, def);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
}
}
static struct type *partial_struct(struct compile_state *state,
const char *field_name, struct type *type, struct type *rest)
{
struct hash_entry *field_ident;
struct type *result;
int field_name_len;
field_name_len = strlen(field_name);
field_ident = lookup(state, field_name, field_name_len);
result = clone_type(0, type);
result->field_ident = field_ident;
if (rest) {
result = new_type(TYPE_PRODUCT, result, rest);
}
return result;
}
static struct type *register_builtin_type(struct compile_state *state,
const char *name, struct type *type)
{
struct hash_entry *ident;
int name_len;
name_len = strlen(name);
ident = lookup(state, name, name_len);
if ((type->type & TYPE_MASK) == TYPE_PRODUCT) {
ulong_t elements = 0;
struct type *field;
type = new_type(TYPE_STRUCT, type, 0);
field = type->left;
while((field->type & TYPE_MASK) == TYPE_PRODUCT) {
elements++;
field = field->right;
}
elements++;
symbol(state, ident, &ident->sym_tag, 0, type);
type->type_ident = ident;
type->elements = elements;
}
symbol(state, ident, &ident->sym_ident, 0, type);
ident->tok = TOK_TYPE_NAME;
return type;
}
static void register_builtins(struct compile_state *state)
{
struct type *div_type, *ldiv_type;
struct type *udiv_type, *uldiv_type;
struct type *msr_type;
div_type = register_builtin_type(state, "__builtin_div_t",
partial_struct(state, "quot", &int_type,
partial_struct(state, "rem", &int_type, 0)));
ldiv_type = register_builtin_type(state, "__builtin_ldiv_t",
partial_struct(state, "quot", &long_type,
partial_struct(state, "rem", &long_type, 0)));
udiv_type = register_builtin_type(state, "__builtin_udiv_t",
partial_struct(state, "quot", &uint_type,
partial_struct(state, "rem", &uint_type, 0)));
uldiv_type = register_builtin_type(state, "__builtin_uldiv_t",
partial_struct(state, "quot", &ulong_type,
partial_struct(state, "rem", &ulong_type, 0)));
register_builtin_function(state, "__builtin_div", OP_SDIVT, div_type,
&int_type, &int_type);
register_builtin_function(state, "__builtin_ldiv", OP_SDIVT, ldiv_type,
&long_type, &long_type);
register_builtin_function(state, "__builtin_udiv", OP_UDIVT, udiv_type,
&uint_type, &uint_type);
register_builtin_function(state, "__builtin_uldiv", OP_UDIVT, uldiv_type,
&ulong_type, &ulong_type);
register_builtin_function(state, "__builtin_inb", OP_INB, &uchar_type,
&ushort_type);
register_builtin_function(state, "__builtin_inw", OP_INW, &ushort_type,
&ushort_type);
register_builtin_function(state, "__builtin_inl", OP_INL, &uint_type,
&ushort_type);
register_builtin_function(state, "__builtin_outb", OP_OUTB, &void_type,
&uchar_type, &ushort_type);
register_builtin_function(state, "__builtin_outw", OP_OUTW, &void_type,
&ushort_type, &ushort_type);
register_builtin_function(state, "__builtin_outl", OP_OUTL, &void_type,
&uint_type, &ushort_type);
register_builtin_function(state, "__builtin_bsf", OP_BSF, &int_type,
&int_type);
register_builtin_function(state, "__builtin_bsr", OP_BSR, &int_type,
&int_type);
msr_type = register_builtin_type(state, "__builtin_msr_t",
partial_struct(state, "lo", &ulong_type,
partial_struct(state, "hi", &ulong_type, 0)));
register_builtin_function(state, "__builtin_rdmsr", OP_RDMSR, msr_type,
&ulong_type);
register_builtin_function(state, "__builtin_wrmsr", OP_WRMSR, &void_type,
&ulong_type, &ulong_type, &ulong_type);
register_builtin_function(state, "__builtin_hlt", OP_HLT, &void_type,
&void_type);
}
static struct type *declarator(
struct compile_state *state, struct type *type,
struct hash_entry **ident, int need_ident);
static void decl(struct compile_state *state, struct triple *first);
static struct type *specifier_qualifier_list(struct compile_state *state);
#if DEBUG_ROMCC_WARNING
static int isdecl_specifier(int tok);
#endif
static struct type *decl_specifiers(struct compile_state *state);
static int istype(int tok);
static struct triple *expr(struct compile_state *state);
static struct triple *assignment_expr(struct compile_state *state);
static struct type *type_name(struct compile_state *state);
static void statement(struct compile_state *state, struct triple *first);
static struct triple *call_expr(
struct compile_state *state, struct triple *func)
{
struct triple *def;
struct type *param, *type;
ulong_t pvals, index;
if ((func->type->type & TYPE_MASK) != TYPE_FUNCTION) {
error(state, 0, "Called object is not a function");
}
if (func->op != OP_LIST) {
internal_error(state, 0, "improper function");
}
eat(state, TOK_LPAREN);
/* Find the return type without any specifiers */
type = clone_type(0, func->type->left);
/* Count the number of rhs entries for OP_FCALL */
param = func->type->right;
pvals = 0;
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
pvals++;
param = param->right;
}
if ((param->type & TYPE_MASK) != TYPE_VOID) {
pvals++;
}
def = new_triple(state, OP_FCALL, type, -1, pvals);
MISC(def, 0) = func;
param = func->type->right;
for(index = 0; index < pvals; index++) {
struct triple *val;
struct type *arg_type;
val = read_expr(state, assignment_expr(state));
arg_type = param;
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
arg_type = param->left;
}
write_compatible(state, arg_type, val->type);
RHS(def, index) = val;
if (index != (pvals - 1)) {
eat(state, TOK_COMMA);
param = param->right;
}
}
eat(state, TOK_RPAREN);
return def;
}
static struct triple *character_constant(struct compile_state *state)
{
struct triple *def;
struct token *tk;
const signed char *str, *end;
int c;
int str_len;
tk = eat(state, TOK_LIT_CHAR);
str = (signed char *)tk->val.str + 1;
str_len = tk->str_len - 2;
if (str_len <= 0) {
error(state, 0, "empty character constant");
}
end = str + str_len;
c = char_value(state, &str, end);
if (str != end) {
error(state, 0, "multibyte character constant not supported");
}
def = int_const(state, &char_type, (ulong_t)((long_t)c));
return def;
}
static struct triple *string_constant(struct compile_state *state)
{
struct triple *def;
struct token *tk;
struct type *type;
const signed char *str, *end;
signed char *buf, *ptr;
int str_len;
buf = 0;
type = new_type(TYPE_ARRAY, &char_type, 0);
type->elements = 0;
/* The while loop handles string concatenation */
do {
tk = eat(state, TOK_LIT_STRING);
str = (signed char *)tk->val.str + 1;
str_len = tk->str_len - 2;
if (str_len < 0) {
error(state, 0, "negative string constant length");
}
/* ignore empty string tokens */
if ('"' == *str && 0 == str[1])
continue;
end = str + str_len;
ptr = buf;
buf = xmalloc(type->elements + str_len + 1, "string_constant");
memcpy(buf, ptr, type->elements);
ptr = buf + type->elements;
do {
*ptr++ = char_value(state, &str, end);
} while(str < end);
type->elements = ptr - buf;
} while(peek(state) == TOK_LIT_STRING);
*ptr = '\0';
type->elements += 1;
def = triple(state, OP_BLOBCONST, type, 0, 0);
def->u.blob = buf;
return def;
}
static struct triple *integer_constant(struct compile_state *state)
{
struct triple *def;
unsigned long val;
struct token *tk;
char *end;
int u, l, decimal;
struct type *type;
tk = eat(state, TOK_LIT_INT);
errno = 0;
decimal = (tk->val.str[0] != '0');
val = strtoul(tk->val.str, &end, 0);
if ((val > ULONG_T_MAX) || ((val == ULONG_MAX) && (errno == ERANGE))) {
error(state, 0, "Integer constant to large");
}
u = l = 0;
if ((*end == 'u') || (*end == 'U')) {
u = 1;
end++;
}
if ((*end == 'l') || (*end == 'L')) {
l = 1;
end++;
}
if ((*end == 'u') || (*end == 'U')) {
u = 1;
end++;
}
if (*end) {
error(state, 0, "Junk at end of integer constant");
}
if (u && l) {
type = &ulong_type;
}
else if (l) {
type = &long_type;
if (!decimal && (val > LONG_T_MAX)) {
type = &ulong_type;
}
}
else if (u) {
type = &uint_type;
if (val > UINT_T_MAX) {
type = &ulong_type;
}
}
else {
type = &int_type;
if (!decimal && (val > INT_T_MAX) && (val <= UINT_T_MAX)) {
type = &uint_type;
}
else if (!decimal && (val > LONG_T_MAX)) {
type = &ulong_type;
}
else if (val > INT_T_MAX) {
type = &long_type;
}
}
def = int_const(state, type, val);
return def;
}
static struct triple *primary_expr(struct compile_state *state)
{
struct triple *def;
int tok;
tok = peek(state);
switch(tok) {
case TOK_IDENT:
{
struct hash_entry *ident;
/* Here ident is either:
* a varable name
* a function name
*/
ident = eat(state, TOK_IDENT)->ident;
if (!ident->sym_ident) {
error(state, 0, "%s undeclared", ident->name);
}
def = ident->sym_ident->def;
break;
}
case TOK_ENUM_CONST:
{
struct hash_entry *ident;
/* Here ident is an enumeration constant */
ident = eat(state, TOK_ENUM_CONST)->ident;
if (!ident->sym_ident) {
error(state, 0, "%s undeclared", ident->name);
}
def = ident->sym_ident->def;
break;
}
case TOK_MIDENT:
{
struct hash_entry *ident;
ident = eat(state, TOK_MIDENT)->ident;
warning(state, 0, "Replacing undefined macro: %s with 0",
ident->name);
def = int_const(state, &int_type, 0);
break;
}
case TOK_LPAREN:
eat(state, TOK_LPAREN);
def = expr(state);
eat(state, TOK_RPAREN);
break;
case TOK_LIT_INT:
def = integer_constant(state);
break;
case TOK_LIT_FLOAT:
eat(state, TOK_LIT_FLOAT);
error(state, 0, "Floating point constants not supported");
def = 0;
FINISHME();
break;
case TOK_LIT_CHAR:
def = character_constant(state);
break;
case TOK_LIT_STRING:
def = string_constant(state);
break;
default:
def = 0;
error(state, 0, "Unexpected token: %s\n", tokens[tok]);
}
return def;
}
static struct triple *postfix_expr(struct compile_state *state)
{
struct triple *def;
int postfix;
def = primary_expr(state);
do {
struct triple *left;
int tok;
postfix = 1;
left = def;
switch((tok = peek(state))) {
case TOK_LBRACKET:
eat(state, TOK_LBRACKET);
def = mk_subscript_expr(state, left, expr(state));
eat(state, TOK_RBRACKET);
break;
case TOK_LPAREN:
def = call_expr(state, def);
break;
case TOK_DOT:
{
struct hash_entry *field;
eat(state, TOK_DOT);
field = eat(state, TOK_IDENT)->ident;
def = deref_field(state, def, field);
break;
}
case TOK_ARROW:
{
struct hash_entry *field;
eat(state, TOK_ARROW);
field = eat(state, TOK_IDENT)->ident;
def = mk_deref_expr(state, read_expr(state, def));
def = deref_field(state, def, field);
break;
}
case TOK_PLUSPLUS:
eat(state, TOK_PLUSPLUS);
def = mk_post_inc_expr(state, left);
break;
case TOK_MINUSMINUS:
eat(state, TOK_MINUSMINUS);
def = mk_post_dec_expr(state, left);
break;
default:
postfix = 0;
break;
}
} while(postfix);
return def;
}
static struct triple *cast_expr(struct compile_state *state);
static struct triple *unary_expr(struct compile_state *state)
{
struct triple *def, *right;
int tok;
switch((tok = peek(state))) {
case TOK_PLUSPLUS:
eat(state, TOK_PLUSPLUS);
def = mk_pre_inc_expr(state, unary_expr(state));
break;
case TOK_MINUSMINUS:
eat(state, TOK_MINUSMINUS);
def = mk_pre_dec_expr(state, unary_expr(state));
break;
case TOK_AND:
eat(state, TOK_AND);
def = mk_addr_expr(state, cast_expr(state), 0);
break;
case TOK_STAR:
eat(state, TOK_STAR);
def = mk_deref_expr(state, read_expr(state, cast_expr(state)));
break;
case TOK_PLUS:
eat(state, TOK_PLUS);
right = read_expr(state, cast_expr(state));
arithmetic(state, right);
def = integral_promotion(state, right);
break;
case TOK_MINUS:
eat(state, TOK_MINUS);
right = read_expr(state, cast_expr(state));
arithmetic(state, right);
def = integral_promotion(state, right);
def = triple(state, OP_NEG, def->type, def, 0);
break;
case TOK_TILDE:
eat(state, TOK_TILDE);
right = read_expr(state, cast_expr(state));
integral(state, right);
def = integral_promotion(state, right);
def = triple(state, OP_INVERT, def->type, def, 0);
break;
case TOK_BANG:
eat(state, TOK_BANG);
right = read_expr(state, cast_expr(state));
bool(state, right);
def = lfalse_expr(state, right);
break;
case TOK_SIZEOF:
{
struct type *type;
int tok1, tok2;
eat(state, TOK_SIZEOF);
tok1 = peek(state);
tok2 = peek2(state);
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
eat(state, TOK_LPAREN);
type = type_name(state);
eat(state, TOK_RPAREN);
}
else {
struct triple *expr;
expr = unary_expr(state);
type = expr->type;
release_expr(state, expr);
}
def = int_const(state, &ulong_type, size_of_in_bytes(state, type));
break;
}
case TOK_ALIGNOF:
{
struct type *type;
int tok1, tok2;
eat(state, TOK_ALIGNOF);
tok1 = peek(state);
tok2 = peek2(state);
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
eat(state, TOK_LPAREN);
type = type_name(state);
eat(state, TOK_RPAREN);
}
else {
struct triple *expr;
expr = unary_expr(state);
type = expr->type;
release_expr(state, expr);
}
def = int_const(state, &ulong_type, align_of_in_bytes(state, type));
break;
}
case TOK_MDEFINED:
{
/* We only come here if we are called from the preprocessor */
struct hash_entry *ident;
int parens;
eat(state, TOK_MDEFINED);
parens = 0;
if (pp_peek(state) == TOK_LPAREN) {
pp_eat(state, TOK_LPAREN);
parens = 1;
}
ident = pp_eat(state, TOK_MIDENT)->ident;
if (parens) {
eat(state, TOK_RPAREN);
}
def = int_const(state, &int_type, ident->sym_define != 0);
break;
}
default:
def = postfix_expr(state);
break;
}
return def;
}
static struct triple *cast_expr(struct compile_state *state)
{
struct triple *def;
int tok1, tok2;
tok1 = peek(state);
tok2 = peek2(state);
if ((tok1 == TOK_LPAREN) && istype(tok2)) {
struct type *type;
eat(state, TOK_LPAREN);
type = type_name(state);
eat(state, TOK_RPAREN);
def = mk_cast_expr(state, type, cast_expr(state));
}
else {
def = unary_expr(state);
}
return def;
}
static struct triple *mult_expr(struct compile_state *state)
{
struct triple *def;
int done;
def = cast_expr(state);
do {
struct triple *left, *right;
struct type *result_type;
int tok, op, sign;
done = 0;
tok = peek(state);
switch(tok) {
case TOK_STAR:
case TOK_DIV:
case TOK_MOD:
left = read_expr(state, def);
arithmetic(state, left);
eat(state, tok);
right = read_expr(state, cast_expr(state));
arithmetic(state, right);
result_type = arithmetic_result(state, left, right);
sign = is_signed(result_type);
op = -1;
switch(tok) {
case TOK_STAR: op = sign? OP_SMUL : OP_UMUL; break;
case TOK_DIV: op = sign? OP_SDIV : OP_UDIV; break;
case TOK_MOD: op = sign? OP_SMOD : OP_UMOD; break;
}
def = triple(state, op, result_type, left, right);
break;
default:
done = 1;
break;
}
} while(!done);
return def;
}
static struct triple *add_expr(struct compile_state *state)
{
struct triple *def;
int done;
def = mult_expr(state);
do {
done = 0;
switch( peek(state)) {
case TOK_PLUS:
eat(state, TOK_PLUS);
def = mk_add_expr(state, def, mult_expr(state));
break;
case TOK_MINUS:
eat(state, TOK_MINUS);
def = mk_sub_expr(state, def, mult_expr(state));
break;
default:
done = 1;
break;
}
} while(!done);
return def;
}
static struct triple *shift_expr(struct compile_state *state)
{
struct triple *def;
int done;
def = add_expr(state);
do {
struct triple *left, *right;
int tok, op;
done = 0;
switch((tok = peek(state))) {
case TOK_SL:
case TOK_SR:
left = read_expr(state, def);
integral(state, left);
left = integral_promotion(state, left);
eat(state, tok);
right = read_expr(state, add_expr(state));
integral(state, right);
right = integral_promotion(state, right);
op = (tok == TOK_SL)? OP_SL :
is_signed(left->type)? OP_SSR: OP_USR;
def = triple(state, op, left->type, left, right);
break;
default:
done = 1;
break;
}
} while(!done);
return def;
}
static struct triple *relational_expr(struct compile_state *state)
{
#if DEBUG_ROMCC_WARNINGS
#warning "Extend relational exprs to work on more than arithmetic types"
#endif
struct triple *def;
int done;
def = shift_expr(state);
do {
struct triple *left, *right;
struct type *arg_type;
int tok, op, sign;
done = 0;
switch((tok = peek(state))) {
case TOK_LESS:
case TOK_MORE:
case TOK_LESSEQ:
case TOK_MOREEQ:
left = read_expr(state, def);
arithmetic(state, left);
eat(state, tok);
right = read_expr(state, shift_expr(state));
arithmetic(state, right);
arg_type = arithmetic_result(state, left, right);
sign = is_signed(arg_type);
op = -1;
switch(tok) {
case TOK_LESS: op = sign? OP_SLESS : OP_ULESS; break;
case TOK_MORE: op = sign? OP_SMORE : OP_UMORE; break;
case TOK_LESSEQ: op = sign? OP_SLESSEQ : OP_ULESSEQ; break;
case TOK_MOREEQ: op = sign? OP_SMOREEQ : OP_UMOREEQ; break;
}
def = triple(state, op, &int_type, left, right);
break;
default:
done = 1;
break;
}
} while(!done);
return def;
}
static struct triple *equality_expr(struct compile_state *state)
{
#if DEBUG_ROMCC_WARNINGS
#warning "Extend equality exprs to work on more than arithmetic types"
#endif
struct triple *def;
int done;
def = relational_expr(state);
do {
struct triple *left, *right;
int tok, op;
done = 0;
switch((tok = peek(state))) {
case TOK_EQEQ:
case TOK_NOTEQ:
left = read_expr(state, def);
arithmetic(state, left);
eat(state, tok);
right = read_expr(state, relational_expr(state));
arithmetic(state, right);
op = (tok == TOK_EQEQ) ? OP_EQ: OP_NOTEQ;
def = triple(state, op, &int_type, left, right);
break;
default:
done = 1;
break;
}
} while(!done);
return def;
}
static struct triple *and_expr(struct compile_state *state)
{
struct triple *def;
def = equality_expr(state);
while(peek(state) == TOK_AND) {
struct triple *left, *right;
struct type *result_type;
left = read_expr(state, def);
integral(state, left);
eat(state, TOK_AND);
right = read_expr(state, equality_expr(state));
integral(state, right);
result_type = arithmetic_result(state, left, right);
def = triple(state, OP_AND, result_type, left, right);
}
return def;
}
static struct triple *xor_expr(struct compile_state *state)
{
struct triple *def;
def = and_expr(state);
while(peek(state) == TOK_XOR) {
struct triple *left, *right;
struct type *result_type;
left = read_expr(state, def);
integral(state, left);
eat(state, TOK_XOR);
right = read_expr(state, and_expr(state));
integral(state, right);
result_type = arithmetic_result(state, left, right);
def = triple(state, OP_XOR, result_type, left, right);
}
return def;
}
static struct triple *or_expr(struct compile_state *state)
{
struct triple *def;
def = xor_expr(state);
while(peek(state) == TOK_OR) {
struct triple *left, *right;
struct type *result_type;
left = read_expr(state, def);
integral(state, left);
eat(state, TOK_OR);
right = read_expr(state, xor_expr(state));
integral(state, right);
result_type = arithmetic_result(state, left, right);
def = triple(state, OP_OR, result_type, left, right);
}
return def;
}
static struct triple *land_expr(struct compile_state *state)
{
struct triple *def;
def = or_expr(state);
while(peek(state) == TOK_LOGAND) {
struct triple *left, *right;
left = read_expr(state, def);
bool(state, left);
eat(state, TOK_LOGAND);
right = read_expr(state, or_expr(state));
bool(state, right);
def = mkland_expr(state,
ltrue_expr(state, left),
ltrue_expr(state, right));
}
return def;
}
static struct triple *lor_expr(struct compile_state *state)
{
struct triple *def;
def = land_expr(state);
while(peek(state) == TOK_LOGOR) {
struct triple *left, *right;
left = read_expr(state, def);
bool(state, left);
eat(state, TOK_LOGOR);
right = read_expr(state, land_expr(state));
bool(state, right);
def = mklor_expr(state,
ltrue_expr(state, left),
ltrue_expr(state, right));
}
return def;
}
static struct triple *conditional_expr(struct compile_state *state)
{
struct triple *def;
def = lor_expr(state);
if (peek(state) == TOK_QUEST) {
struct triple *test, *left, *right;
bool(state, def);
test = ltrue_expr(state, read_expr(state, def));
eat(state, TOK_QUEST);
left = read_expr(state, expr(state));
eat(state, TOK_COLON);
right = read_expr(state, conditional_expr(state));
def = mkcond_expr(state, test, left, right);
}
return def;
}
struct cv_triple {
struct triple *val;
int id;
};
static void set_cv(struct compile_state *state, struct cv_triple *cv,
struct triple *dest, struct triple *val)
{
if (cv[dest->id].val) {
free_triple(state, cv[dest->id].val);
}
cv[dest->id].val = val;
}
static struct triple *get_cv(struct compile_state *state, struct cv_triple *cv,
struct triple *src)
{
return cv[src->id].val;
}
static struct triple *eval_const_expr(
struct compile_state *state, struct triple *expr)
{
struct triple *def;
if (is_const(expr)) {
def = expr;
}
else {
/* If we don't start out as a constant simplify into one */
struct triple *head, *ptr;
struct cv_triple *cv;
int i, count;
head = label(state); /* dummy initial triple */
flatten(state, head, expr);
count = 1;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
count++;
}
cv = xcmalloc(sizeof(struct cv_triple)*count, "const value vector");
i = 1;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
cv[i].val = 0;
cv[i].id = ptr->id;
ptr->id = i;
i++;
}
ptr = head->next;
do {
valid_ins(state, ptr);
if ((ptr->op == OP_PHI) || (ptr->op == OP_LIST)) {
internal_error(state, ptr,
"unexpected %s in constant expression",
tops(ptr->op));
}
else if (ptr->op == OP_LIST) {
}
else if (triple_is_structural(state, ptr)) {
ptr = ptr->next;
}
else if (triple_is_ubranch(state, ptr)) {
ptr = TARG(ptr, 0);
}
else if (triple_is_cbranch(state, ptr)) {
struct triple *cond_val;
cond_val = get_cv(state, cv, RHS(ptr, 0));
if (!cond_val || !is_const(cond_val) ||
(cond_val->op != OP_INTCONST))
{
internal_error(state, ptr, "bad branch condition");
}
if (cond_val->u.cval == 0) {
ptr = ptr->next;
} else {
ptr = TARG(ptr, 0);
}
}
else if (triple_is_branch(state, ptr)) {
error(state, ptr, "bad branch type in constant expression");
}
else if (ptr->op == OP_WRITE) {
struct triple *val;
val = get_cv(state, cv, RHS(ptr, 0));
set_cv(state, cv, MISC(ptr, 0),
copy_triple(state, val));
set_cv(state, cv, ptr,
copy_triple(state, val));
ptr = ptr->next;
}
else if (ptr->op == OP_READ) {
set_cv(state, cv, ptr,
copy_triple(state,
get_cv(state, cv, RHS(ptr, 0))));
ptr = ptr->next;
}
else if (triple_is_pure(state, ptr, cv[ptr->id].id)) {
struct triple *val, **rhs;
val = copy_triple(state, ptr);
rhs = triple_rhs(state, val, 0);
for(; rhs; rhs = triple_rhs(state, val, rhs)) {
if (!*rhs) {
internal_error(state, ptr, "Missing rhs");
}
*rhs = get_cv(state, cv, *rhs);
}
simplify(state, val);
set_cv(state, cv, ptr, val);
ptr = ptr->next;
}
else {
error(state, ptr, "impure operation in constant expression");
}
} while(ptr != head);
/* Get the result value */
def = get_cv(state, cv, head->prev);
cv[head->prev->id].val = 0;
/* Free the temporary values */
for(i = 0; i < count; i++) {
if (cv[i].val) {
free_triple(state, cv[i].val);
cv[i].val = 0;
}
}
xfree(cv);
/* Free the intermediate expressions */
while(head->next != head) {
release_triple(state, head->next);
}
free_triple(state, head);
}
if (!is_const(def)) {
error(state, expr, "Not a constant expression");
}
return def;
}
static struct triple *constant_expr(struct compile_state *state)
{
return eval_const_expr(state, conditional_expr(state));
}
static struct triple *assignment_expr(struct compile_state *state)
{
struct triple *def, *left, *right;
int tok, op, sign;
/* The C grammer in K&R shows assignment expressions
* only taking unary expressions as input on their
* left hand side. But specifies the precedence of
* assignemnt as the lowest operator except for comma.
*
* Allowing conditional expressions on the left hand side
* of an assignement results in a grammar that accepts
* a larger set of statements than standard C. As long
* as the subset of the grammar that is standard C behaves
* correctly this should cause no problems.
*
* For the extra token strings accepted by the grammar
* none of them should produce a valid lvalue, so they
* should not produce functioning programs.
*
* GCC has this bug as well, so surprises should be minimal.
*/
def = conditional_expr(state);
left = def;
switch((tok = peek(state))) {
case TOK_EQ:
lvalue(state, left);
eat(state, TOK_EQ);
def = write_expr(state, left,
read_expr(state, assignment_expr(state)));
break;
case TOK_TIMESEQ:
case TOK_DIVEQ:
case TOK_MODEQ:
lvalue(state, left);
arithmetic(state, left);
eat(state, tok);
right = read_expr(state, assignment_expr(state));
arithmetic(state, right);
sign = is_signed(left->type);
op = -1;
switch(tok) {
case TOK_TIMESEQ: op = sign? OP_SMUL : OP_UMUL; break;
case TOK_DIVEQ: op = sign? OP_SDIV : OP_UDIV; break;
case TOK_MODEQ: op = sign? OP_SMOD : OP_UMOD; break;
}
def = write_expr(state, left,
triple(state, op, left->type,
read_expr(state, left), right));
break;
case TOK_PLUSEQ:
lvalue(state, left);
eat(state, TOK_PLUSEQ);
def = write_expr(state, left,
mk_add_expr(state, left, assignment_expr(state)));
break;
case TOK_MINUSEQ:
lvalue(state, left);
eat(state, TOK_MINUSEQ);
def = write_expr(state, left,
mk_sub_expr(state, left, assignment_expr(state)));
break;
case TOK_SLEQ:
case TOK_SREQ:
case TOK_ANDEQ:
case TOK_XOREQ:
case TOK_OREQ:
lvalue(state, left);
integral(state, left);
eat(state, tok);
right = read_expr(state, assignment_expr(state));
integral(state, right);
right = integral_promotion(state, right);
sign = is_signed(left->type);
op = -1;
switch(tok) {
case TOK_SLEQ: op = OP_SL; break;
case TOK_SREQ: op = sign? OP_SSR: OP_USR; break;
case TOK_ANDEQ: op = OP_AND; break;
case TOK_XOREQ: op = OP_XOR; break;
case TOK_OREQ: op = OP_OR; break;
}
def = write_expr(state, left,
triple(state, op, left->type,
read_expr(state, left), right));
break;
}
return def;
}
static struct triple *expr(struct compile_state *state)
{
struct triple *def;
def = assignment_expr(state);
while(peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
def = mkprog(state, def, assignment_expr(state), 0UL);
}
return def;
}
static void expr_statement(struct compile_state *state, struct triple *first)
{
if (peek(state) != TOK_SEMI) {
/* lvalue conversions always apply except when certian operators
* are applied. I apply the lvalue conversions here
* as I know no more operators will be applied.
*/
flatten(state, first, lvalue_conversion(state, expr(state)));
}
eat(state, TOK_SEMI);
}
static void if_statement(struct compile_state *state, struct triple *first)
{
struct triple *test, *jmp1, *jmp2, *middle, *end;
jmp1 = jmp2 = middle = 0;
eat(state, TOK_IF);
eat(state, TOK_LPAREN);
test = expr(state);
bool(state, test);
/* Cleanup and invert the test */
test = lfalse_expr(state, read_expr(state, test));
eat(state, TOK_RPAREN);
/* Generate the needed pieces */
middle = label(state);
jmp1 = branch(state, middle, test);
/* Thread the pieces together */
flatten(state, first, test);
flatten(state, first, jmp1);
flatten(state, first, label(state));
statement(state, first);
if (peek(state) == TOK_ELSE) {
eat(state, TOK_ELSE);
/* Generate the rest of the pieces */
end = label(state);
jmp2 = branch(state, end, 0);
/* Thread them together */
flatten(state, first, jmp2);
flatten(state, first, middle);
statement(state, first);
flatten(state, first, end);
}
else {
flatten(state, first, middle);
}
}
static void for_statement(struct compile_state *state, struct triple *first)
{
struct triple *head, *test, *tail, *jmp1, *jmp2, *end;
struct triple *label1, *label2, *label3;
struct hash_entry *ident;
eat(state, TOK_FOR);
eat(state, TOK_LPAREN);
head = test = tail = jmp1 = jmp2 = 0;
if (peek(state) != TOK_SEMI) {
head = expr(state);
}
eat(state, TOK_SEMI);
if (peek(state) != TOK_SEMI) {
test = expr(state);
bool(state, test);
test = ltrue_expr(state, read_expr(state, test));
}
eat(state, TOK_SEMI);
if (peek(state) != TOK_RPAREN) {
tail = expr(state);
}
eat(state, TOK_RPAREN);
/* Generate the needed pieces */
label1 = label(state);
label2 = label(state);
label3 = label(state);
if (test) {
jmp1 = branch(state, label3, 0);
jmp2 = branch(state, label1, test);
}
else {
jmp2 = branch(state, label1, 0);
}
end = label(state);
/* Remember where break and continue go */
start_scope(state);
ident = state->i_break;
symbol(state, ident, &ident->sym_ident, end, end->type);
ident = state->i_continue;
symbol(state, ident, &ident->sym_ident, label2, label2->type);
/* Now include the body */
flatten(state, first, head);
flatten(state, first, jmp1);
flatten(state, first, label1);
statement(state, first);
flatten(state, first, label2);
flatten(state, first, tail);
flatten(state, first, label3);
flatten(state, first, test);
flatten(state, first, jmp2);
flatten(state, first, end);
/* Cleanup the break/continue scope */
end_scope(state);
}
static void while_statement(struct compile_state *state, struct triple *first)
{
struct triple *label1, *test, *label2, *jmp1, *jmp2, *end;
struct hash_entry *ident;
eat(state, TOK_WHILE);
eat(state, TOK_LPAREN);
test = expr(state);
bool(state, test);
test = ltrue_expr(state, read_expr(state, test));
eat(state, TOK_RPAREN);
/* Generate the needed pieces */
label1 = label(state);
label2 = label(state);
jmp1 = branch(state, label2, 0);
jmp2 = branch(state, label1, test);
end = label(state);
/* Remember where break and continue go */
start_scope(state);
ident = state->i_break;
symbol(state, ident, &ident->sym_ident, end, end->type);
ident = state->i_continue;
symbol(state, ident, &ident->sym_ident, label2, label2->type);
/* Thread them together */
flatten(state, first, jmp1);
flatten(state, first, label1);
statement(state, first);
flatten(state, first, label2);
flatten(state, first, test);
flatten(state, first, jmp2);
flatten(state, first, end);
/* Cleanup the break/continue scope */
end_scope(state);
}
static void do_statement(struct compile_state *state, struct triple *first)
{
struct triple *label1, *label2, *test, *end;
struct hash_entry *ident;
eat(state, TOK_DO);
/* Generate the needed pieces */
label1 = label(state);
label2 = label(state);
end = label(state);
/* Remember where break and continue go */
start_scope(state);
ident = state->i_break;
symbol(state, ident, &ident->sym_ident, end, end->type);
ident = state->i_continue;
symbol(state, ident, &ident->sym_ident, label2, label2->type);
/* Now include the body */
flatten(state, first, label1);
statement(state, first);
/* Cleanup the break/continue scope */
end_scope(state);
/* Eat the rest of the loop */
eat(state, TOK_WHILE);
eat(state, TOK_LPAREN);
test = read_expr(state, expr(state));
bool(state, test);
eat(state, TOK_RPAREN);
eat(state, TOK_SEMI);
/* Thread the pieces together */
test = ltrue_expr(state, test);
flatten(state, first, label2);
flatten(state, first, test);
flatten(state, first, branch(state, label1, test));
flatten(state, first, end);
}
static void return_statement(struct compile_state *state, struct triple *first)
{
struct triple *jmp, *mv, *dest, *var, *val;
int last;
eat(state, TOK_RETURN);
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME implement a more general excess branch elimination"
#endif
val = 0;
/* If we have a return value do some more work */
if (peek(state) != TOK_SEMI) {
val = read_expr(state, expr(state));
}
eat(state, TOK_SEMI);
/* See if this last statement in a function */
last = ((peek(state) == TOK_RBRACE) &&
(state->scope_depth == GLOBAL_SCOPE_DEPTH +2));
/* Find the return variable */
var = fresult(state, state->main_function);
/* Find the return destination */
dest = state->i_return->sym_ident->def;
mv = jmp = 0;
/* If needed generate a jump instruction */
if (!last) {
jmp = branch(state, dest, 0);
}
/* If needed generate an assignment instruction */
if (val) {
mv = write_expr(state, deref_index(state, var, 1), val);
}
/* Now put the code together */
if (mv) {
flatten(state, first, mv);
flatten(state, first, jmp);
}
else if (jmp) {
flatten(state, first, jmp);
}
}
static void break_statement(struct compile_state *state, struct triple *first)
{
struct triple *dest;
eat(state, TOK_BREAK);
eat(state, TOK_SEMI);
if (!state->i_break->sym_ident) {
error(state, 0, "break statement not within loop or switch");
}
dest = state->i_break->sym_ident->def;
flatten(state, first, branch(state, dest, 0));
}
static void continue_statement(struct compile_state *state, struct triple *first)
{
struct triple *dest;
eat(state, TOK_CONTINUE);
eat(state, TOK_SEMI);
if (!state->i_continue->sym_ident) {
error(state, 0, "continue statement outside of a loop");
}
dest = state->i_continue->sym_ident->def;
flatten(state, first, branch(state, dest, 0));
}
static void goto_statement(struct compile_state *state, struct triple *first)
{
struct hash_entry *ident;
eat(state, TOK_GOTO);
ident = eat(state, TOK_IDENT)->ident;
if (!ident->sym_label) {
/* If this is a forward branch allocate the label now,
* it will be flattend in the appropriate location later.
*/
struct triple *ins;
ins = label(state);
label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
}
eat(state, TOK_SEMI);
flatten(state, first, branch(state, ident->sym_label->def, 0));
}
static void labeled_statement(struct compile_state *state, struct triple *first)
{
struct triple *ins;
struct hash_entry *ident;
ident = eat(state, TOK_IDENT)->ident;
if (ident->sym_label && ident->sym_label->def) {
ins = ident->sym_label->def;
put_occurance(ins->occurance);
ins->occurance = new_occurance(state);
}
else {
ins = label(state);
label_symbol(state, ident, ins, FUNCTION_SCOPE_DEPTH);
}
if (ins->id & TRIPLE_FLAG_FLATTENED) {
error(state, 0, "label %s already defined", ident->name);
}
flatten(state, first, ins);
eat(state, TOK_COLON);
statement(state, first);
}
static void switch_statement(struct compile_state *state, struct triple *first)
{
struct triple *value, *top, *end, *dbranch;
struct hash_entry *ident;
/* See if we have a valid switch statement */
eat(state, TOK_SWITCH);
eat(state, TOK_LPAREN);
value = expr(state);
integral(state, value);
value = read_expr(state, value);
eat(state, TOK_RPAREN);
/* Generate the needed pieces */
top = label(state);
end = label(state);
dbranch = branch(state, end, 0);
/* Remember where case branches and break goes */
start_scope(state);
ident = state->i_switch;
symbol(state, ident, &ident->sym_ident, value, value->type);
ident = state->i_case;
symbol(state, ident, &ident->sym_ident, top, top->type);
ident = state->i_break;
symbol(state, ident, &ident->sym_ident, end, end->type);
ident = state->i_default;
symbol(state, ident, &ident->sym_ident, dbranch, dbranch->type);
/* Thread them together */
flatten(state, first, value);
flatten(state, first, top);
flatten(state, first, dbranch);
statement(state, first);
flatten(state, first, end);
/* Cleanup the switch scope */
end_scope(state);
}
static void case_statement(struct compile_state *state, struct triple *first)
{
struct triple *cvalue, *dest, *test, *jmp;
struct triple *ptr, *value, *top, *dbranch;
/* See if w have a valid case statement */
eat(state, TOK_CASE);
cvalue = constant_expr(state);
integral(state, cvalue);
if (cvalue->op != OP_INTCONST) {
error(state, 0, "integer constant expected");
}
eat(state, TOK_COLON);
if (!state->i_case->sym_ident) {
error(state, 0, "case statement not within a switch");
}
/* Lookup the interesting pieces */
top = state->i_case->sym_ident->def;
value = state->i_switch->sym_ident->def;
dbranch = state->i_default->sym_ident->def;
/* See if this case label has already been used */
for(ptr = top; ptr != dbranch; ptr = ptr->next) {
if (ptr->op != OP_EQ) {
continue;
}
if (RHS(ptr, 1)->u.cval == cvalue->u.cval) {
error(state, 0, "duplicate case %d statement",
cvalue->u.cval);
}
}
/* Generate the needed pieces */
dest = label(state);
test = triple(state, OP_EQ, &int_type, value, cvalue);
jmp = branch(state, dest, test);
/* Thread the pieces together */
flatten(state, dbranch, test);
flatten(state, dbranch, jmp);
flatten(state, dbranch, label(state));
flatten(state, first, dest);
statement(state, first);
}
static void default_statement(struct compile_state *state, struct triple *first)
{
struct triple *dest;
struct triple *dbranch, *end;
/* See if we have a valid default statement */
eat(state, TOK_DEFAULT);
eat(state, TOK_COLON);
if (!state->i_case->sym_ident) {
error(state, 0, "default statement not within a switch");
}
/* Lookup the interesting pieces */
dbranch = state->i_default->sym_ident->def;
end = state->i_break->sym_ident->def;
/* See if a default statement has already happened */
if (TARG(dbranch, 0) != end) {
error(state, 0, "duplicate default statement");
}
/* Generate the needed pieces */
dest = label(state);
/* Blame the branch on the default statement */
put_occurance(dbranch->occurance);
dbranch->occurance = new_occurance(state);
/* Thread the pieces together */
TARG(dbranch, 0) = dest;
use_triple(dest, dbranch);
flatten(state, first, dest);
statement(state, first);
}
static void asm_statement(struct compile_state *state, struct triple *first)
{
struct asm_info *info;
struct {
struct triple *constraint;
struct triple *expr;
} out_param[MAX_LHS], in_param[MAX_RHS], clob_param[MAX_LHS];
struct triple *def, *asm_str;
int out, in, clobbers, more, colons, i;
int flags;
flags = 0;
eat(state, TOK_ASM);
/* For now ignore the qualifiers */
switch(peek(state)) {
case TOK_CONST:
eat(state, TOK_CONST);
break;
case TOK_VOLATILE:
eat(state, TOK_VOLATILE);
flags |= TRIPLE_FLAG_VOLATILE;
break;
}
eat(state, TOK_LPAREN);
asm_str = string_constant(state);
colons = 0;
out = in = clobbers = 0;
/* Outputs */
if ((colons == 0) && (peek(state) == TOK_COLON)) {
eat(state, TOK_COLON);
colons++;
more = (peek(state) == TOK_LIT_STRING);
while(more) {
struct triple *var;
struct triple *constraint;
char *str;
more = 0;
if (out > MAX_LHS) {
error(state, 0, "Maximum output count exceeded.");
}
constraint = string_constant(state);
str = constraint->u.blob;
if (str[0] != '=') {
error(state, 0, "Output constraint does not start with =");
}
constraint->u.blob = str + 1;
eat(state, TOK_LPAREN);
var = conditional_expr(state);
eat(state, TOK_RPAREN);
lvalue(state, var);
out_param[out].constraint = constraint;
out_param[out].expr = var;
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
more = 1;
}
out++;
}
}
/* Inputs */
if ((colons == 1) && (peek(state) == TOK_COLON)) {
eat(state, TOK_COLON);
colons++;
more = (peek(state) == TOK_LIT_STRING);
while(more) {
struct triple *val;
struct triple *constraint;
char *str;
more = 0;
if (in > MAX_RHS) {
error(state, 0, "Maximum input count exceeded.");
}
constraint = string_constant(state);
str = constraint->u.blob;
if (digitp(str[0] && str[1] == '\0')) {
int val;
val = digval(str[0]);
if ((val < 0) || (val >= out)) {
error(state, 0, "Invalid input constraint %d", val);
}
}
eat(state, TOK_LPAREN);
val = conditional_expr(state);
eat(state, TOK_RPAREN);
in_param[in].constraint = constraint;
in_param[in].expr = val;
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
more = 1;
}
in++;
}
}
/* Clobber */
if ((colons == 2) && (peek(state) == TOK_COLON)) {
eat(state, TOK_COLON);
colons++;
more = (peek(state) == TOK_LIT_STRING);
while(more) {
struct triple *clobber;
more = 0;
if ((clobbers + out) > MAX_LHS) {
error(state, 0, "Maximum clobber limit exceeded.");
}
clobber = string_constant(state);
clob_param[clobbers].constraint = clobber;
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
more = 1;
}
clobbers++;
}
}
eat(state, TOK_RPAREN);
eat(state, TOK_SEMI);
info = xcmalloc(sizeof(*info), "asm_info");
info->str = asm_str->u.blob;
free_triple(state, asm_str);
def = new_triple(state, OP_ASM, &void_type, clobbers + out, in);
def->u.ainfo = info;
def->id |= flags;
/* Find the register constraints */
for(i = 0; i < out; i++) {
struct triple *constraint;
constraint = out_param[i].constraint;
info->tmpl.lhs[i] = arch_reg_constraint(state,
out_param[i].expr->type, constraint->u.blob);
free_triple(state, constraint);
}
for(; i - out < clobbers; i++) {
struct triple *constraint;
constraint = clob_param[i - out].constraint;
info->tmpl.lhs[i] = arch_reg_clobber(state, constraint->u.blob);
free_triple(state, constraint);
}
for(i = 0; i < in; i++) {
struct triple *constraint;
const char *str;
constraint = in_param[i].constraint;
str = constraint->u.blob;
if (digitp(str[0]) && str[1] == '\0') {
struct reg_info cinfo;
int val;
val = digval(str[0]);
cinfo.reg = info->tmpl.lhs[val].reg;
cinfo.regcm = arch_type_to_regcm(state, in_param[i].expr->type);
cinfo.regcm &= info->tmpl.lhs[val].regcm;
if (cinfo.reg == REG_UNSET) {
cinfo.reg = REG_VIRT0 + val;
}
if (cinfo.regcm == 0) {
error(state, 0, "No registers for %d", val);
}
info->tmpl.lhs[val] = cinfo;
info->tmpl.rhs[i] = cinfo;
} else {
info->tmpl.rhs[i] = arch_reg_constraint(state,
in_param[i].expr->type, str);
}
free_triple(state, constraint);
}
/* Now build the helper expressions */
for(i = 0; i < in; i++) {
RHS(def, i) = read_expr(state, in_param[i].expr);
}
flatten(state, first, def);
for(i = 0; i < (out + clobbers); i++) {
struct type *type;
struct triple *piece;
if (i < out) {
type = out_param[i].expr->type;
} else {
size_t size = arch_reg_size(info->tmpl.lhs[i].reg);
if (size >= SIZEOF_LONG) {
type = &ulong_type;
}
else if (size >= SIZEOF_INT) {
type = &uint_type;
}
else if (size >= SIZEOF_SHORT) {
type = &ushort_type;
}
else {
type = &uchar_type;
}
}
piece = triple(state, OP_PIECE, type, def, 0);
piece->u.cval = i;
LHS(def, i) = piece;
flatten(state, first, piece);
}
/* And write the helpers to their destinations */
for(i = 0; i < out; i++) {
struct triple *piece;
piece = LHS(def, i);
flatten(state, first,
write_expr(state, out_param[i].expr, piece));
}
}
static int isdecl(int tok)
{
switch(tok) {
case TOK_AUTO:
case TOK_REGISTER:
case TOK_STATIC:
case TOK_EXTERN:
case TOK_TYPEDEF:
case TOK_CONST:
case TOK_RESTRICT:
case TOK_VOLATILE:
case TOK_VOID:
case TOK_CHAR:
case TOK_SHORT:
case TOK_INT:
case TOK_LONG:
case TOK_FLOAT:
case TOK_DOUBLE:
case TOK_SIGNED:
case TOK_UNSIGNED:
case TOK_STRUCT:
case TOK_UNION:
case TOK_ENUM:
case TOK_TYPE_NAME: /* typedef name */
return 1;
default:
return 0;
}
}
static void compound_statement(struct compile_state *state, struct triple *first)
{
eat(state, TOK_LBRACE);
start_scope(state);
/* statement-list opt */
while (peek(state) != TOK_RBRACE) {
statement(state, first);
}
end_scope(state);
eat(state, TOK_RBRACE);
}
static void statement(struct compile_state *state, struct triple *first)
{
int tok;
tok = peek(state);
if (tok == TOK_LBRACE) {
compound_statement(state, first);
}
else if (tok == TOK_IF) {
if_statement(state, first);
}
else if (tok == TOK_FOR) {
for_statement(state, first);
}
else if (tok == TOK_WHILE) {
while_statement(state, first);
}
else if (tok == TOK_DO) {
do_statement(state, first);
}
else if (tok == TOK_RETURN) {
return_statement(state, first);
}
else if (tok == TOK_BREAK) {
break_statement(state, first);
}
else if (tok == TOK_CONTINUE) {
continue_statement(state, first);
}
else if (tok == TOK_GOTO) {
goto_statement(state, first);
}
else if (tok == TOK_SWITCH) {
switch_statement(state, first);
}
else if (tok == TOK_ASM) {
asm_statement(state, first);
}
else if ((tok == TOK_IDENT) && (peek2(state) == TOK_COLON)) {
labeled_statement(state, first);
}
else if (tok == TOK_CASE) {
case_statement(state, first);
}
else if (tok == TOK_DEFAULT) {
default_statement(state, first);
}
else if (isdecl(tok)) {
/* This handles C99 intermixing of statements and decls */
decl(state, first);
}
else {
expr_statement(state, first);
}
}
static struct type *param_decl(struct compile_state *state)
{
struct type *type;
struct hash_entry *ident;
/* Cheat so the declarator will know we are not global */
start_scope(state);
ident = 0;
type = decl_specifiers(state);
type = declarator(state, type, &ident, 0);
type->field_ident = ident;
end_scope(state);
return type;
}
static struct type *param_type_list(struct compile_state *state, struct type *type)
{
struct type *ftype, **next;
ftype = new_type(TYPE_FUNCTION | (type->type & STOR_MASK), type, param_decl(state));
next = &ftype->right;
ftype->elements = 1;
while(peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
if (peek(state) == TOK_DOTS) {
eat(state, TOK_DOTS);
error(state, 0, "variadic functions not supported");
}
else {
*next = new_type(TYPE_PRODUCT, *next, param_decl(state));
next = &((*next)->right);
ftype->elements++;
}
}
return ftype;
}
static struct type *type_name(struct compile_state *state)
{
struct type *type;
type = specifier_qualifier_list(state);
/* abstract-declarator (may consume no tokens) */
type = declarator(state, type, 0, 0);
return type;
}
static struct type *direct_declarator(
struct compile_state *state, struct type *type,
struct hash_entry **pident, int need_ident)
{
struct hash_entry *ident;
struct type *outer;
int op;
outer = 0;
arrays_complete(state, type);
switch(peek(state)) {
case TOK_IDENT:
ident = eat(state, TOK_IDENT)->ident;
if (!ident) {
error(state, 0, "Unexpected identifier found");
}
/* The name of what we are declaring */
*pident = ident;
break;
case TOK_LPAREN:
eat(state, TOK_LPAREN);
outer = declarator(state, type, pident, need_ident);
eat(state, TOK_RPAREN);
break;
default:
if (need_ident) {
error(state, 0, "Identifier expected");
}
break;
}
do {
op = 1;
arrays_complete(state, type);
switch(peek(state)) {
case TOK_LPAREN:
eat(state, TOK_LPAREN);
type = param_type_list(state, type);
eat(state, TOK_RPAREN);
break;
case TOK_LBRACKET:
{
unsigned int qualifiers;
struct triple *value;
value = 0;
eat(state, TOK_LBRACKET);
if (peek(state) != TOK_RBRACKET) {
value = constant_expr(state);
integral(state, value);
}
eat(state, TOK_RBRACKET);
qualifiers = type->type & (QUAL_MASK | STOR_MASK);
type = new_type(TYPE_ARRAY | qualifiers, type, 0);
if (value) {
type->elements = value->u.cval;
free_triple(state, value);
} else {
type->elements = ELEMENT_COUNT_UNSPECIFIED;
op = 0;
}
}
break;
default:
op = 0;
break;
}
} while(op);
if (outer) {
struct type *inner;
arrays_complete(state, type);
FINISHME();
for(inner = outer; inner->left; inner = inner->left)
;
inner->left = type;
type = outer;
}
return type;
}
static struct type *declarator(
struct compile_state *state, struct type *type,
struct hash_entry **pident, int need_ident)
{
while(peek(state) == TOK_STAR) {
eat(state, TOK_STAR);
type = new_type(TYPE_POINTER | (type->type & STOR_MASK), type, 0);
}
type = direct_declarator(state, type, pident, need_ident);
return type;
}
static struct type *typedef_name(
struct compile_state *state, unsigned int specifiers)
{
struct hash_entry *ident;
struct type *type;
ident = eat(state, TOK_TYPE_NAME)->ident;
type = ident->sym_ident->type;
specifiers |= type->type & QUAL_MASK;
if ((specifiers & (STOR_MASK | QUAL_MASK)) !=
(type->type & (STOR_MASK | QUAL_MASK))) {
type = clone_type(specifiers, type);
}
return type;
}
static struct type *enum_specifier(
struct compile_state *state, unsigned int spec)
{
struct hash_entry *ident;
ulong_t base;
int tok;
struct type *enum_type;
enum_type = 0;
ident = 0;
eat(state, TOK_ENUM);
tok = peek(state);
if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
ident = eat(state, tok)->ident;
}
base = 0;
if (!ident || (peek(state) == TOK_LBRACE)) {
struct type **next;
eat(state, TOK_LBRACE);
enum_type = new_type(TYPE_ENUM | spec, 0, 0);
enum_type->type_ident = ident;
next = &enum_type->right;
do {
struct hash_entry *eident;
struct triple *value;
struct type *entry;
eident = eat(state, TOK_IDENT)->ident;
if (eident->sym_ident) {
error(state, 0, "%s already declared",
eident->name);
}
eident->tok = TOK_ENUM_CONST;
if (peek(state) == TOK_EQ) {
struct triple *val;
eat(state, TOK_EQ);
val = constant_expr(state);
integral(state, val);
base = val->u.cval;
}
value = int_const(state, &int_type, base);
symbol(state, eident, &eident->sym_ident, value, &int_type);
entry = new_type(TYPE_LIST, 0, 0);
entry->field_ident = eident;
*next = entry;
next = &entry->right;
base += 1;
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
}
} while(peek(state) != TOK_RBRACE);
eat(state, TOK_RBRACE);
if (ident) {
symbol(state, ident, &ident->sym_tag, 0, enum_type);
}
}
if (ident && ident->sym_tag &&
ident->sym_tag->type &&
((ident->sym_tag->type->type & TYPE_MASK) == TYPE_ENUM)) {
enum_type = clone_type(spec, ident->sym_tag->type);
}
else if (ident && !enum_type) {
error(state, 0, "enum %s undeclared", ident->name);
}
return enum_type;
}
static struct type *struct_declarator(
struct compile_state *state, struct type *type, struct hash_entry **ident)
{
if (peek(state) != TOK_COLON) {
type = declarator(state, type, ident, 1);
}
if (peek(state) == TOK_COLON) {
struct triple *value;
eat(state, TOK_COLON);
value = constant_expr(state);
if (value->op != OP_INTCONST) {
error(state, 0, "Invalid constant expression");
}
if (value->u.cval > size_of(state, type)) {
error(state, 0, "bitfield larger than base type");
}
if (!TYPE_INTEGER(type->type) || ((type->type & TYPE_MASK) == TYPE_BITFIELD)) {
error(state, 0, "bitfield base not an integer type");
}
type = new_type(TYPE_BITFIELD, type, 0);
type->elements = value->u.cval;
}
return type;
}
static struct type *struct_or_union_specifier(
struct compile_state *state, unsigned int spec)
{
struct type *struct_type;
struct hash_entry *ident;
unsigned int type_main;
unsigned int type_join;
int tok;
struct_type = 0;
ident = 0;
switch(peek(state)) {
case TOK_STRUCT:
eat(state, TOK_STRUCT);
type_main = TYPE_STRUCT;
type_join = TYPE_PRODUCT;
break;
case TOK_UNION:
eat(state, TOK_UNION);
type_main = TYPE_UNION;
type_join = TYPE_OVERLAP;
break;
default:
eat(state, TOK_STRUCT);
type_main = TYPE_STRUCT;
type_join = TYPE_PRODUCT;
break;
}
tok = peek(state);
if ((tok == TOK_IDENT) || (tok == TOK_ENUM_CONST) || (tok == TOK_TYPE_NAME)) {
ident = eat(state, tok)->ident;
}
if (!ident || (peek(state) == TOK_LBRACE)) {
ulong_t elements;
struct type **next;
elements = 0;
eat(state, TOK_LBRACE);
next = &struct_type;
do {
struct type *base_type;
int done;
base_type = specifier_qualifier_list(state);
do {
struct type *type;
struct hash_entry *fident;
done = 1;
type = struct_declarator(state, base_type, &fident);
elements++;
if (peek(state) == TOK_COMMA) {
done = 0;
eat(state, TOK_COMMA);
}
type = clone_type(0, type);
type->field_ident = fident;
if (*next) {
*next = new_type(type_join, *next, type);
next = &((*next)->right);
} else {
*next = type;
}
} while(!done);
eat(state, TOK_SEMI);
} while(peek(state) != TOK_RBRACE);
eat(state, TOK_RBRACE);
struct_type = new_type(type_main | spec, struct_type, 0);
struct_type->type_ident = ident;
struct_type->elements = elements;
if (ident) {
symbol(state, ident, &ident->sym_tag, 0, struct_type);
}
}
if (ident && ident->sym_tag &&
ident->sym_tag->type &&
((ident->sym_tag->type->type & TYPE_MASK) == type_main)) {
struct_type = clone_type(spec, ident->sym_tag->type);
}
else if (ident && !struct_type) {
error(state, 0, "%s %s undeclared",
(type_main == TYPE_STRUCT)?"struct" : "union",
ident->name);
}
return struct_type;
}
static unsigned int storage_class_specifier_opt(struct compile_state *state)
{
unsigned int specifiers;
switch(peek(state)) {
case TOK_AUTO:
eat(state, TOK_AUTO);
specifiers = STOR_AUTO;
break;
case TOK_REGISTER:
eat(state, TOK_REGISTER);
specifiers = STOR_REGISTER;
break;
case TOK_STATIC:
eat(state, TOK_STATIC);
specifiers = STOR_STATIC;
break;
case TOK_EXTERN:
eat(state, TOK_EXTERN);
specifiers = STOR_EXTERN;
break;
case TOK_TYPEDEF:
eat(state, TOK_TYPEDEF);
specifiers = STOR_TYPEDEF;
break;
default:
if (state->scope_depth <= GLOBAL_SCOPE_DEPTH) {
specifiers = STOR_LOCAL;
}
else {
specifiers = STOR_AUTO;
}
}
return specifiers;
}
static unsigned int function_specifier_opt(struct compile_state *state)
{
/* Ignore the inline keyword */
unsigned int specifiers;
specifiers = 0;
switch(peek(state)) {
case TOK_INLINE:
eat(state, TOK_INLINE);
specifiers = STOR_INLINE;
}
return specifiers;
}
static unsigned int attrib(struct compile_state *state, unsigned int attributes)
{
int tok = peek(state);
switch(tok) {
case TOK_COMMA:
case TOK_LPAREN:
/* The empty attribute ignore it */
break;
case TOK_IDENT:
case TOK_ENUM_CONST:
case TOK_TYPE_NAME:
{
struct hash_entry *ident;
ident = eat(state, TOK_IDENT)->ident;
if (ident == state->i_noinline) {
if (attributes & ATTRIB_ALWAYS_INLINE) {
error(state, 0, "both always_inline and noinline attribtes");
}
attributes |= ATTRIB_NOINLINE;
}
else if (ident == state->i_always_inline) {
if (attributes & ATTRIB_NOINLINE) {
error(state, 0, "both noinline and always_inline attribtes");
}
attributes |= ATTRIB_ALWAYS_INLINE;
}
else if (ident == state->i_noreturn) {
// attribute((noreturn)) does nothing (yet?)
}
else if (ident == state->i_unused) {
// attribute((unused)) does nothing (yet?)
}
else {
error(state, 0, "Unknown attribute:%s", ident->name);
}
break;
}
default:
error(state, 0, "Unexpected token: %s\n", tokens[tok]);
break;
}
return attributes;
}
static unsigned int attribute_list(struct compile_state *state, unsigned type)
{
type = attrib(state, type);
while(peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
type = attrib(state, type);
}
return type;
}
static unsigned int attributes_opt(struct compile_state *state, unsigned type)
{
if (peek(state) == TOK_ATTRIBUTE) {
eat(state, TOK_ATTRIBUTE);
eat(state, TOK_LPAREN);
eat(state, TOK_LPAREN);
type = attribute_list(state, type);
eat(state, TOK_RPAREN);
eat(state, TOK_RPAREN);
}
return type;
}
static unsigned int type_qualifiers(struct compile_state *state)
{
unsigned int specifiers;
int done;
done = 0;
specifiers = QUAL_NONE;
do {
switch(peek(state)) {
case TOK_CONST:
eat(state, TOK_CONST);
specifiers |= QUAL_CONST;
break;
case TOK_VOLATILE:
eat(state, TOK_VOLATILE);
specifiers |= QUAL_VOLATILE;
break;
case TOK_RESTRICT:
eat(state, TOK_RESTRICT);
specifiers |= QUAL_RESTRICT;
break;
default:
done = 1;
break;
}
} while(!done);
return specifiers;
}
static struct type *type_specifier(
struct compile_state *state, unsigned int spec)
{
struct type *type;
int tok;
type = 0;
switch((tok = peek(state))) {
case TOK_VOID:
eat(state, TOK_VOID);
type = new_type(TYPE_VOID | spec, 0, 0);
break;
case TOK_CHAR:
eat(state, TOK_CHAR);
type = new_type(TYPE_CHAR | spec, 0, 0);
break;
case TOK_SHORT:
eat(state, TOK_SHORT);
if (peek(state) == TOK_INT) {
eat(state, TOK_INT);
}
type = new_type(TYPE_SHORT | spec, 0, 0);
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_INT | spec, 0, 0);
break;
case TOK_LONG:
eat(state, TOK_LONG);
switch(peek(state)) {
case TOK_LONG:
eat(state, TOK_LONG);
error(state, 0, "long long not supported");
break;
case TOK_DOUBLE:
eat(state, TOK_DOUBLE);
error(state, 0, "long double not supported");
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_LONG | spec, 0, 0);
break;
default:
type = new_type(TYPE_LONG | spec, 0, 0);
break;
}
break;
case TOK_FLOAT:
eat(state, TOK_FLOAT);
error(state, 0, "type float not supported");
break;
case TOK_DOUBLE:
eat(state, TOK_DOUBLE);
error(state, 0, "type double not supported");
break;
case TOK_SIGNED:
eat(state, TOK_SIGNED);
switch(peek(state)) {
case TOK_LONG:
eat(state, TOK_LONG);
switch(peek(state)) {
case TOK_LONG:
eat(state, TOK_LONG);
error(state, 0, "type long long not supported");
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_LONG | spec, 0, 0);
break;
default:
type = new_type(TYPE_LONG | spec, 0, 0);
break;
}
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_INT | spec, 0, 0);
break;
case TOK_SHORT:
eat(state, TOK_SHORT);
type = new_type(TYPE_SHORT | spec, 0, 0);
break;
case TOK_CHAR:
eat(state, TOK_CHAR);
type = new_type(TYPE_CHAR | spec, 0, 0);
break;
default:
type = new_type(TYPE_INT | spec, 0, 0);
break;
}
break;
case TOK_UNSIGNED:
eat(state, TOK_UNSIGNED);
switch(peek(state)) {
case TOK_LONG:
eat(state, TOK_LONG);
switch(peek(state)) {
case TOK_LONG:
eat(state, TOK_LONG);
error(state, 0, "unsigned long long not supported");
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_ULONG | spec, 0, 0);
break;
default:
type = new_type(TYPE_ULONG | spec, 0, 0);
break;
}
break;
case TOK_INT:
eat(state, TOK_INT);
type = new_type(TYPE_UINT | spec, 0, 0);
break;
case TOK_SHORT:
eat(state, TOK_SHORT);
type = new_type(TYPE_USHORT | spec, 0, 0);
break;
case TOK_CHAR:
eat(state, TOK_CHAR);
type = new_type(TYPE_UCHAR | spec, 0, 0);
break;
default:
type = new_type(TYPE_UINT | spec, 0, 0);
break;
}
break;
/* struct or union specifier */
case TOK_STRUCT:
case TOK_UNION:
type = struct_or_union_specifier(state, spec);
break;
/* enum-spefifier */
case TOK_ENUM:
type = enum_specifier(state, spec);
break;
/* typedef name */
case TOK_TYPE_NAME:
type = typedef_name(state, spec);
break;
default:
error(state, 0, "bad type specifier %s",
tokens[tok]);
break;
}
return type;
}
static int istype(int tok)
{
switch(tok) {
case TOK_CONST:
case TOK_RESTRICT:
case TOK_VOLATILE:
case TOK_VOID:
case TOK_CHAR:
case TOK_SHORT:
case TOK_INT:
case TOK_LONG:
case TOK_FLOAT:
case TOK_DOUBLE:
case TOK_SIGNED:
case TOK_UNSIGNED:
case TOK_STRUCT:
case TOK_UNION:
case TOK_ENUM:
case TOK_TYPE_NAME:
return 1;
default:
return 0;
}
}
static struct type *specifier_qualifier_list(struct compile_state *state)
{
struct type *type;
unsigned int specifiers = 0;
/* type qualifiers */
specifiers |= type_qualifiers(state);
/* type specifier */
type = type_specifier(state, specifiers);
return type;
}
#if DEBUG_ROMCC_WARNING
static int isdecl_specifier(int tok)
{
switch(tok) {
/* storage class specifier */
case TOK_AUTO:
case TOK_REGISTER:
case TOK_STATIC:
case TOK_EXTERN:
case TOK_TYPEDEF:
/* type qualifier */
case TOK_CONST:
case TOK_RESTRICT:
case TOK_VOLATILE:
/* type specifiers */
case TOK_VOID:
case TOK_CHAR:
case TOK_SHORT:
case TOK_INT:
case TOK_LONG:
case TOK_FLOAT:
case TOK_DOUBLE:
case TOK_SIGNED:
case TOK_UNSIGNED:
/* struct or union specifier */
case TOK_STRUCT:
case TOK_UNION:
/* enum-spefifier */
case TOK_ENUM:
/* typedef name */
case TOK_TYPE_NAME:
/* function specifiers */
case TOK_INLINE:
return 1;
default:
return 0;
}
}
#endif
static struct type *decl_specifiers(struct compile_state *state)
{
struct type *type;
unsigned int specifiers;
/* I am overly restrictive in the arragement of specifiers supported.
* C is overly flexible in this department it makes interpreting
* the parse tree difficult.
*/
specifiers = 0;
/* storage class specifier */
specifiers |= storage_class_specifier_opt(state);
/* function-specifier */
specifiers |= function_specifier_opt(state);
/* attributes */
specifiers |= attributes_opt(state, 0);
/* type qualifier */
specifiers |= type_qualifiers(state);
/* type specifier */
type = type_specifier(state, specifiers);
return type;
}
struct field_info {
struct type *type;
size_t offset;
};
static struct field_info designator(struct compile_state *state, struct type *type)
{
int tok;
struct field_info info;
info.offset = ~0U;
info.type = 0;
do {
switch(peek(state)) {
case TOK_LBRACKET:
{
struct triple *value;
if ((type->type & TYPE_MASK) != TYPE_ARRAY) {
error(state, 0, "Array designator not in array initializer");
}
eat(state, TOK_LBRACKET);
value = constant_expr(state);
eat(state, TOK_RBRACKET);
info.type = type->left;
info.offset = value->u.cval * size_of(state, info.type);
break;
}
case TOK_DOT:
{
struct hash_entry *field;
if (((type->type & TYPE_MASK) != TYPE_STRUCT) &&
((type->type & TYPE_MASK) != TYPE_UNION))
{
error(state, 0, "Struct designator not in struct initializer");
}
eat(state, TOK_DOT);
field = eat(state, TOK_IDENT)->ident;
info.offset = field_offset(state, type, field);
info.type = field_type(state, type, field);
break;
}
default:
error(state, 0, "Invalid designator");
}
tok = peek(state);
} while((tok == TOK_LBRACKET) || (tok == TOK_DOT));
eat(state, TOK_EQ);
return info;
}
static struct triple *initializer(
struct compile_state *state, struct type *type)
{
struct triple *result;
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME more consistent initializer handling (where should eval_const_expr go?"
#endif
if (peek(state) != TOK_LBRACE) {
result = assignment_expr(state);
if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
(type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
(result->type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
(equiv_types(type->left, result->type->left))) {
type->elements = result->type->elements;
}
if (is_lvalue(state, result) &&
((result->type->type & TYPE_MASK) == TYPE_ARRAY) &&
(type->type & TYPE_MASK) != TYPE_ARRAY)
{
result = lvalue_conversion(state, result);
}
if (!is_init_compatible(state, type, result->type)) {
error(state, 0, "Incompatible types in initializer");
}
if (!equiv_types(type, result->type)) {
result = mk_cast_expr(state, type, result);
}
}
else {
int comma;
size_t max_offset;
struct field_info info;
void *buf;
if (((type->type & TYPE_MASK) != TYPE_ARRAY) &&
((type->type & TYPE_MASK) != TYPE_STRUCT)) {
internal_error(state, 0, "unknown initializer type");
}
info.offset = 0;
info.type = type->left;
if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
info.type = next_field(state, type, 0);
}
if (type->elements == ELEMENT_COUNT_UNSPECIFIED) {
max_offset = 0;
} else {
max_offset = size_of(state, type);
}
buf = xcmalloc(bits_to_bytes(max_offset), "initializer");
eat(state, TOK_LBRACE);
do {
struct triple *value;
struct type *value_type;
size_t value_size;
void *dest;
int tok;
comma = 0;
tok = peek(state);
if ((tok == TOK_LBRACKET) || (tok == TOK_DOT)) {
info = designator(state, type);
}
if ((type->elements != ELEMENT_COUNT_UNSPECIFIED) &&
(info.offset >= max_offset)) {
error(state, 0, "element beyond bounds");
}
value_type = info.type;
value = eval_const_expr(state, initializer(state, value_type));
value_size = size_of(state, value_type);
if (((type->type & TYPE_MASK) == TYPE_ARRAY) &&
(type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
(max_offset <= info.offset)) {
void *old_buf;
size_t old_size;
old_buf = buf;
old_size = max_offset;
max_offset = info.offset + value_size;
buf = xmalloc(bits_to_bytes(max_offset), "initializer");
memcpy(buf, old_buf, bits_to_bytes(old_size));
xfree(old_buf);
}
dest = ((char *)buf) + bits_to_bytes(info.offset);
#if DEBUG_INITIALIZER
fprintf(state->errout, "dest = buf + %d max_offset: %d value_size: %d op: %d\n",
dest - buf,
bits_to_bytes(max_offset),
bits_to_bytes(value_size),
value->op);
#endif
if (value->op == OP_BLOBCONST) {
memcpy(dest, value->u.blob, bits_to_bytes(value_size));
}
else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I8)) {
#if DEBUG_INITIALIZER
fprintf(state->errout, "byte: %02x\n", value->u.cval & 0xff);
#endif
*((uint8_t *)dest) = value->u.cval & 0xff;
}
else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I16)) {
*((uint16_t *)dest) = value->u.cval & 0xffff;
}
else if ((value->op == OP_INTCONST) && (value_size == SIZEOF_I32)) {
*((uint32_t *)dest) = value->u.cval & 0xffffffff;
}
else {
internal_error(state, 0, "unhandled constant initializer");
}
free_triple(state, value);
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
comma = 1;
}
info.offset += value_size;
if ((type->type & TYPE_MASK) == TYPE_STRUCT) {
info.type = next_field(state, type, info.type);
info.offset = field_offset(state, type,
info.type->field_ident);
}
} while(comma && (peek(state) != TOK_RBRACE));
if ((type->elements == ELEMENT_COUNT_UNSPECIFIED) &&
((type->type & TYPE_MASK) == TYPE_ARRAY)) {
type->elements = max_offset / size_of(state, type->left);
}
eat(state, TOK_RBRACE);
result = triple(state, OP_BLOBCONST, type, 0, 0);
result->u.blob = buf;
}
return result;
}
static void resolve_branches(struct compile_state *state, struct triple *first)
{
/* Make a second pass and finish anything outstanding
* with respect to branches. The only outstanding item
* is to see if there are goto to labels that have not
* been defined and to error about them.
*/
int i;
struct triple *ins;
/* Also error on branches that do not use their targets */
ins = first;
do {
if (!triple_is_ret(state, ins)) {
struct triple **expr ;
struct triple_set *set;
expr = triple_targ(state, ins, 0);
for(; expr; expr = triple_targ(state, ins, expr)) {
struct triple *targ;
targ = *expr;
for(set = targ?targ->use:0; set; set = set->next) {
if (set->member == ins) {
break;
}
}
if (!set) {
internal_error(state, ins, "targ not used");
}
}
}
ins = ins->next;
} while(ins != first);
/* See if there are goto to labels that have not been defined */
for(i = 0; i < HASH_TABLE_SIZE; i++) {
struct hash_entry *entry;
for(entry = state->hash_table[i]; entry; entry = entry->next) {
struct triple *ins;
if (!entry->sym_label) {
continue;
}
ins = entry->sym_label->def;
if (!(ins->id & TRIPLE_FLAG_FLATTENED)) {
error(state, ins, "label `%s' used but not defined",
entry->name);
}
}
}
}
static struct triple *function_definition(
struct compile_state *state, struct type *type)
{
struct triple *def, *tmp, *first, *end, *retvar, *ret;
struct triple *fname;
struct type *fname_type;
struct hash_entry *ident;
struct type *param, *crtype, *ctype;
int i;
if ((type->type &TYPE_MASK) != TYPE_FUNCTION) {
error(state, 0, "Invalid function header");
}
/* Verify the function type */
if (((type->right->type & TYPE_MASK) != TYPE_VOID) &&
((type->right->type & TYPE_MASK) != TYPE_PRODUCT) &&
(type->right->field_ident == 0)) {
error(state, 0, "Invalid function parameters");
}
param = type->right;
i = 0;
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
i++;
if (!param->left->field_ident) {
error(state, 0, "No identifier for parameter %d\n", i);
}
param = param->right;
}
i++;
if (((param->type & TYPE_MASK) != TYPE_VOID) && !param->field_ident) {
error(state, 0, "No identifier for paramter %d\n", i);
}
/* Get a list of statements for this function. */
def = triple(state, OP_LIST, type, 0, 0);
/* Start a new scope for the passed parameters */
start_scope(state);
/* Put a label at the very start of a function */
first = label(state);
RHS(def, 0) = first;
/* Put a label at the very end of a function */
end = label(state);
flatten(state, first, end);
/* Remember where return goes */
ident = state->i_return;
symbol(state, ident, &ident->sym_ident, end, end->type);
/* Get the initial closure type */
ctype = new_type(TYPE_JOIN, &void_type, 0);
ctype->elements = 1;
/* Add a variable for the return value */
crtype = new_type(TYPE_TUPLE,
/* Remove all type qualifiers from the return type */
new_type(TYPE_PRODUCT, ctype, clone_type(0, type->left)), 0);
crtype->elements = 2;
flatten(state, end, variable(state, crtype));
/* Allocate a variable for the return address */
retvar = flatten(state, end, variable(state, &void_ptr_type));
/* Add in the return instruction */
ret = triple(state, OP_RET, &void_type, read_expr(state, retvar), 0);
ret = flatten(state, first, ret);
/* Walk through the parameters and create symbol table entries
* for them.
*/
param = type->right;
while((param->type & TYPE_MASK) == TYPE_PRODUCT) {
ident = param->left->field_ident;
tmp = variable(state, param->left);
var_symbol(state, ident, tmp);
flatten(state, end, tmp);
param = param->right;
}
if ((param->type & TYPE_MASK) != TYPE_VOID) {
/* And don't forget the last parameter */
ident = param->field_ident;
tmp = variable(state, param);
symbol(state, ident, &ident->sym_ident, tmp, tmp->type);
flatten(state, end, tmp);
}
/* Add the declaration static const char __func__ [] = "func-name" */
fname_type = new_type(TYPE_ARRAY,
clone_type(QUAL_CONST | STOR_STATIC, &char_type), 0);
fname_type->type |= QUAL_CONST | STOR_STATIC;
fname_type->elements = strlen(state->function) + 1;
fname = triple(state, OP_BLOBCONST, fname_type, 0, 0);
fname->u.blob = (void *)state->function;
fname = flatten(state, end, fname);
ident = state->i___func__;
symbol(state, ident, &ident->sym_ident, fname, fname_type);
/* Remember which function I am compiling.
* Also assume the last defined function is the main function.
*/
state->main_function = def;
/* Now get the actual function definition */
compound_statement(state, end);
/* Finish anything unfinished with branches */
resolve_branches(state, first);
/* Remove the parameter scope */
end_scope(state);
/* Remember I have defined a function */
if (!state->functions) {
state->functions = def;
} else {
insert_triple(state, state->functions, def);
}
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->dbgout;
fprintf(fp, "\n");
loc(fp, state, 0);
fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
display_func(state, fp, def);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
}
return def;
}
static struct triple *do_decl(struct compile_state *state,
struct type *type, struct hash_entry *ident)
{
struct triple *def;
def = 0;
/* Clean up the storage types used */
switch (type->type & STOR_MASK) {
case STOR_AUTO:
case STOR_STATIC:
/* These are the good types I am aiming for */
break;
case STOR_REGISTER:
type->type &= ~STOR_MASK;
type->type |= STOR_AUTO;
break;
case STOR_LOCAL:
case STOR_EXTERN:
type->type &= ~STOR_MASK;
type->type |= STOR_STATIC;
break;
case STOR_TYPEDEF:
if (!ident) {
error(state, 0, "typedef without name");
}
symbol(state, ident, &ident->sym_ident, 0, type);
ident->tok = TOK_TYPE_NAME;
return 0;
break;
default:
internal_error(state, 0, "Undefined storage class");
}
if ((type->type & TYPE_MASK) == TYPE_FUNCTION) {
// ignore function prototypes
return def;
}
if (ident &&
((type->type & TYPE_MASK) == TYPE_ARRAY) &&
((type->type & STOR_MASK) != STOR_STATIC))
error(state, 0, "non static arrays not supported");
if (ident &&
((type->type & STOR_MASK) == STOR_STATIC) &&
((type->type & QUAL_CONST) == 0)) {
error(state, 0, "non const static variables not supported");
}
if (ident) {
def = variable(state, type);
var_symbol(state, ident, def);
}
return def;
}
static void decl(struct compile_state *state, struct triple *first)
{
struct type *base_type, *type;
struct hash_entry *ident;
struct triple *def;
int global;
global = (state->scope_depth <= GLOBAL_SCOPE_DEPTH);
base_type = decl_specifiers(state);
ident = 0;
type = declarator(state, base_type, &ident, 0);
type->type = attributes_opt(state, type->type);
if (global && ident && (peek(state) == TOK_LBRACE)) {
/* function */
type->type_ident = ident;
state->function = ident->name;
def = function_definition(state, type);
symbol(state, ident, &ident->sym_ident, def, type);
state->function = 0;
}
else {
int done;
flatten(state, first, do_decl(state, type, ident));
/* type or variable definition */
do {
done = 1;
if (peek(state) == TOK_EQ) {
if (!ident) {
error(state, 0, "cannot assign to a type");
}
eat(state, TOK_EQ);
flatten(state, first,
init_expr(state,
ident->sym_ident->def,
initializer(state, type)));
}
arrays_complete(state, type);
if (peek(state) == TOK_COMMA) {
eat(state, TOK_COMMA);
ident = 0;
type = declarator(state, base_type, &ident, 0);
flatten(state, first, do_decl(state, type, ident));
done = 0;
}
} while(!done);
eat(state, TOK_SEMI);
}
}
static void decls(struct compile_state *state)
{
struct triple *list;
int tok;
list = label(state);
while(1) {
tok = peek(state);
if (tok == TOK_EOF) {
return;
}
if (tok == TOK_SPACE) {
eat(state, TOK_SPACE);
}
decl(state, list);
if (list->next != list) {
error(state, 0, "global variables not supported");
}
}
}
/*
* Function inlining
*/
struct triple_reg_set {
struct triple_reg_set *next;
struct triple *member;
struct triple *new;
};
struct reg_block {
struct block *block;
struct triple_reg_set *in;
struct triple_reg_set *out;
int vertex;
};
static void setup_basic_blocks(struct compile_state *, struct basic_blocks *bb);
static void analyze_basic_blocks(struct compile_state *state, struct basic_blocks *bb);
static void free_basic_blocks(struct compile_state *, struct basic_blocks *bb);
static int tdominates(struct compile_state *state, struct triple *dom, struct triple *sub);
static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
void (*cb)(struct compile_state *state, struct block *block, void *arg),
void *arg);
static void print_block(
struct compile_state *state, struct block *block, void *arg);
static int do_triple_set(struct triple_reg_set **head,
struct triple *member, struct triple *new_member);
static void do_triple_unset(struct triple_reg_set **head, struct triple *member);
static struct reg_block *compute_variable_lifetimes(
struct compile_state *state, struct basic_blocks *bb);
static void free_variable_lifetimes(struct compile_state *state,
struct basic_blocks *bb, struct reg_block *blocks);
#if DEBUG_EXPLICIT_CLOSURES
static void print_live_variables(struct compile_state *state,
struct basic_blocks *bb, struct reg_block *rb, FILE *fp);
#endif
static struct triple *call(struct compile_state *state,
struct triple *retvar, struct triple *ret_addr,
struct triple *targ, struct triple *ret)
{
struct triple *call;
if (!retvar || !is_lvalue(state, retvar)) {
internal_error(state, 0, "writing to a non lvalue?");
}
write_compatible(state, retvar->type, &void_ptr_type);
call = new_triple(state, OP_CALL, &void_type, 1, 0);
TARG(call, 0) = targ;
MISC(call, 0) = ret;
if (!targ || (targ->op != OP_LABEL)) {
internal_error(state, 0, "call not to a label");
}
if (!ret || (ret->op != OP_RET)) {
internal_error(state, 0, "call not matched with return");
}
return call;
}
static void walk_functions(struct compile_state *state,
void (*cb)(struct compile_state *state, struct triple *func, void *arg),
void *arg)
{
struct triple *func, *first;
func = first = state->functions;
do {
cb(state, func, arg);
func = func->next;
} while(func != first);
}
static void reverse_walk_functions(struct compile_state *state,
void (*cb)(struct compile_state *state, struct triple *func, void *arg),
void *arg)
{
struct triple *func, *first;
func = first = state->functions;
do {
func = func->prev;
cb(state, func, arg);
} while(func != first);
}
static void mark_live(struct compile_state *state, struct triple *func, void *arg)
{
struct triple *ptr, *first;
if (func->u.cval == 0) {
return;
}
ptr = first = RHS(func, 0);
do {
if (ptr->op == OP_FCALL) {
struct triple *called_func;
called_func = MISC(ptr, 0);
/* Mark the called function as used */
if (!(func->id & TRIPLE_FLAG_FLATTENED)) {
called_func->u.cval++;
}
/* Remove the called function from the list */
called_func->prev->next = called_func->next;
called_func->next->prev = called_func->prev;
/* Place the called function before me on the list */
called_func->next = func;
called_func->prev = func->prev;
called_func->prev->next = called_func;
called_func->next->prev = called_func;
}
ptr = ptr->next;
} while(ptr != first);
func->id |= TRIPLE_FLAG_FLATTENED;
}
static void mark_live_functions(struct compile_state *state)
{
/* Ensure state->main_function is the last function in
* the list of functions.
*/
if ((state->main_function->next != state->functions) ||
(state->functions->prev != state->main_function)) {
internal_error(state, 0,
"state->main_function is not at the end of the function list ");
}
state->main_function->u.cval = 1;
reverse_walk_functions(state, mark_live, 0);
}
static int local_triple(struct compile_state *state,
struct triple *func, struct triple *ins)
{
int local = (ins->id & TRIPLE_FLAG_LOCAL);
#if 0
if (!local) {
FILE *fp = state->errout;
fprintf(fp, "global: ");
display_triple(fp, ins);
}
#endif
return local;
}
struct triple *copy_func(struct compile_state *state, struct triple *ofunc,
struct occurance *base_occurance)
{
struct triple *nfunc;
struct triple *nfirst, *ofirst;
struct triple *new, *old;
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->dbgout;
fprintf(fp, "\n");
loc(fp, state, 0);
fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
display_func(state, fp, ofunc);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
}
/* Make a new copy of the old function */
nfunc = triple(state, OP_LIST, ofunc->type, 0, 0);
nfirst = 0;
ofirst = old = RHS(ofunc, 0);
do {
struct triple *new;
struct occurance *occurance;
int old_lhs, old_rhs;
old_lhs = old->lhs;
old_rhs = old->rhs;
occurance = inline_occurance(state, base_occurance, old->occurance);
if (ofunc->u.cval && (old->op == OP_FCALL)) {
MISC(old, 0)->u.cval += 1;
}
new = alloc_triple(state, old->op, old->type, old_lhs, old_rhs,
occurance);
if (!triple_stores_block(state, new)) {
memcpy(&new->u, &old->u, sizeof(new->u));
}
if (!nfirst) {
RHS(nfunc, 0) = nfirst = new;
}
else {
insert_triple(state, nfirst, new);
}
new->id |= TRIPLE_FLAG_FLATTENED;
new->id |= old->id & TRIPLE_FLAG_COPY;
/* During the copy remember new as user of old */
use_triple(old, new);
/* Remember which instructions are local */
old->id |= TRIPLE_FLAG_LOCAL;
old = old->next;
} while(old != ofirst);
/* Make a second pass to fix up any unresolved references */
old = ofirst;
new = nfirst;
do {
struct triple **oexpr, **nexpr;
int count, i;
/* Lookup where the copy is, to join pointers */
count = TRIPLE_SIZE(old);
for(i = 0; i < count; i++) {
oexpr = &old->param[i];
nexpr = &new->param[i];
if (*oexpr && !*nexpr) {
if (!local_triple(state, ofunc, *oexpr)) {
*nexpr = *oexpr;
}
else if ((*oexpr)->use) {
*nexpr = (*oexpr)->use->member;
}
if (*nexpr == old) {
internal_error(state, 0, "new == old?");
}
use_triple(*nexpr, new);
}
if (!*nexpr && *oexpr) {
internal_error(state, 0, "Could not copy %d", i);
}
}
old = old->next;
new = new->next;
} while((old != ofirst) && (new != nfirst));
/* Make a third pass to cleanup the extra useses */
old = ofirst;
new = nfirst;
do {
unuse_triple(old, new);
/* Forget which instructions are local */
old->id &= ~TRIPLE_FLAG_LOCAL;
old = old->next;
new = new->next;
} while ((old != ofirst) && (new != nfirst));
return nfunc;
}
static void expand_inline_call(
struct compile_state *state, struct triple *me, struct triple *fcall)
{
/* Inline the function call */
struct type *ptype;
struct triple *ofunc, *nfunc, *nfirst, *result, *retvar, *ins;
struct triple *end, *nend;
int pvals, i;
/* Find the triples */
ofunc = MISC(fcall, 0);
if (ofunc->op != OP_LIST) {
internal_error(state, 0, "improper function");
}
nfunc = copy_func(state, ofunc, fcall->occurance);
/* Prepend the parameter reading into the new function list */
ptype = nfunc->type->right;
pvals = fcall->rhs;
for(i = 0; i < pvals; i++) {
struct type *atype;
struct triple *arg, *param;
atype = ptype;
if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
atype = ptype->left;
}
param = farg(state, nfunc, i);
if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
internal_error(state, fcall, "param %d type mismatch", i);
}
arg = RHS(fcall, i);
flatten(state, fcall, write_expr(state, param, arg));
ptype = ptype->right;
}
result = 0;
if ((nfunc->type->left->type & TYPE_MASK) != TYPE_VOID) {
result = read_expr(state,
deref_index(state, fresult(state, nfunc), 1));
}
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->dbgout;
fprintf(fp, "\n");
loc(fp, state, 0);
fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
display_func(state, fp, nfunc);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
}
/*
* Get rid of the extra triples
*/
/* Remove the read of the return address */
ins = RHS(nfunc, 0)->prev->prev;
if ((ins->op != OP_READ) || (RHS(ins, 0) != fretaddr(state, nfunc))) {
internal_error(state, ins, "Not return addres read?");
}
release_triple(state, ins);
/* Remove the return instruction */
ins = RHS(nfunc, 0)->prev;
if (ins->op != OP_RET) {
internal_error(state, ins, "Not return?");
}
release_triple(state, ins);
/* Remove the retaddres variable */
retvar = fretaddr(state, nfunc);
if ((retvar->lhs != 1) ||
(retvar->op != OP_ADECL) ||
(retvar->next->op != OP_PIECE) ||
(MISC(retvar->next, 0) != retvar)) {
internal_error(state, retvar, "Not the return address?");
}
release_triple(state, retvar->next);
release_triple(state, retvar);
/* Remove the label at the start of the function */
ins = RHS(nfunc, 0);
if (ins->op != OP_LABEL) {
internal_error(state, ins, "Not label?");
}
nfirst = ins->next;
free_triple(state, ins);
/* Release the new function header */
RHS(nfunc, 0) = 0;
free_triple(state, nfunc);
/* Append the new function list onto the return list */
end = fcall->prev;
nend = nfirst->prev;
end->next = nfirst;
nfirst->prev = end;
nend->next = fcall;
fcall->prev = nend;
/* Now the result reading code */
if (result) {
result = flatten(state, fcall, result);
propogate_use(state, fcall, result);
}
/* Release the original fcall instruction */
release_triple(state, fcall);
return;
}
/*
*
* Type of the result variable.
*
* result
* |
* +----------+------------+
* | |
* union of closures result_type
* |
* +------------------+---------------+
* | |
* closure1 ... closuerN
* | |
* +----+--+-+--------+-----+ +----+----+---+-----+
* | | | | | | | | |
* var1 var2 var3 ... varN result var1 var2 ... varN result
* |
* +--------+---------+
* | |
* union of closures result_type
* |
* +-----+-------------------+
* | |
* closure1 ... closureN
* | |
* +-----+---+----+----+ +----+---+----+-----+
* | | | | | | | |
* var1 var2 ... varN result var1 var2 ... varN result
*/
static int add_closure_type(struct compile_state *state,
struct triple *func, struct type *closure_type)
{
struct type *type, *ctype, **next;
struct triple *var, *new_var;
int i;
#if 0
FILE *fp = state->errout;
fprintf(fp, "original_type: ");
name_of(fp, fresult(state, func)->type);
fprintf(fp, "\n");
#endif
/* find the original type */
var = fresult(state, func);
type = var->type;
if (type->elements != 2) {
internal_error(state, var, "bad return type");
}
/* Find the complete closure type and update it */
ctype = type->left->left;
next = &ctype->left;
while(((*next)->type & TYPE_MASK) == TYPE_OVERLAP) {
next = &(*next)->right;
}
*next = new_type(TYPE_OVERLAP, *next, dup_type(state, closure_type));
ctype->elements += 1;
#if 0
fprintf(fp, "new_type: ");
name_of(fp, type);
fprintf(fp, "\n");
fprintf(fp, "ctype: %p %d bits: %d ",
ctype, ctype->elements, reg_size_of(state, ctype));
name_of(fp, ctype);
fprintf(fp, "\n");
#endif
/* Regenerate the variable with the new type definition */
new_var = pre_triple(state, var, OP_ADECL, type, 0, 0);
new_var->id |= TRIPLE_FLAG_FLATTENED;
for(i = 0; i < new_var->lhs; i++) {
LHS(new_var, i)->id |= TRIPLE_FLAG_FLATTENED;
}
/* Point everyone at the new variable */
propogate_use(state, var, new_var);
/* Release the original variable */
for(i = 0; i < var->lhs; i++) {
release_triple(state, LHS(var, i));
}
release_triple(state, var);
/* Return the index of the added closure type */
return ctype->elements - 1;
}
static struct triple *closure_expr(struct compile_state *state,
struct triple *func, int closure_idx, int var_idx)
{
return deref_index(state,
deref_index(state,
deref_index(state, fresult(state, func), 0),
closure_idx),
var_idx);
}
static void insert_triple_set(
struct triple_reg_set **head, struct triple *member)
{
struct triple_reg_set *new;
new = xcmalloc(sizeof(*new), "triple_set");
new->member = member;
new->new = 0;
new->next = *head;
*head = new;
}
static int ordered_triple_set(
struct triple_reg_set **head, struct triple *member)
{
struct triple_reg_set **ptr;
if (!member)
return 0;
ptr = head;
while(*ptr) {
if (member == (*ptr)->member) {
return 0;
}
/* keep the list ordered */
if (member->id < (*ptr)->member->id) {
break;
}
ptr = &(*ptr)->next;
}
insert_triple_set(ptr, member);
return 1;
}
static void free_closure_variables(struct compile_state *state,
struct triple_reg_set **enclose)
{
struct triple_reg_set *entry, *next;
for(entry = *enclose; entry; entry = next) {
next = entry->next;
do_triple_unset(enclose, entry->member);
}
}
static int lookup_closure_index(struct compile_state *state,
struct triple *me, struct triple *val)
{
struct triple *first, *ins, *next;
first = RHS(me, 0);
ins = next = first;
do {
struct triple *result;
struct triple *index0, *index1, *index2, *read, *write;
ins = next;
next = ins->next;
if (ins->op != OP_CALL) {
continue;
}
/* I am at a previous call point examine it closely */
if (ins->next->op != OP_LABEL) {
internal_error(state, ins, "call not followed by label");
}
/* Does this call does not enclose any variables? */
if ((ins->next->next->op != OP_INDEX) ||
(ins->next->next->u.cval != 0) ||
(result = MISC(ins->next->next, 0)) ||
(result->id & TRIPLE_FLAG_LOCAL)) {
continue;
}
index0 = ins->next->next;
/* The pattern is:
* 0 index result < 0 >
* 1 index 0 < ? >
* 2 index 1 < ? >
* 3 read 2
* 4 write 3 var
*/
for(index0 = ins->next->next;
(index0->op == OP_INDEX) &&
(MISC(index0, 0) == result) &&
(index0->u.cval == 0) ;
index0 = write->next)
{
index1 = index0->next;
index2 = index1->next;
read = index2->next;
write = read->next;
if ((index0->op != OP_INDEX) ||
(index1->op != OP_INDEX) ||
(index2->op != OP_INDEX) ||
(read->op != OP_READ) ||
(write->op != OP_WRITE) ||
(MISC(index1, 0) != index0) ||
(MISC(index2, 0) != index1) ||
(RHS(read, 0) != index2) ||
(RHS(write, 0) != read)) {
internal_error(state, index0, "bad var read");
}
if (MISC(write, 0) == val) {
return index2->u.cval;
}
}
} while(next != first);
return -1;
}
static inline int enclose_triple(struct triple *ins)
{
return (ins && ((ins->type->type & TYPE_MASK) != TYPE_VOID));
}
static void compute_closure_variables(struct compile_state *state,
struct triple *me, struct triple *fcall, struct triple_reg_set **enclose)
{
struct triple_reg_set *set, *vars, **last_var;
struct basic_blocks bb;
struct reg_block *rb;
struct block *block;
struct triple *old_result, *first, *ins;
size_t count, idx;
unsigned long used_indicies;
int i, max_index;
#define MAX_INDICIES (sizeof(used_indicies)*CHAR_BIT)
#define ID_BITS(X) ((X) & (TRIPLE_FLAG_LOCAL -1))
struct {
unsigned id;
int index;
} *info;
/* Find the basic blocks of this function */
bb.func = me;
bb.first = RHS(me, 0);
old_result = 0;
if (!triple_is_ret(state, bb.first->prev)) {
bb.func = 0;
} else {
old_result = fresult(state, me);
}
analyze_basic_blocks(state, &bb);
/* Find which variables are currently alive in a given block */
rb = compute_variable_lifetimes(state, &bb);
/* Find the variables that are currently alive */
block = block_of_triple(state, fcall);
if (!block || (block->vertex <= 0) || (block->vertex > bb.last_vertex)) {
internal_error(state, fcall, "No reg block? block: %p", block);
}
#if DEBUG_EXPLICIT_CLOSURES
print_live_variables(state, &bb, rb, state->dbgout);
fflush(state->dbgout);
#endif
/* Count the number of triples in the function */
first = RHS(me, 0);
ins = first;
count = 0;
do {
count++;
ins = ins->next;
} while(ins != first);
/* Allocate some memory to temorary hold the id info */
info = xcmalloc(sizeof(*info) * (count +1), "info");
/* Mark the local function */
first = RHS(me, 0);
ins = first;
idx = 1;
do {
info[idx].id = ins->id;
ins->id = TRIPLE_FLAG_LOCAL | idx;
idx++;
ins = ins->next;
} while(ins != first);
/*
* Build the list of variables to enclose.
*
* A target it to put the same variable in the
* same slot for ever call of a given function.
* After coloring this removes all of the variable
* manipulation code.
*
* The list of variables to enclose is built ordered
* program order because except in corner cases this
* gives me the stability of assignment I need.
*
* To gurantee that stability I lookup the variables
* to see where they have been used before and
* I build my final list with the assigned indicies.
*/
vars = 0;
if (enclose_triple(old_result)) {
ordered_triple_set(&vars, old_result);
}
for(set = rb[block->vertex].out; set; set = set->next) {
if (!enclose_triple(set->member)) {
continue;
}
if ((set->member == fcall) || (set->member == old_result)) {
continue;
}
if (!local_triple(state, me, set->member)) {
internal_error(state, set->member, "not local?");
}
ordered_triple_set(&vars, set->member);
}
/* Lookup the current indicies of the live varialbe */
used_indicies = 0;
max_index = -1;
for(set = vars; set ; set = set->next) {
struct triple *ins;
int index;
ins = set->member;
index = lookup_closure_index(state, me, ins);
info[ID_BITS(ins->id)].index = index;
if (index < 0) {
continue;
}
if (index >= MAX_INDICIES) {
internal_error(state, ins, "index unexpectedly large");
}
if (used_indicies & (1 << index)) {
internal_error(state, ins, "index previously used?");
}
/* Remember which indicies have been used */
used_indicies |= (1 << index);
if (index > max_index) {
max_index = index;
}
}
/* Walk through the live variables and make certain
* everything is assigned an index.
*/
for(set = vars; set; set = set->next) {
struct triple *ins;
int index;
ins = set->member;
index = info[ID_BITS(ins->id)].index;
if (index >= 0) {
continue;
}
/* Find the lowest unused index value */
for(index = 0; index < MAX_INDICIES; index++) {
if (!(used_indicies & (1 << index))) {
break;
}
}
if (index == MAX_INDICIES) {
internal_error(state, ins, "no free indicies?");
}
info[ID_BITS(ins->id)].index = index;
/* Remember which indicies have been used */
used_indicies |= (1 << index);
if (index > max_index) {
max_index = index;
}
}
/* Build the return list of variables with positions matching
* their indicies.
*/
*enclose = 0;
last_var = enclose;
for(i = 0; i <= max_index; i++) {
struct triple *var;
var = 0;
if (used_indicies & (1 << i)) {
for(set = vars; set; set = set->next) {
int index;
index = info[ID_BITS(set->member->id)].index;
if (index == i) {
var = set->member;
break;
}
}
if (!var) {
internal_error(state, me, "missing variable");
}
}
insert_triple_set(last_var, var);
last_var = &(*last_var)->next;
}
#if DEBUG_EXPLICIT_CLOSURES
/* Print out the variables to be enclosed */
loc(state->dbgout, state, fcall);
fprintf(state->dbgout, "Alive: \n");
for(set = *enclose; set; set = set->next) {
display_triple(state->dbgout, set->member);
}
fflush(state->dbgout);
#endif
/* Clear the marks */
ins = first;
do {
ins->id = info[ID_BITS(ins->id)].id;
ins = ins->next;
} while(ins != first);
/* Release the ordered list of live variables */
free_closure_variables(state, &vars);
/* Release the storage of the old ids */
xfree(info);
/* Release the variable lifetime information */
free_variable_lifetimes(state, &bb, rb);
/* Release the basic blocks of this function */
free_basic_blocks(state, &bb);
}
static void expand_function_call(
struct compile_state *state, struct triple *me, struct triple *fcall)
{
/* Generate an ordinary function call */
struct type *closure_type, **closure_next;
struct triple *func, *func_first, *func_last, *retvar;
struct triple *first;
struct type *ptype, *rtype;
struct triple *ret_addr, *ret_loc;
struct triple_reg_set *enclose, *set;
int closure_idx, pvals, i;
#if DEBUG_EXPLICIT_CLOSURES
FILE *fp = state->dbgout;
fprintf(fp, "\ndisplay_func(me) ptr: %p\n", fcall);
display_func(state, fp, MISC(fcall, 0));
display_func(state, fp, me);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
#endif
/* Find the triples */
func = MISC(fcall, 0);
func_first = RHS(func, 0);
retvar = fretaddr(state, func);
func_last = func_first->prev;
first = fcall->next;
/* Find what I need to enclose */
compute_closure_variables(state, me, fcall, &enclose);
/* Compute the closure type */
closure_type = new_type(TYPE_TUPLE, 0, 0);
closure_type->elements = 0;
closure_next = &closure_type->left;
for(set = enclose; set ; set = set->next) {
struct type *type;
type = &void_type;
if (set->member) {
type = set->member->type;
}
if (!*closure_next) {
*closure_next = type;
} else {
*closure_next = new_type(TYPE_PRODUCT, *closure_next,
type);
closure_next = &(*closure_next)->right;
}
closure_type->elements += 1;
}
if (closure_type->elements == 0) {
closure_type->type = TYPE_VOID;
}
#if DEBUG_EXPLICIT_CLOSURES
fprintf(state->dbgout, "closure type: ");
name_of(state->dbgout, closure_type);
fprintf(state->dbgout, "\n");
#endif
/* Update the called functions closure variable */
closure_idx = add_closure_type(state, func, closure_type);
/* Generate some needed triples */
ret_loc = label(state);
ret_addr = triple(state, OP_ADDRCONST, &void_ptr_type, ret_loc, 0);
/* Pass the parameters to the new function */
ptype = func->type->right;
pvals = fcall->rhs;
for(i = 0; i < pvals; i++) {
struct type *atype;
struct triple *arg, *param;
atype = ptype;
if ((ptype->type & TYPE_MASK) == TYPE_PRODUCT) {
atype = ptype->left;
}
param = farg(state, func, i);
if ((param->type->type & TYPE_MASK) != (atype->type & TYPE_MASK)) {
internal_error(state, fcall, "param type mismatch");
}
arg = RHS(fcall, i);
flatten(state, first, write_expr(state, param, arg));
ptype = ptype->right;
}
rtype = func->type->left;
/* Thread the triples together */
ret_loc = flatten(state, first, ret_loc);
/* Save the active variables in the result variable */
for(i = 0, set = enclose; set ; set = set->next, i++) {
if (!set->member) {
continue;
}
flatten(state, ret_loc,
write_expr(state,
closure_expr(state, func, closure_idx, i),
read_expr(state, set->member)));
}
/* Initialize the return value */
if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
flatten(state, ret_loc,
write_expr(state,
deref_index(state, fresult(state, func), 1),
new_triple(state, OP_UNKNOWNVAL, rtype, 0, 0)));
}
ret_addr = flatten(state, ret_loc, ret_addr);
flatten(state, ret_loc, write_expr(state, retvar, ret_addr));
flatten(state, ret_loc,
call(state, retvar, ret_addr, func_first, func_last));
/* Find the result */
if ((rtype->type & TYPE_MASK) != TYPE_VOID) {
struct triple * result;
result = flatten(state, first,
read_expr(state,
deref_index(state, fresult(state, func), 1)));
propogate_use(state, fcall, result);
}
/* Release the original fcall instruction */
release_triple(state, fcall);
/* Restore the active variables from the result variable */
for(i = 0, set = enclose; set ; set = set->next, i++) {
struct triple_set *use, *next;
struct triple *new;
struct basic_blocks bb;
if (!set->member || (set->member == fcall)) {
continue;
}
/* Generate an expression for the value */
new = flatten(state, first,
read_expr(state,
closure_expr(state, func, closure_idx, i)));
/* If the original is an lvalue restore the preserved value */
if (is_lvalue(state, set->member)) {
flatten(state, first,
write_expr(state, set->member, new));
continue;
}
/*
* If the original is a value update the dominated uses.
*/
/* Analyze the basic blocks so I can see who dominates whom */
bb.func = me;
bb.first = RHS(me, 0);
if (!triple_is_ret(state, bb.first->prev)) {
bb.func = 0;
}
analyze_basic_blocks(state, &bb);
#if DEBUG_EXPLICIT_CLOSURES
fprintf(state->errout, "Updating domindated uses: %p -> %p\n",
set->member, new);
#endif
/* If fcall dominates the use update the expression */
for(use = set->member->use; use; use = next) {
/* Replace use modifies the use chain and
* removes use, so I must take a copy of the
* next entry early.
*/
next = use->next;
if (!tdominates(state, fcall, use->member)) {
continue;
}
replace_use(state, set->member, new, use->member);
}
/* Release the basic blocks, the instructions will be
* different next time, and flatten/insert_triple does
* not update the block values so I can't cache the analysis.
*/
free_basic_blocks(state, &bb);
}
/* Release the closure variable list */
free_closure_variables(state, &enclose);
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->dbgout;
fprintf(fp, "\n");
loc(fp, state, 0);
fprintf(fp, "\n__________ %s _________\n", __FUNCTION__);
display_func(state, fp, func);
display_func(state, fp, me);
fprintf(fp, "__________ %s _________ done\n\n", __FUNCTION__);
}
return;
}
static int do_inline(struct compile_state *state, struct triple *func)
{
int do_inline;
int policy;
policy = state->compiler->flags & COMPILER_INLINE_MASK;
switch(policy) {
case COMPILER_INLINE_ALWAYS:
do_inline = 1;
if (func->type->type & ATTRIB_NOINLINE) {
error(state, func, "noinline with always_inline compiler option");
}
break;
case COMPILER_INLINE_NEVER:
do_inline = 0;
if (func->type->type & ATTRIB_ALWAYS_INLINE) {
error(state, func, "always_inline with noinline compiler option");
}
break;
case COMPILER_INLINE_DEFAULTON:
switch(func->type->type & STOR_MASK) {
case STOR_STATIC | STOR_INLINE:
case STOR_LOCAL | STOR_INLINE:
case STOR_EXTERN | STOR_INLINE:
do_inline = 1;
break;
default:
do_inline = 1;
break;
}
break;
case COMPILER_INLINE_DEFAULTOFF:
switch(func->type->type & STOR_MASK) {
case STOR_STATIC | STOR_INLINE:
case STOR_LOCAL | STOR_INLINE:
case STOR_EXTERN | STOR_INLINE:
do_inline = 1;
break;
default:
do_inline = 0;
break;
}
break;
case COMPILER_INLINE_NOPENALTY:
switch(func->type->type & STOR_MASK) {
case STOR_STATIC | STOR_INLINE:
case STOR_LOCAL | STOR_INLINE:
case STOR_EXTERN | STOR_INLINE:
do_inline = 1;
break;
default:
do_inline = (func->u.cval == 1);
break;
}
break;
default:
do_inline = 0;
internal_error(state, 0, "Unimplemented inline policy");
break;
}
/* Force inlining */
if (func->type->type & ATTRIB_NOINLINE) {
do_inline = 0;
}
if (func->type->type & ATTRIB_ALWAYS_INLINE) {
do_inline = 1;
}
return do_inline;
}
static void inline_function(struct compile_state *state, struct triple *me, void *arg)
{
struct triple *first, *ptr, *next;
/* If the function is not used don't bother */
if (me->u.cval <= 0) {
return;
}
if (state->compiler->debug & DEBUG_CALLS2) {
FILE *fp = state->dbgout;
fprintf(fp, "in: %s\n",
me->type->type_ident->name);
}
first = RHS(me, 0);
ptr = next = first;
do {
struct triple *func, *prev;
ptr = next;
prev = ptr->prev;
next = ptr->next;
if (ptr->op != OP_FCALL) {
continue;
}
func = MISC(ptr, 0);
/* See if the function should be inlined */
if (!do_inline(state, func)) {
/* Put a label after the fcall */
post_triple(state, ptr, OP_LABEL, &void_type, 0, 0);
continue;
}
if (state->compiler->debug & DEBUG_CALLS) {
FILE *fp = state->dbgout;
if (state->compiler->debug & DEBUG_CALLS2) {
loc(fp, state, ptr);
}
fprintf(fp, "inlining %s\n",
func->type->type_ident->name);
fflush(fp);
}
/* Update the function use counts */
func->u.cval -= 1;
/* Replace the fcall with the called function */
expand_inline_call(state, me, ptr);
next = prev->next;
} while (next != first);
ptr = next = first;
do {
struct triple *prev, *func;
ptr = next;
prev = ptr->prev;
next = ptr->next;
if (ptr->op != OP_FCALL) {
continue;
}
func = MISC(ptr, 0);
if (state->compiler->debug & DEBUG_CALLS) {
FILE *fp = state->dbgout;
if (state->compiler->debug & DEBUG_CALLS2) {
loc(fp, state, ptr);
}
fprintf(fp, "calling %s\n",
func->type->type_ident->name);
fflush(fp);
}
/* Replace the fcall with the instruction sequence
* needed to make the call.
*/
expand_function_call(state, me, ptr);
next = prev->next;
} while(next != first);
}
static void inline_functions(struct compile_state *state, struct triple *func)
{
inline_function(state, func, 0);
reverse_walk_functions(state, inline_function, 0);
}
static void insert_function(struct compile_state *state,
struct triple *func, void *arg)
{
struct triple *first, *end, *ffirst, *fend;
if (state->compiler->debug & DEBUG_INLINE) {
FILE *fp = state->errout;
fprintf(fp, "%s func count: %d\n",
func->type->type_ident->name, func->u.cval);
}
if (func->u.cval == 0) {
return;
}
/* Find the end points of the lists */
first = arg;
end = first->prev;
ffirst = RHS(func, 0);
fend = ffirst->prev;
/* splice the lists together */
end->next = ffirst;
ffirst->prev = end;
fend->next = first;
first->prev = fend;
}
struct triple *input_asm(struct compile_state *state)
{
struct asm_info *info;
struct triple *def;
int i, out;
info = xcmalloc(sizeof(*info), "asm_info");
info->str = "";
out = sizeof(arch_input_regs)/sizeof(arch_input_regs[0]);
memcpy(&info->tmpl.lhs, arch_input_regs, sizeof(arch_input_regs));
def = new_triple(state, OP_ASM, &void_type, out, 0);
def->u.ainfo = info;
def->id |= TRIPLE_FLAG_VOLATILE;
for(i = 0; i < out; i++) {
struct triple *piece;
piece = triple(state, OP_PIECE, &int_type, def, 0);
piece->u.cval = i;
LHS(def, i) = piece;
}
return def;
}
struct triple *output_asm(struct compile_state *state)
{
struct asm_info *info;
struct triple *def;
int in;
info = xcmalloc(sizeof(*info), "asm_info");
info->str = "";
in = sizeof(arch_output_regs)/sizeof(arch_output_regs[0]);
memcpy(&info->tmpl.rhs, arch_output_regs, sizeof(arch_output_regs));
def = new_triple(state, OP_ASM, &void_type, 0, in);
def->u.ainfo = info;
def->id |= TRIPLE_FLAG_VOLATILE;
return def;
}
static void join_functions(struct compile_state *state)
{
struct triple *start, *end, *call, *in, *out, *func;
struct file_state file;
struct type *pnext, *param;
struct type *result_type, *args_type;
int idx;
/* Be clear the functions have not been joined yet */
state->functions_joined = 0;
/* Dummy file state to get debug handing right */
memset(&file, 0, sizeof(file));
file.basename = "";
file.line = 0;
file.report_line = 0;
file.report_name = file.basename;
file.prev = state->file;
state->file = &file;
state->function = "";
if (!state->main_function) {
error(state, 0, "No functions to compile\n");
}
/* The type of arguments */
args_type = state->main_function->type->right;
/* The return type without any specifiers */
result_type = clone_type(0, state->main_function->type->left);
/* Verify the external arguments */
if (registers_of(state, args_type) > ARCH_INPUT_REGS) {
error(state, state->main_function,
"Too many external input arguments");
}
if (registers_of(state, result_type) > ARCH_OUTPUT_REGS) {
error(state, state->main_function,
"Too many external output arguments");
}
/* Lay down the basic program structure */
end = label(state);
start = label(state);
start = flatten(state, state->first, start);
end = flatten(state, state->first, end);
in = input_asm(state);
out = output_asm(state);
call = new_triple(state, OP_FCALL, result_type, -1, registers_of(state, args_type));
MISC(call, 0) = state->main_function;
in = flatten(state, state->first, in);
call = flatten(state, state->first, call);
out = flatten(state, state->first, out);
/* Read the external input arguments */
pnext = args_type;
idx = 0;
while(pnext && ((pnext->type & TYPE_MASK) != TYPE_VOID)) {
struct triple *expr;
param = pnext;
pnext = 0;
if ((param->type & TYPE_MASK) == TYPE_PRODUCT) {
pnext = param->right;
param = param->left;
}
if (registers_of(state, param) != 1) {
error(state, state->main_function,
"Arg: %d %s requires multiple registers",
idx + 1, param->field_ident->name);
}
expr = read_expr(state, LHS(in, idx));
RHS(call, idx) = expr;
expr = flatten(state, call, expr);
use_triple(expr, call);
idx++;
}
/* Write the external output arguments */
pnext = result_type;
if ((pnext->type & TYPE_MASK) == TYPE_STRUCT) {
pnext = result_type->left;
}
for(idx = 0; idx < out->rhs; idx++) {
struct triple *expr;
param = pnext;
pnext = 0;
if (param && ((param->type & TYPE_MASK) == TYPE_PRODUCT)) {
pnext = param->right;
param = param->left;
}
if (param && ((param->type & TYPE_MASK) == TYPE_VOID)) {
param = 0;
}
if (param) {
if (registers_of(state, param) != 1) {
error(state, state->main_function,
"Result: %d %s requires multiple registers",
idx, param->field_ident->name);
}
expr = read_expr(state, call);
if ((result_type->type & TYPE_MASK) == TYPE_STRUCT) {
expr = deref_field(state, expr, param->field_ident);
}
} else {
expr = triple(state, OP_UNKNOWNVAL, &int_type, 0, 0);
}
flatten(state, out, expr);
RHS(out, idx) = expr;
use_triple(expr, out);
}
/* Allocate a dummy containing function */
func = triple(state, OP_LIST,
new_type(TYPE_FUNCTION, &void_type, &void_type), 0, 0);
func->type->type_ident = lookup(state, "", 0);
RHS(func, 0) = state->first;
func->u.cval = 1;
/* See which functions are called, and how often */
mark_live_functions(state);
inline_functions(state, func);
walk_functions(state, insert_function, end);
if (start->next != end) {
flatten(state, start, branch(state, end, 0));
}
/* OK now the functions have been joined. */
state->functions_joined = 1;
/* Done now cleanup */
state->file = file.prev;
state->function = 0;
}
/*
* Data structurs for optimation.
*/
static int do_use_block(
struct block *used, struct block_set **head, struct block *user,
int front)
{
struct block_set **ptr, *new;
if (!used)
return 0;
if (!user)
return 0;
ptr = head;
while(*ptr) {
if ((*ptr)->member == user) {
return 0;
}
ptr = &(*ptr)->next;
}
new = xcmalloc(sizeof(*new), "block_set");
new->member = user;
if (front) {
new->next = *head;
*head = new;
}
else {
new->next = 0;
*ptr = new;
}
return 1;
}
static int do_unuse_block(
struct block *used, struct block_set **head, struct block *unuser)
{
struct block_set *use, **ptr;
int count;
count = 0;
ptr = head;
while(*ptr) {
use = *ptr;
if (use->member == unuser) {
*ptr = use->next;
memset(use, -1, sizeof(*use));
xfree(use);
count += 1;
}
else {
ptr = &use->next;
}
}
return count;
}
static void use_block(struct block *used, struct block *user)
{
int count;
/* Append new to the head of the list, print_block
* depends on this.
*/
count = do_use_block(used, &used->use, user, 1);
used->users += count;
}
static void unuse_block(struct block *used, struct block *unuser)
{
int count;
count = do_unuse_block(used, &used->use, unuser);
used->users -= count;
}
static void add_block_edge(struct block *block, struct block *edge, int front)
{
int count;
count = do_use_block(block, &block->edges, edge, front);
block->edge_count += count;
}
static void remove_block_edge(struct block *block, struct block *edge)
{
int count;
count = do_unuse_block(block, &block->edges, edge);
block->edge_count -= count;
}
static void idom_block(struct block *idom, struct block *user)
{
do_use_block(idom, &idom->idominates, user, 0);
}
static void unidom_block(struct block *idom, struct block *unuser)
{
do_unuse_block(idom, &idom->idominates, unuser);
}
static void domf_block(struct block *block, struct block *domf)
{
do_use_block(block, &block->domfrontier, domf, 0);
}
static void undomf_block(struct block *block, struct block *undomf)
{
do_unuse_block(block, &block->domfrontier, undomf);
}
static void ipdom_block(struct block *ipdom, struct block *user)
{
do_use_block(ipdom, &ipdom->ipdominates, user, 0);
}
static void unipdom_block(struct block *ipdom, struct block *unuser)
{
do_unuse_block(ipdom, &ipdom->ipdominates, unuser);
}
static void ipdomf_block(struct block *block, struct block *ipdomf)
{
do_use_block(block, &block->ipdomfrontier, ipdomf, 0);
}
static void unipdomf_block(struct block *block, struct block *unipdomf)
{
do_unuse_block(block, &block->ipdomfrontier, unipdomf);
}
static int walk_triples(
struct compile_state *state,
int (*cb)(struct compile_state *state, struct triple *ptr, void *arg),
void *arg)
{
struct triple *ptr;
int result;
ptr = state->first;
do {
result = cb(state, ptr, arg);
if (ptr->next->prev != ptr) {
internal_error(state, ptr->next, "bad prev");
}
ptr = ptr->next;
} while((result == 0) && (ptr != state->first));
return result;
}
#define PRINT_LIST 1
static int do_print_triple(struct compile_state *state, struct triple *ins, void *arg)
{
FILE *fp = arg;
int op;
op = ins->op;
if (op == OP_LIST) {
#if !PRINT_LIST
return 0;
#endif
}
if ((op == OP_LABEL) && (ins->use)) {
fprintf(fp, "\n%p:\n", ins);
}
display_triple(fp, ins);
if (triple_is_branch(state, ins) && ins->use &&
(ins->op != OP_RET) && (ins->op != OP_FCALL)) {
internal_error(state, ins, "branch used?");
}
if (triple_is_branch(state, ins)) {
fprintf(fp, "\n");
}
return 0;
}
static void print_triples(struct compile_state *state)
{
if (state->compiler->debug & DEBUG_TRIPLES) {
FILE *fp = state->dbgout;
fprintf(fp, "--------------- triples ---------------\n");
walk_triples(state, do_print_triple, fp);
fprintf(fp, "\n");
}
}
struct cf_block {
struct block *block;
};
static void find_cf_blocks(struct cf_block *cf, struct block *block)
{
struct block_set *edge;
if (!block || (cf[block->vertex].block == block)) {
return;
}
cf[block->vertex].block = block;
for(edge = block->edges; edge; edge = edge->next) {
find_cf_blocks(cf, edge->member);
}
}
static void print_control_flow(struct compile_state *state,
FILE *fp, struct basic_blocks *bb)
{
struct cf_block *cf;
int i;
fprintf(fp, "\ncontrol flow\n");
cf = xcmalloc(sizeof(*cf) * (bb->last_vertex + 1), "cf_block");
find_cf_blocks(cf, bb->first_block);
for(i = 1; i <= bb->last_vertex; i++) {
struct block *block;
struct block_set *edge;
block = cf[i].block;
if (!block)
continue;
fprintf(fp, "(%p) %d:", block, block->vertex);
for(edge = block->edges; edge; edge = edge->next) {
fprintf(fp, " %d", edge->member->vertex);
}
fprintf(fp, "\n");
}
xfree(cf);
}
static void free_basic_block(struct compile_state *state, struct block *block)
{
struct block_set *edge, *entry;
struct block *child;
if (!block) {
return;
}
if (block->vertex == -1) {
return;
}
block->vertex = -1;
for(edge = block->edges; edge; edge = edge->next) {
if (edge->member) {
unuse_block(edge->member, block);
}
}
if (block->idom) {
unidom_block(block->idom, block);
}
block->idom = 0;
if (block->ipdom) {
unipdom_block(block->ipdom, block);
}
block->ipdom = 0;
while((entry = block->use)) {
child = entry->member;
unuse_block(block, child);
if (child && (child->vertex != -1)) {
for(edge = child->edges; edge; edge = edge->next) {
edge->member = 0;
}
}
}
while((entry = block->idominates)) {
child = entry->member;
unidom_block(block, child);
if (child && (child->vertex != -1)) {
child->idom = 0;
}
}
while((entry = block->domfrontier)) {
child = entry->member;
undomf_block(block, child);
}
while((entry = block->ipdominates)) {
child = entry->member;
unipdom_block(block, child);
if (child && (child->vertex != -1)) {
child->ipdom = 0;
}
}
while((entry = block->ipdomfrontier)) {
child = entry->member;
unipdomf_block(block, child);
}
if (block->users != 0) {
internal_error(state, 0, "block still has users");
}
while((edge = block->edges)) {
child = edge->member;
remove_block_edge(block, child);
if (child && (child->vertex != -1)) {
free_basic_block(state, child);
}
}
memset(block, -1, sizeof(*block));
#ifndef WIN32
xfree(block);
#endif
}
static void free_basic_blocks(struct compile_state *state,
struct basic_blocks *bb)
{
struct triple *first, *ins;
free_basic_block(state, bb->first_block);
bb->last_vertex = 0;
bb->first_block = bb->last_block = 0;
first = bb->first;
ins = first;
do {
if (triple_stores_block(state, ins)) {
ins->u.block = 0;
}
ins = ins->next;
} while(ins != first);
}
static struct block *basic_block(struct compile_state *state,
struct basic_blocks *bb, struct triple *first)
{
struct block *block;
struct triple *ptr;
if (!triple_is_label(state, first)) {
internal_error(state, first, "block does not start with a label");
}
/* See if this basic block has already been setup */
if (first->u.block != 0) {
return first->u.block;
}
/* Allocate another basic block structure */
bb->last_vertex += 1;
block = xcmalloc(sizeof(*block), "block");
block->first = block->last = first;
block->vertex = bb->last_vertex;
ptr = first;
do {
if ((ptr != first) && triple_is_label(state, ptr) && (ptr->use)) {
break;
}
block->last = ptr;
/* If ptr->u is not used remember where the baic block is */
if (triple_stores_block(state, ptr)) {
ptr->u.block = block;
}
if (triple_is_branch(state, ptr)) {
break;
}
ptr = ptr->next;
} while (ptr != bb->first);
if ((ptr == bb->first) ||
((ptr->next == bb->first) && (
triple_is_end(state, ptr) ||
triple_is_ret(state, ptr))))
{
/* The block has no outflowing edges */
}
else if (triple_is_label(state, ptr)) {
struct block *next;
next = basic_block(state, bb, ptr);
add_block_edge(block, next, 0);
use_block(next, block);
}
else if (triple_is_branch(state, ptr)) {
struct triple **expr, *first;
struct block *child;
/* Find the branch targets.
* I special case the first branch as that magically
* avoids some difficult cases for the register allocator.
*/
expr = triple_edge_targ(state, ptr, 0);
if (!expr) {
internal_error(state, ptr, "branch without targets");
}
first = *expr;
expr = triple_edge_targ(state, ptr, expr);
for(; expr; expr = triple_edge_targ(state, ptr, expr)) {
if (!*expr) continue;
child = basic_block(state, bb, *expr);
use_block(child, block);
add_block_edge(block, child, 0);
}
if (first) {
child = basic_block(state, bb, first);
use_block(child, block);
add_block_edge(block, child, 1);
/* Be certain the return block of a call is
* in a basic block. When it is not find
* start of the block, insert a label if
* necessary and build the basic block.
* Then add a fake edge from the start block
* to the return block of the function.
*/
if (state->functions_joined && triple_is_call(state, ptr)
&& !block_of_triple(state, MISC(ptr, 0))) {
struct block *tail;
struct triple *start;
start = triple_to_block_start(state, MISC(ptr, 0));
if (!triple_is_label(state, start)) {
start = pre_triple(state,
start, OP_LABEL, &void_type, 0, 0);
}
tail = basic_block(state, bb, start);
add_block_edge(child, tail, 0);
use_block(tail, child);
}
}
}
else {
internal_error(state, 0, "Bad basic block split");
}
#if 0
{
struct block_set *edge;
FILE *fp = state->errout;
fprintf(fp, "basic_block: %10p [%2d] ( %10p - %10p )",
block, block->vertex,
block->first, block->last);
for(edge = block->edges; edge; edge = edge->next) {
fprintf(fp, " %10p [%2d]",
edge->member ? edge->member->first : 0,
edge->member ? edge->member->vertex : -1);
}
fprintf(fp, "\n");
}
#endif
return block;
}
static void walk_blocks(struct compile_state *state, struct basic_blocks *bb,
void (*cb)(struct compile_state *state, struct block *block, void *arg),
void *arg)
{
struct triple *ptr, *first;
struct block *last_block;
last_block = 0;
first = bb->first;
ptr = first;
do {
if (triple_stores_block(state, ptr)) {
struct block *block;
block = ptr->u.block;
if (block && (block != last_block)) {
cb(state, block, arg);
}
last_block = block;
}
ptr = ptr->next;
} while(ptr != first);
}
static void print_block(
struct compile_state *state, struct block *block, void *arg)
{
struct block_set *user, *edge;
struct triple *ptr;
FILE *fp = arg;
fprintf(fp, "\nblock: %p (%d) ",
block,
block->vertex);
for(edge = block->edges; edge; edge = edge->next) {
fprintf(fp, " %p<-%p",
edge->member,
(edge->member && edge->member->use)?
edge->member->use->member : 0);
}
fprintf(fp, "\n");
if (block->first->op == OP_LABEL) {
fprintf(fp, "%p:\n", block->first);
}
for(ptr = block->first; ; ) {
display_triple(fp, ptr);
if (ptr == block->last)
break;
ptr = ptr->next;
if (ptr == block->first) {
internal_error(state, 0, "missing block last?");
}
}
fprintf(fp, "users %d: ", block->users);
for(user = block->use; user; user = user->next) {
fprintf(fp, "%p (%d) ",
user->member,
user->member->vertex);
}
fprintf(fp,"\n\n");
}
static void romcc_print_blocks(struct compile_state *state, FILE *fp)
{
fprintf(fp, "--------------- blocks ---------------\n");
walk_blocks(state, &state->bb, print_block, fp);
}
static void print_blocks(struct compile_state *state, const char *func, FILE *fp)
{
if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
fprintf(fp, "After %s\n", func);
romcc_print_blocks(state, fp);
if (state->compiler->debug & DEBUG_FDOMINATORS) {
print_dominators(state, fp, &state->bb);
print_dominance_frontiers(state, fp, &state->bb);
}
print_control_flow(state, fp, &state->bb);
}
}
static void prune_nonblock_triples(struct compile_state *state,
struct basic_blocks *bb)
{
struct block *block;
struct triple *first, *ins, *next;
/* Delete the triples not in a basic block */
block = 0;
first = bb->first;
ins = first;
do {
next = ins->next;
if (ins->op == OP_LABEL) {
block = ins->u.block;
}
if (!block) {
struct triple_set *use;
for(use = ins->use; use; use = use->next) {
struct block *block;
block = block_of_triple(state, use->member);
if (block != 0) {
internal_error(state, ins, "pruning used ins?");
}
}
release_triple(state, ins);
}
if (block && block->last == ins) {
block = 0;
}
ins = next;
} while(ins != first);
}
static void setup_basic_blocks(struct compile_state *state,
struct basic_blocks *bb)
{
if (!triple_stores_block(state, bb->first)) {
internal_error(state, 0, "ins will not store block?");
}
/* Initialize the state */
bb->first_block = bb->last_block = 0;
bb->last_vertex = 0;
free_basic_blocks(state, bb);
/* Find the basic blocks */
bb->first_block = basic_block(state, bb, bb->first);
/* Be certain the last instruction of a function, or the
* entire program is in a basic block. When it is not find
* the start of the block, insert a label if necessary and build
* basic block. Then add a fake edge from the start block
* to the final block.
*/
if (!block_of_triple(state, bb->first->prev)) {
struct triple *start;
struct block *tail;
start = triple_to_block_start(state, bb->first->prev);
if (!triple_is_label(state, start)) {
start = pre_triple(state,
start, OP_LABEL, &void_type, 0, 0);
}
tail = basic_block(state, bb, start);
add_block_edge(bb->first_block, tail, 0);
use_block(tail, bb->first_block);
}
/* Find the last basic block.
*/
bb->last_block = block_of_triple(state, bb->first->prev);
/* Delete the triples not in a basic block */
prune_nonblock_triples(state, bb);
#if 0
/* If we are debugging print what I have just done */
if (state->compiler->debug & DEBUG_BASIC_BLOCKS) {
print_blocks(state, state->dbgout);
print_control_flow(state, bb);
}
#endif
}
struct sdom_block {
struct block *block;
struct sdom_block *sdominates;
struct sdom_block *sdom_next;
struct sdom_block *sdom;
struct sdom_block *label;
struct sdom_block *parent;
struct sdom_block *ancestor;
int vertex;
};
static void unsdom_block(struct sdom_block *block)
{
struct sdom_block **ptr;
if (!block->sdom_next) {
return;
}
ptr = &block->sdom->sdominates;
while(*ptr) {
if ((*ptr) == block) {
*ptr = block->sdom_next;
return;
}
ptr = &(*ptr)->sdom_next;
}
}
static void sdom_block(struct sdom_block *sdom, struct sdom_block *block)
{
unsdom_block(block);
block->sdom = sdom;
block->sdom_next = sdom->sdominates;
sdom->sdominates = block;
}
static int initialize_sdblock(struct sdom_block *sd,
struct block *parent, struct block *block, int vertex)
{
struct block_set *edge;
if (!block || (sd[block->vertex].block == block)) {
return vertex;
}
vertex += 1;
/* Renumber the blocks in a convinient fashion */
block->vertex = vertex;
sd[vertex].block = block;
sd[vertex].sdom = &sd[vertex];
sd[vertex].label = &sd[vertex];
sd[vertex].parent = parent? &sd[parent->vertex] : 0;
sd[vertex].ancestor = 0;
sd[vertex].vertex = vertex;
for(edge = block->edges; edge; edge = edge->next) {
vertex = initialize_sdblock(sd, block, edge->member, vertex);
}
return vertex;
}
static int initialize_spdblock(
struct compile_state *state, struct sdom_block *sd,
struct block *parent, struct block *block, int vertex)
{
struct block_set *user;
if (!block || (sd[block->vertex].block == block)) {
return vertex;
}
vertex += 1;
/* Renumber the blocks in a convinient fashion */
block->vertex = vertex;
sd[vertex].block = block;
sd[vertex].sdom = &sd[vertex];
sd[vertex].label = &sd[vertex];
sd[vertex].parent = parent? &sd[parent->vertex] : 0;
sd[vertex].ancestor = 0;
sd[vertex].vertex = vertex;
for(user = block->use; user; user = user->next) {
vertex = initialize_spdblock(state, sd, block, user->member, vertex);
}
return vertex;
}
static int setup_spdblocks(struct compile_state *state,
struct basic_blocks *bb, struct sdom_block *sd)
{
struct block *block;
int vertex;
/* Setup as many sdpblocks as possible without using fake edges */
vertex = initialize_spdblock(state, sd, 0, bb->last_block, 0);
/* Walk through the graph and find unconnected blocks. Add a
* fake edge from the unconnected blocks to the end of the
* graph.
*/
block = bb->first_block->last->next->u.block;
for(; block && block != bb->first_block; block = block->last->next->u.block) {
if (sd[block->vertex].block == block) {
continue;
}
#if DEBUG_SDP_BLOCKS
{
FILE *fp = state->errout;
fprintf(fp, "Adding %d\n", vertex +1);
}
#endif
add_block_edge(block, bb->last_block, 0);
use_block(bb->last_block, block);
vertex = initialize_spdblock(state, sd, bb->last_block, block, vertex);
}
return vertex;
}
static void compress_ancestors(struct sdom_block *v)
{
/* This procedure assumes ancestor(v) != 0 */
/* if (ancestor(ancestor(v)) != 0) {
* compress(ancestor(ancestor(v)));
* if (semi(label(ancestor(v))) < semi(label(v))) {
* label(v) = label(ancestor(v));
* }
* ancestor(v) = ancestor(ancestor(v));
* }
*/
if (!v->ancestor) {
return;
}
if (v->ancestor->ancestor) {
compress_ancestors(v->ancestor->ancestor);
if (v->ancestor->label->sdom->vertex < v->label->sdom->vertex) {
v->label = v->ancestor->label;
}
v->ancestor = v->ancestor->ancestor;
}
}
static void compute_sdom(struct compile_state *state,
struct basic_blocks *bb, struct sdom_block *sd)
{
int i;
/* // step 2
* for each v <= pred(w) {
* u = EVAL(v);
* if (semi[u] < semi[w] {
* semi[w] = semi[u];
* }
* }
* add w to bucket(vertex(semi[w]));
* LINK(parent(w), w);
*
* // step 3
* for each v <= bucket(parent(w)) {
* delete v from bucket(parent(w));
* u = EVAL(v);
* dom(v) = (semi[u] < semi[v]) ? u : parent(w);
* }
*/
for(i = bb->last_vertex; i >= 2; i--) {
struct sdom_block *v, *parent, *next;
struct block_set *user;
struct block *block;
block = sd[i].block;
parent = sd[i].parent;
/* Step 2 */
for(user = block->use; user; user = user->next) {
struct sdom_block *v, *u;
v = &sd[user->member->vertex];
u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
if (u->sdom->vertex < sd[i].sdom->vertex) {
sd[i].sdom = u->sdom;
}
}
sdom_block(sd[i].sdom, &sd[i]);
sd[i].ancestor = parent;
/* Step 3 */
for(v = parent->sdominates; v; v = next) {
struct sdom_block *u;
next = v->sdom_next;
unsdom_block(v);
u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
v->block->idom = (u->sdom->vertex < v->sdom->vertex)?
u->block : parent->block;
}
}
}
static void compute_spdom(struct compile_state *state,
struct basic_blocks *bb, struct sdom_block *sd)
{
int i;
/* // step 2
* for each v <= pred(w) {
* u = EVAL(v);
* if (semi[u] < semi[w] {
* semi[w] = semi[u];
* }
* }
* add w to bucket(vertex(semi[w]));
* LINK(parent(w), w);
*
* // step 3
* for each v <= bucket(parent(w)) {
* delete v from bucket(parent(w));
* u = EVAL(v);
* dom(v) = (semi[u] < semi[v]) ? u : parent(w);
* }
*/
for(i = bb->last_vertex; i >= 2; i--) {
struct sdom_block *u, *v, *parent, *next;
struct block_set *edge;
struct block *block;
block = sd[i].block;
parent = sd[i].parent;
/* Step 2 */
for(edge = block->edges; edge; edge = edge->next) {
v = &sd[edge->member->vertex];
u = !(v->ancestor)? v : (compress_ancestors(v), v->label);
if (u->sdom->vertex < sd[i].sdom->vertex) {
sd[i].sdom = u->sdom;
}
}
sdom_block(sd[i].sdom, &sd[i]);
sd[i].ancestor = parent;
/* Step 3 */
for(v = parent->sdominates; v; v = next) {
struct sdom_block *u;
next = v->sdom_next;
unsdom_block(v);
u = (!v->ancestor) ? v : (compress_ancestors(v), v->label);
v->block->ipdom = (u->sdom->vertex < v->sdom->vertex)?
u->block : parent->block;
}
}
}
static void compute_idom(struct compile_state *state,
struct basic_blocks *bb, struct sdom_block *sd)
{
int i;
for(i = 2; i <= bb->last_vertex; i++) {
struct block *block;
block = sd[i].block;
if (block->idom->vertex != sd[i].sdom->vertex) {
block->idom = block->idom->idom;
}
idom_block(block->idom, block);
}
sd[1].block->idom = 0;
}
static void compute_ipdom(struct compile_state *state,
struct basic_blocks *bb, struct sdom_block *sd)
{
int i;
for(i = 2; i <= bb->last_vertex; i++) {
struct block *block;
block = sd[i].block;
if (block->ipdom->vertex != sd[i].sdom->vertex) {
block->ipdom = block->ipdom->ipdom;
}
ipdom_block(block->ipdom, block);
}
sd[1].block->ipdom = 0;
}
/* Theorem 1:
* Every vertex of a flowgraph G = (V, E, r) except r has
* a unique immediate dominator.
* The edges {(idom(w), w) |w <= V - {r}} form a directed tree
* rooted at r, called the dominator tree of G, such that
* v dominates w if and only if v is a proper ancestor of w in
* the dominator tree.
*/
/* Lemma 1:
* If v and w are vertices of G such that v <= w,
* than any path from v to w must contain a common ancestor
* of v and w in T.
*/
/* Lemma 2: For any vertex w != r, idom(w) -> w */
/* Lemma 3: For any vertex w != r, sdom(w) -> w */
/* Lemma 4: For any vertex w != r, idom(w) -> sdom(w) */
/* Theorem 2:
* Let w != r. Suppose every u for which sdom(w) -> u -> w satisfies
* sdom(u) >= sdom(w). Then idom(w) = sdom(w).
*/
/* Theorem 3:
* Let w != r and let u be a vertex for which sdom(u) is
* minimum amoung vertices u satisfying sdom(w) -> u -> w.
* Then sdom(u) <= sdom(w) and idom(u) = idom(w).
*/
/* Lemma 5: Let vertices v,w satisfy v -> w.
* Then v -> idom(w) or idom(w) -> idom(v)
*/
static void find_immediate_dominators(struct compile_state *state,
struct basic_blocks *bb)
{
struct sdom_block *sd;
/* w->sdom = min{v| there is a path v = v0,v1,...,vk = w such that:
* vi > w for (1 <= i <= k - 1}
*/
/* Theorem 4:
* For any vertex w != r.
* sdom(w) = min(
* {v|(v,w) <= E and v < w } U
* {sdom(u) | u > w and there is an edge (v, w) such that u -> v})
*/
/* Corollary 1:
* Let w != r and let u be a vertex for which sdom(u) is
* minimum amoung vertices u satisfying sdom(w) -> u -> w.
* Then:
* { sdom(w) if sdom(w) = sdom(u),
* idom(w) = {
* { idom(u) otherwise
*/
/* The algorithm consists of the following 4 steps.
* Step 1. Carry out a depth-first search of the problem graph.
* Number the vertices from 1 to N as they are reached during
* the search. Initialize the variables used in succeeding steps.
* Step 2. Compute the semidominators of all vertices by applying
* theorem 4. Carry out the computation vertex by vertex in
* decreasing order by number.
* Step 3. Implicitly define the immediate dominator of each vertex
* by applying Corollary 1.
* Step 4. Explicitly define the immediate dominator of each vertex,
* carrying out the computation vertex by vertex in increasing order
* by number.
*/
/* Step 1 initialize the basic block information */
sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
initialize_sdblock(sd, 0, bb->first_block, 0);
#if 0
sd[1].size = 0;
sd[1].label = 0;
sd[1].sdom = 0;
#endif
/* Step 2 compute the semidominators */
/* Step 3 implicitly define the immediate dominator of each vertex */
compute_sdom(state, bb, sd);
/* Step 4 explicitly define the immediate dominator of each vertex */
compute_idom(state, bb, sd);
xfree(sd);
}
static void find_post_dominators(struct compile_state *state,
struct basic_blocks *bb)
{
struct sdom_block *sd;
int vertex;
/* Step 1 initialize the basic block information */
sd = xcmalloc(sizeof(*sd) * (bb->last_vertex + 1), "sdom_state");
vertex = setup_spdblocks(state, bb, sd);
if (vertex != bb->last_vertex) {
internal_error(state, 0, "missing %d blocks",
bb->last_vertex - vertex);
}
/* Step 2 compute the semidominators */
/* Step 3 implicitly define the immediate dominator of each vertex */
compute_spdom(state, bb, sd);
/* Step 4 explicitly define the immediate dominator of each vertex */
compute_ipdom(state, bb, sd);
xfree(sd);
}
static void find_block_domf(struct compile_state *state, struct block *block)
{
struct block *child;
struct block_set *user, *edge;
if (block->domfrontier != 0) {
internal_error(state, block->first, "domfrontier present?");
}
for(user = block->idominates; user; user = user->next) {
child = user->member;
if (child->idom != block) {
internal_error(state, block->first, "bad idom");
}
find_block_domf(state, child);
}
for(edge = block->edges; edge; edge = edge->next) {
if (edge->member->idom != block) {
domf_block(block, edge->member);
}
}
for(user = block->idominates; user; user = user->next) {
struct block_set *frontier;
child = user->member;
for(frontier = child->domfrontier; frontier; frontier = frontier->next) {
if (frontier->member->idom != block) {
domf_block(block, frontier->member);
}
}
}
}
static void find_block_ipdomf(struct compile_state *state, struct block *block)
{
struct block *child;
struct block_set *user;
if (block->ipdomfrontier != 0) {
internal_error(state, block->first, "ipdomfrontier present?");
}
for(user = block->ipdominates; user; user = user->next) {
child = user->member;
if (child->ipdom != block) {
internal_error(state, block->first, "bad ipdom");
}
find_block_ipdomf(state, child);
}
for(user = block->use; user; user = user->next) {
if (user->member->ipdom != block) {
ipdomf_block(block, user->member);
}
}
for(user = block->ipdominates; user; user = user->next) {
struct block_set *frontier;
child = user->member;
for(frontier = child->ipdomfrontier; frontier; frontier = frontier->next) {
if (frontier->member->ipdom != block) {
ipdomf_block(block, frontier->member);
}
}
}
}
static void print_dominated(
struct compile_state *state, struct block *block, void *arg)
{
struct block_set *user;
FILE *fp = arg;
fprintf(fp, "%d:", block->vertex);
for(user = block->idominates; user; user = user->next) {
fprintf(fp, " %d", user->member->vertex);
if (user->member->idom != block) {
internal_error(state, user->member->first, "bad idom");
}
}
fprintf(fp,"\n");
}
static void print_dominated2(
struct compile_state *state, FILE *fp, int depth, struct block *block)
{
struct block_set *user;
struct triple *ins;
struct occurance *ptr, *ptr2;
const char *filename1, *filename2;
int equal_filenames;
int i;
for(i = 0; i < depth; i++) {
fprintf(fp, " ");
}
fprintf(fp, "%3d: %p (%p - %p) @",
block->vertex, block, block->first, block->last);
ins = block->first;
while(ins != block->last && (ins->occurance->line == 0)) {
ins = ins->next;
}
ptr = ins->occurance;
ptr2 = block->last->occurance;
filename1 = ptr->filename? ptr->filename : "";
filename2 = ptr2->filename? ptr2->filename : "";
equal_filenames = (strcmp(filename1, filename2) == 0);
if ((ptr == ptr2) || (equal_filenames && ptr->line == ptr2->line)) {
fprintf(fp, " %s:%d", ptr->filename, ptr->line);
} else if (equal_filenames) {
fprintf(fp, " %s:(%d - %d)",
ptr->filename, ptr->line, ptr2->line);
} else {
fprintf(fp, " (%s:%d - %s:%d)",
ptr->filename, ptr->line,
ptr2->filename, ptr2->line);
}
fprintf(fp, "\n");
for(user = block->idominates; user; user = user->next) {
print_dominated2(state, fp, depth + 1, user->member);
}
}
static void print_dominators(struct compile_state *state, FILE *fp, struct basic_blocks *bb)
{
fprintf(fp, "\ndominates\n");
walk_blocks(state, bb, print_dominated, fp);
fprintf(fp, "dominates\n");
print_dominated2(state, fp, 0, bb->first_block);
}
static int print_frontiers(
struct compile_state *state, FILE *fp, struct block *block, int vertex)
{
struct block_set *user, *edge;
if (!block || (block->vertex != vertex + 1)) {
return vertex;
}
vertex += 1;
fprintf(fp, "%d:", block->vertex);
for(user = block->domfrontier; user; user = user->next) {
fprintf(fp, " %d", user->member->vertex);
}
fprintf(fp, "\n");
for(edge = block->edges; edge; edge = edge->next) {
vertex = print_frontiers(state, fp, edge->member, vertex);
}
return vertex;
}
static void print_dominance_frontiers(struct compile_state *state,
FILE *fp, struct basic_blocks *bb)
{
fprintf(fp, "\ndominance frontiers\n");
print_frontiers(state, fp, bb->first_block, 0);
}
static void analyze_idominators(struct compile_state *state, struct basic_blocks *bb)
{
/* Find the immediate dominators */
find_immediate_dominators(state, bb);
/* Find the dominance frontiers */
find_block_domf(state, bb->first_block);
/* If debuging print the print what I have just found */
if (state->compiler->debug & DEBUG_FDOMINATORS) {
print_dominators(state, state->dbgout, bb);
print_dominance_frontiers(state, state->dbgout, bb);
print_control_flow(state, state->dbgout, bb);
}
}
static void print_ipdominated(
struct compile_state *state, struct block *block, void *arg)
{
struct block_set *user;
FILE *fp = arg;
fprintf(fp, "%d:", block->vertex);
for(user = block->ipdominates; user; user = user->next) {
fprintf(fp, " %d", user->member->vertex);
if (user->member->ipdom != block) {
internal_error(state, user->member->first, "bad ipdom");
}
}
fprintf(fp, "\n");
}
static void print_ipdominators(struct compile_state *state, FILE *fp,
struct basic_blocks *bb)
{
fprintf(fp, "\nipdominates\n");
walk_blocks(state, bb, print_ipdominated, fp);
}
static int print_pfrontiers(
struct compile_state *state, FILE *fp, struct block *block, int vertex)
{
struct block_set *user;
if (!block || (block->vertex != vertex + 1)) {
return vertex;
}
vertex += 1;
fprintf(fp, "%d:", block->vertex);
for(user = block->ipdomfrontier; user; user = user->next) {
fprintf(fp, " %d", user->member->vertex);
}
fprintf(fp, "\n");
for(user = block->use; user; user = user->next) {
vertex = print_pfrontiers(state, fp, user->member, vertex);
}
return vertex;
}
static void print_ipdominance_frontiers(struct compile_state *state,
FILE *fp, struct basic_blocks *bb)
{
fprintf(fp, "\nipdominance frontiers\n");
print_pfrontiers(state, fp, bb->last_block, 0);
}
static void analyze_ipdominators(struct compile_state *state,
struct basic_blocks *bb)
{
/* Find the post dominators */
find_post_dominators(state, bb);
/* Find the control dependencies (post dominance frontiers) */
find_block_ipdomf(state, bb->last_block);
/* If debuging print the print what I have just found */
if (state->compiler->debug & DEBUG_RDOMINATORS) {
print_ipdominators(state, state->dbgout, bb);
print_ipdominance_frontiers(state, state->dbgout, bb);
print_control_flow(state, state->dbgout, bb);
}
}
static int bdominates(struct compile_state *state,
struct block *dom, struct block *sub)
{
while(sub && (sub != dom)) {
sub = sub->idom;
}
return sub == dom;
}
static int tdominates(struct compile_state *state,
struct triple *dom, struct triple *sub)
{
struct block *bdom, *bsub;
int result;
bdom = block_of_triple(state, dom);
bsub = block_of_triple(state, sub);
if (bdom != bsub) {
result = bdominates(state, bdom, bsub);
}
else {
struct triple *ins;
if (!bdom || !bsub) {
internal_error(state, dom, "huh?");
}
ins = sub;
while((ins != bsub->first) && (ins != dom)) {
ins = ins->prev;
}
result = (ins == dom);
}
return result;
}
static void analyze_basic_blocks(
struct compile_state *state, struct basic_blocks *bb)
{
setup_basic_blocks(state, bb);
analyze_idominators(state, bb);
analyze_ipdominators(state, bb);
}
static void insert_phi_operations(struct compile_state *state)
{
size_t size;
struct triple *first;
int *has_already, *work;
struct block *work_list, **work_list_tail;
int iter;
struct triple *var, *vnext;
size = sizeof(int) * (state->bb.last_vertex + 1);
has_already = xcmalloc(size, "has_already");
work = xcmalloc(size, "work");
iter = 0;
first = state->first;
for(var = first->next; var != first ; var = vnext) {
struct block *block;
struct triple_set *user, *unext;
vnext = var->next;
if (!triple_is_auto_var(state, var) || !var->use) {
continue;
}
iter += 1;
work_list = 0;
work_list_tail = &work_list;
for(user = var->use; user; user = unext) {
unext = user->next;
if (MISC(var, 0) == user->member) {
continue;
}
if (user->member->op == OP_READ) {
continue;
}
if (user->member->op != OP_WRITE) {
internal_error(state, user->member,
"bad variable access");
}
block = user->member->u.block;
if (!block) {
warning(state, user->member, "dead code");
release_triple(state, user->member);
continue;
}
if (work[block->vertex] >= iter) {
continue;
}
work[block->vertex] = iter;
*work_list_tail = block;
block->work_next = 0;
work_list_tail = &block->work_next;
}
for(block = work_list; block; block = block->work_next) {
struct block_set *df;
for(df = block->domfrontier; df; df = df->next) {
struct triple *phi;
struct block *front;
int in_edges;
front = df->member;
if (has_already[front->vertex] >= iter) {
continue;
}
/* Count how many edges flow into this block */
in_edges = front->users;
/* Insert a phi function for this variable */
get_occurance(var->occurance);
phi = alloc_triple(
state, OP_PHI, var->type, -1, in_edges,
var->occurance);
phi->u.block = front;
MISC(phi, 0) = var;
use_triple(var, phi);
#if 1
if (phi->rhs != in_edges) {
internal_error(state, phi, "phi->rhs: %d != in_edges: %d",
phi->rhs, in_edges);
}
#endif
/* Insert the phi functions immediately after the label */
insert_triple(state, front->first->next, phi);
if (front->first == front->last) {
front->last = front->first->next;
}
has_already[front->vertex] = iter;
transform_to_arch_instruction(state, phi);
/* If necessary plan to visit the basic block */
if (work[front->vertex] >= iter) {
continue;
}
work[front->vertex] = iter;
*work_list_tail = front;
front->work_next = 0;
work_list_tail = &front->work_next;
}
}
}
xfree(has_already);
xfree(work);
}
struct stack {
struct triple_set *top;
unsigned orig_id;
};
static int count_auto_vars(struct compile_state *state)
{
struct triple *first, *ins;
int auto_vars = 0;
first = state->first;
ins = first;
do {
if (triple_is_auto_var(state, ins)) {
auto_vars += 1;
}
ins = ins->next;
} while(ins != first);
return auto_vars;
}
static void number_auto_vars(struct compile_state *state, struct stack *stacks)
{
struct triple *first, *ins;
int auto_vars = 0;
first = state->first;
ins = first;
do {
if (triple_is_auto_var(state, ins)) {
auto_vars += 1;
stacks[auto_vars].orig_id = ins->id;
ins->id = auto_vars;
}
ins = ins->next;
} while(ins != first);
}
static void restore_auto_vars(struct compile_state *state, struct stack *stacks)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
if (triple_is_auto_var(state, ins)) {
ins->id = stacks[ins->id].orig_id;
}
ins = ins->next;
} while(ins != first);
}
static struct triple *peek_triple(struct stack *stacks, struct triple *var)
{
struct triple_set *head;
struct triple *top_val;
top_val = 0;
head = stacks[var->id].top;
if (head) {
top_val = head->member;
}
return top_val;
}
static void push_triple(struct stack *stacks, struct triple *var, struct triple *val)
{
struct triple_set *new;
/* Append new to the head of the list,
* it's the only sensible behavoir for a stack.
*/
new = xcmalloc(sizeof(*new), "triple_set");
new->member = val;
new->next = stacks[var->id].top;
stacks[var->id].top = new;
}
static void pop_triple(struct stack *stacks, struct triple *var, struct triple *oldval)
{
struct triple_set *set, **ptr;
ptr = &stacks[var->id].top;
while(*ptr) {
set = *ptr;
if (set->member == oldval) {
*ptr = set->next;
xfree(set);
/* Only free one occurance from the stack */
return;
}
else {
ptr = &set->next;
}
}
}
/*
* C(V)
* S(V)
*/
static void fixup_block_phi_variables(
struct compile_state *state, struct stack *stacks, struct block *parent, struct block *block)
{
struct block_set *set;
struct triple *ptr;
int edge;
if (!parent || !block)
return;
/* Find the edge I am coming in on */
edge = 0;
for(set = block->use; set; set = set->next, edge++) {
if (set->member == parent) {
break;
}
}
if (!set) {
internal_error(state, 0, "phi input is not on a control predecessor");
}
for(ptr = block->first; ; ptr = ptr->next) {
if (ptr->op == OP_PHI) {
struct triple *var, *val, **slot;
var = MISC(ptr, 0);
if (!var) {
internal_error(state, ptr, "no var???");
}
/* Find the current value of the variable */
val = peek_triple(stacks, var);
if (val && ((val->op == OP_WRITE) || (val->op == OP_READ))) {
internal_error(state, val, "bad value in phi");
}
if (edge >= ptr->rhs) {
internal_error(state, ptr, "edges > phi rhs");
}
slot = &RHS(ptr, edge);
if ((*slot != 0) && (*slot != val)) {
internal_error(state, ptr, "phi already bound on this edge");
}
*slot = val;
use_triple(val, ptr);
}
if (ptr == block->last) {
break;
}
}
}
static void rename_block_variables(
struct compile_state *state, struct stack *stacks, struct block *block)
{
struct block_set *user, *edge;
struct triple *ptr, *next, *last;
int done;
if (!block)
return;
last = block->first;
done = 0;
for(ptr = block->first; !done; ptr = next) {
next = ptr->next;
if (ptr == block->last) {
done = 1;
}
/* RHS(A) */
if (ptr->op == OP_READ) {
struct triple *var, *val;
var = RHS(ptr, 0);
if (!triple_is_auto_var(state, var)) {
internal_error(state, ptr, "read of non auto var!");
}
unuse_triple(var, ptr);
/* Find the current value of the variable */
val = peek_triple(stacks, var);
if (!val) {
/* Let the optimizer at variables that are not initially
* set. But give it a bogus value so things seem to
* work by accident. This is useful for bitfields because
* setting them always involves a read-modify-write.
*/
if (TYPE_ARITHMETIC(ptr->type->type)) {
val = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
val->u.cval = 0xdeadbeaf;
} else {
val = pre_triple(state, ptr, OP_UNKNOWNVAL, ptr->type, 0, 0);
}
}
if (!val) {
error(state, ptr, "variable used without being set");
}
if ((val->op == OP_WRITE) || (val->op == OP_READ)) {
internal_error(state, val, "bad value in read");
}
propogate_use(state, ptr, val);
release_triple(state, ptr);
continue;
}
/* LHS(A) */
if (ptr->op == OP_WRITE) {
struct triple *var, *val, *tval;
var = MISC(ptr, 0);
if (!triple_is_auto_var(state, var)) {
internal_error(state, ptr, "write to non auto var!");
}
tval = val = RHS(ptr, 0);
if ((val->op == OP_WRITE) || (val->op == OP_READ) ||
triple_is_auto_var(state, val)) {
internal_error(state, ptr, "bad value in write");
}
/* Insert a cast if the types differ */
if (!is_subset_type(ptr->type, val->type)) {
if (val->op == OP_INTCONST) {
tval = pre_triple(state, ptr, OP_INTCONST, ptr->type, 0, 0);
tval->u.cval = val->u.cval;
}
else {
tval = pre_triple(state, ptr, OP_CONVERT, ptr->type, val, 0);
use_triple(val, tval);
}
transform_to_arch_instruction(state, tval);
unuse_triple(val, ptr);
RHS(ptr, 0) = tval;
use_triple(tval, ptr);
}
propogate_use(state, ptr, tval);
unuse_triple(var, ptr);
/* Push OP_WRITE ptr->right onto a stack of variable uses */
push_triple(stacks, var, tval);
}
if (ptr->op == OP_PHI) {
struct triple *var;
var = MISC(ptr, 0);
if (!triple_is_auto_var(state, var)) {
internal_error(state, ptr, "phi references non auto var!");
}
/* Push OP_PHI onto a stack of variable uses */
push_triple(stacks, var, ptr);
}
last = ptr;
}
block->last = last;
/* Fixup PHI functions in the cf successors */
for(edge = block->edges; edge; edge = edge->next) {
fixup_block_phi_variables(state, stacks, block, edge->member);
}
/* rename variables in the dominated nodes */
for(user = block->idominates; user; user = user->next) {
rename_block_variables(state, stacks, user->member);
}
/* pop the renamed variable stack */
last = block->first;
done = 0;
for(ptr = block->first; !done ; ptr = next) {
next = ptr->next;
if (ptr == block->last) {
done = 1;
}
if (ptr->op == OP_WRITE) {
struct triple *var;
var = MISC(ptr, 0);
/* Pop OP_WRITE ptr->right from the stack of variable uses */
pop_triple(stacks, var, RHS(ptr, 0));
release_triple(state, ptr);
continue;
}
if (ptr->op == OP_PHI) {
struct triple *var;
var = MISC(ptr, 0);
/* Pop OP_WRITE ptr->right from the stack of variable uses */
pop_triple(stacks, var, ptr);
}
last = ptr;
}
block->last = last;
}
static void rename_variables(struct compile_state *state)
{
struct stack *stacks;
int auto_vars;
/* Allocate stacks for the Variables */
auto_vars = count_auto_vars(state);
stacks = xcmalloc(sizeof(stacks[0])*(auto_vars + 1), "auto var stacks");
/* Give each auto_var a stack */
number_auto_vars(state, stacks);
/* Rename the variables */
rename_block_variables(state, stacks, state->bb.first_block);
/* Remove the stacks from the auto_vars */
restore_auto_vars(state, stacks);
xfree(stacks);
}
static void prune_block_variables(struct compile_state *state,
struct block *block)
{
struct block_set *user;
struct triple *next, *ptr;
int done;
done = 0;
for(ptr = block->first; !done; ptr = next) {
/* Be extremely careful I am deleting the list
* as I walk trhough it.
*/
next = ptr->next;
if (ptr == block->last) {
done = 1;
}
if (triple_is_auto_var(state, ptr)) {
struct triple_set *user, *next;
for(user = ptr->use; user; user = next) {
struct triple *use;
next = user->next;
use = user->member;
if (MISC(ptr, 0) == user->member) {
continue;
}
if (use->op != OP_PHI) {
internal_error(state, use, "decl still used");
}
if (MISC(use, 0) != ptr) {
internal_error(state, use, "bad phi use of decl");
}
unuse_triple(ptr, use);
MISC(use, 0) = 0;
}
if ((ptr->u.cval == 0) && (MISC(ptr, 0)->lhs == 1)) {
/* Delete the adecl */
release_triple(state, MISC(ptr, 0));
/* And the piece */
release_triple(state, ptr);
}
continue;
}
}
for(user = block->idominates; user; user = user->next) {
prune_block_variables(state, user->member);
}
}
struct phi_triple {
struct triple *phi;
unsigned orig_id;
int alive;
};
static void keep_phi(struct compile_state *state, struct phi_triple *live, struct triple *phi)
{
struct triple **slot;
int zrhs, i;
if (live[phi->id].alive) {
return;
}
live[phi->id].alive = 1;
zrhs = phi->rhs;
slot = &RHS(phi, 0);
for(i = 0; i < zrhs; i++) {
struct triple *used;
used = slot[i];
if (used && (used->op == OP_PHI)) {
keep_phi(state, live, used);
}
}
}
static void prune_unused_phis(struct compile_state *state)
{
struct triple *first, *phi;
struct phi_triple *live;
int phis, i;
/* Find the first instruction */
first = state->first;
/* Count how many phi functions I need to process */
phis = 0;
for(phi = first->next; phi != first; phi = phi->next) {
if (phi->op == OP_PHI) {
phis += 1;
}
}
/* Mark them all dead */
live = xcmalloc(sizeof(*live) * (phis + 1), "phi_triple");
phis = 0;
for(phi = first->next; phi != first; phi = phi->next) {
if (phi->op != OP_PHI) {
continue;
}
live[phis].alive = 0;
live[phis].orig_id = phi->id;
live[phis].phi = phi;
phi->id = phis;
phis += 1;
}
/* Mark phis alive that are used by non phis */
for(i = 0; i < phis; i++) {
struct triple_set *set;
for(set = live[i].phi->use; !live[i].alive && set; set = set->next) {
if (set->member->op != OP_PHI) {
keep_phi(state, live, live[i].phi);
break;
}
}
}
/* Delete the extraneous phis */
for(i = 0; i < phis; i++) {
struct triple **slot;
int zrhs, j;
if (!live[i].alive) {
release_triple(state, live[i].phi);
continue;
}
phi = live[i].phi;
slot = &RHS(phi, 0);
zrhs = phi->rhs;
for(j = 0; j < zrhs; j++) {
if(!slot[j]) {
struct triple *unknown;
get_occurance(phi->occurance);
unknown = flatten(state, state->global_pool,
alloc_triple(state, OP_UNKNOWNVAL,
phi->type, 0, 0, phi->occurance));
slot[j] = unknown;
use_triple(unknown, phi);
transform_to_arch_instruction(state, unknown);
#if 0
warning(state, phi, "variable not set at index %d on all paths to use", j);
#endif
}
}
}
xfree(live);
}
static void transform_to_ssa_form(struct compile_state *state)
{
insert_phi_operations(state);
rename_variables(state);
prune_block_variables(state, state->bb.first_block);
prune_unused_phis(state);
print_blocks(state, __func__, state->dbgout);
}
static void clear_vertex(
struct compile_state *state, struct block *block, void *arg)
{
/* Clear the current blocks vertex and the vertex of all
* of the current blocks neighbors in case there are malformed
* blocks with now instructions at this point.
*/
struct block_set *user, *edge;
block->vertex = 0;
for(edge = block->edges; edge; edge = edge->next) {
edge->member->vertex = 0;
}
for(user = block->use; user; user = user->next) {
user->member->vertex = 0;
}
}
static void mark_live_block(
struct compile_state *state, struct block *block, int *next_vertex)
{
/* See if this is a block that has not been marked */
if (block->vertex != 0) {
return;
}
block->vertex = *next_vertex;
*next_vertex += 1;
if (triple_is_branch(state, block->last)) {
struct triple **targ;
targ = triple_edge_targ(state, block->last, 0);
for(; targ; targ = triple_edge_targ(state, block->last, targ)) {
if (!*targ) {
continue;
}
if (!triple_stores_block(state, *targ)) {
internal_error(state, 0, "bad targ");
}
mark_live_block(state, (*targ)->u.block, next_vertex);
}
/* Ensure the last block of a function remains alive */
if (triple_is_call(state, block->last)) {
mark_live_block(state, MISC(block->last, 0)->u.block, next_vertex);
}
}
else if (block->last->next != state->first) {
struct triple *ins;
ins = block->last->next;
if (!triple_stores_block(state, ins)) {
internal_error(state, 0, "bad block start");
}
mark_live_block(state, ins->u.block, next_vertex);
}
}
static void transform_from_ssa_form(struct compile_state *state)
{
/* To get out of ssa form we insert moves on the incoming
* edges to blocks containting phi functions.
*/
struct triple *first;
struct triple *phi, *var, *next;
int next_vertex;
/* Walk the control flow to see which blocks remain alive */
walk_blocks(state, &state->bb, clear_vertex, 0);
next_vertex = 1;
mark_live_block(state, state->bb.first_block, &next_vertex);
/* Walk all of the operations to find the phi functions */
first = state->first;
for(phi = first->next; phi != first ; phi = next) {
struct block_set *set;
struct block *block;
struct triple **slot;
struct triple *var;
struct triple_set *use, *use_next;
int edge, writers, readers;
next = phi->next;
if (phi->op != OP_PHI) {
continue;
}
block = phi->u.block;
slot = &RHS(phi, 0);
/* If this phi is in a dead block just forget it */
if (block->vertex == 0) {
release_triple(state, phi);
continue;
}
/* Forget uses from code in dead blocks */
for(use = phi->use; use; use = use_next) {
struct block *ublock;
struct triple **expr;
use_next = use->next;
ublock = block_of_triple(state, use->member);
if ((use->member == phi) || (ublock->vertex != 0)) {
continue;
}
expr = triple_rhs(state, use->member, 0);
for(; expr; expr = triple_rhs(state, use->member, expr)) {
if (*expr == phi) {
*expr = 0;
}
}
unuse_triple(phi, use->member);
}
/* A variable to replace the phi function */
if (registers_of(state, phi->type) != 1) {
internal_error(state, phi, "phi->type does not fit in a single register!");
}
var = post_triple(state, phi, OP_ADECL, phi->type, 0, 0);
var = var->next; /* point at the var */
/* Replaces use of phi with var */
propogate_use(state, phi, var);
/* Count the readers */
readers = 0;
for(use = var->use; use; use = use->next) {
if (use->member != MISC(var, 0)) {
readers++;
}
}
/* Walk all of the incoming edges/blocks and insert moves.
*/
writers = 0;
for(edge = 0, set = block->use; set; set = set->next, edge++) {
struct block *eblock, *vblock;
struct triple *move;
struct triple *val, *base;
eblock = set->member;
val = slot[edge];
slot[edge] = 0;
unuse_triple(val, phi);
vblock = block_of_triple(state, val);
/* If we don't have a value that belongs in an OP_WRITE
* continue on.
*/
if (!val || (val == &unknown_triple) || (val == phi)
|| (vblock && (vblock->vertex == 0))) {
continue;
}
/* If the value should never occur error */
if (!vblock) {
internal_error(state, val, "no vblock?");
continue;
}
/* If the value occurs in a dead block see if a replacement
* block can be found.
*/
while(eblock && (eblock->vertex == 0)) {
eblock = eblock->idom;
}
/* If not continue on with the next value. */
if (!eblock || (eblock->vertex == 0)) {
continue;
}
/* If we have an empty incoming block ignore it. */
if (!eblock->first) {
internal_error(state, 0, "empty block?");
}
/* Make certain the write is placed in the edge block... */
/* Walk through the edge block backwards to find an
* appropriate location for the OP_WRITE.
*/
for(base = eblock->last; base != eblock->first; base = base->prev) {
struct triple **expr;
if (base->op == OP_PIECE) {
base = MISC(base, 0);
}
if ((base == var) || (base == val)) {
goto out;
}
expr = triple_lhs(state, base, 0);
for(; expr; expr = triple_lhs(state, base, expr)) {
if ((*expr) == val) {
goto out;
}
}
expr = triple_rhs(state, base, 0);
for(; expr; expr = triple_rhs(state, base, expr)) {
if ((*expr) == var) {
goto out;
}
}
}
out:
if (triple_is_branch(state, base)) {
internal_error(state, base,
"Could not insert write to phi");
}
move = post_triple(state, base, OP_WRITE, var->type, val, var);
use_triple(val, move);
use_triple(var, move);
writers++;
}
if (!writers && readers) {
internal_error(state, var, "no value written to in use phi?");
}
/* If var is not used free it */
if (!writers) {
release_triple(state, MISC(var, 0));
release_triple(state, var);
}
/* Release the phi function */
release_triple(state, phi);
}
/* Walk all of the operations to find the adecls */
for(var = first->next; var != first ; var = var->next) {
struct triple_set *use, *use_next;
if (!triple_is_auto_var(state, var)) {
continue;
}
/* Walk through all of the rhs uses of var and
* replace them with read of var.
*/
for(use = var->use; use; use = use_next) {
struct triple *read, *user;
struct triple **slot;
int zrhs, i, used;
use_next = use->next;
user = use->member;
/* Generate a read of var */
read = pre_triple(state, user, OP_READ, var->type, var, 0);
use_triple(var, read);
/* Find the rhs uses and see if they need to be replaced */
used = 0;
zrhs = user->rhs;
slot = &RHS(user, 0);
for(i = 0; i < zrhs; i++) {
if (slot[i] == var) {
slot[i] = read;
used = 1;
}
}
/* If we did use it cleanup the uses */
if (used) {
unuse_triple(var, user);
use_triple(read, user);
}
/* If we didn't use it release the extra triple */
else {
release_triple(state, read);
}
}
}
}
#define HI() if (state->compiler->debug & DEBUG_REBUILD_SSA_FORM) { \
FILE *fp = state->dbgout; \
fprintf(fp, "@ %s:%d\n", __FILE__, __LINE__); romcc_print_blocks(state, fp); \
}
static void rebuild_ssa_form(struct compile_state *state)
{
HI();
transform_from_ssa_form(state);
HI();
state->bb.first = state->first;
free_basic_blocks(state, &state->bb);
analyze_basic_blocks(state, &state->bb);
HI();
insert_phi_operations(state);
HI();
rename_variables(state);
HI();
prune_block_variables(state, state->bb.first_block);
HI();
prune_unused_phis(state);
HI();
}
#undef HI
/*
* Register conflict resolution
* =========================================================
*/
static struct reg_info find_def_color(
struct compile_state *state, struct triple *def)
{
struct triple_set *set;
struct reg_info info;
info.reg = REG_UNSET;
info.regcm = 0;
if (!triple_is_def(state, def)) {
return info;
}
info = arch_reg_lhs(state, def, 0);
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
for(set = def->use; set; set = set->next) {
struct reg_info tinfo;
int i;
i = find_rhs_use(state, set->member, def);
if (i < 0) {
continue;
}
tinfo = arch_reg_rhs(state, set->member, i);
if (tinfo.reg >= MAX_REGISTERS) {
tinfo.reg = REG_UNSET;
}
if ((tinfo.reg != REG_UNSET) &&
(info.reg != REG_UNSET) &&
(tinfo.reg != info.reg)) {
internal_error(state, def, "register conflict");
}
if ((info.regcm & tinfo.regcm) == 0) {
internal_error(state, def, "regcm conflict %x & %x == 0",
info.regcm, tinfo.regcm);
}
if (info.reg == REG_UNSET) {
info.reg = tinfo.reg;
}
info.regcm &= tinfo.regcm;
}
if (info.reg >= MAX_REGISTERS) {
internal_error(state, def, "register out of range");
}
return info;
}
static struct reg_info find_lhs_pre_color(
struct compile_state *state, struct triple *ins, int index)
{
struct reg_info info;
int zlhs, zrhs, i;
zrhs = ins->rhs;
zlhs = ins->lhs;
if (!zlhs && triple_is_def(state, ins)) {
zlhs = 1;
}
if (index >= zlhs) {
internal_error(state, ins, "Bad lhs %d", index);
}
info = arch_reg_lhs(state, ins, index);
for(i = 0; i < zrhs; i++) {
struct reg_info rinfo;
rinfo = arch_reg_rhs(state, ins, i);
if ((info.reg == rinfo.reg) &&
(rinfo.reg >= MAX_REGISTERS)) {
struct reg_info tinfo;
tinfo = find_lhs_pre_color(state, RHS(ins, index), 0);
info.reg = tinfo.reg;
info.regcm &= tinfo.regcm;
break;
}
}
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
return info;
}
static struct reg_info find_rhs_post_color(
struct compile_state *state, struct triple *ins, int index);
static struct reg_info find_lhs_post_color(
struct compile_state *state, struct triple *ins, int index)
{
struct triple_set *set;
struct reg_info info;
struct triple *lhs;
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_lhs_post_color(%p, %d)\n",
ins, index);
#endif
if ((index == 0) && triple_is_def(state, ins)) {
lhs = ins;
}
else if (index < ins->lhs) {
lhs = LHS(ins, index);
}
else {
internal_error(state, ins, "Bad lhs %d", index);
lhs = 0;
}
info = arch_reg_lhs(state, ins, index);
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
for(set = lhs->use; set; set = set->next) {
struct reg_info rinfo;
struct triple *user;
int zrhs, i;
user = set->member;
zrhs = user->rhs;
for(i = 0; i < zrhs; i++) {
if (RHS(user, i) != lhs) {
continue;
}
rinfo = find_rhs_post_color(state, user, i);
if ((info.reg != REG_UNSET) &&
(rinfo.reg != REG_UNSET) &&
(info.reg != rinfo.reg)) {
internal_error(state, ins, "register conflict");
}
if ((info.regcm & rinfo.regcm) == 0) {
internal_error(state, ins, "regcm conflict %x & %x == 0",
info.regcm, rinfo.regcm);
}
if (info.reg == REG_UNSET) {
info.reg = rinfo.reg;
}
info.regcm &= rinfo.regcm;
}
}
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_lhs_post_color(%p, %d) -> ( %d, %x)\n",
ins, index, info.reg, info.regcm);
#endif
return info;
}
static struct reg_info find_rhs_post_color(
struct compile_state *state, struct triple *ins, int index)
{
struct reg_info info, rinfo;
int zlhs, i;
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_rhs_post_color(%p, %d)\n",
ins, index);
#endif
rinfo = arch_reg_rhs(state, ins, index);
zlhs = ins->lhs;
if (!zlhs && triple_is_def(state, ins)) {
zlhs = 1;
}
info = rinfo;
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
for(i = 0; i < zlhs; i++) {
struct reg_info linfo;
linfo = arch_reg_lhs(state, ins, i);
if ((linfo.reg == rinfo.reg) &&
(linfo.reg >= MAX_REGISTERS)) {
struct reg_info tinfo;
tinfo = find_lhs_post_color(state, ins, i);
if (tinfo.reg >= MAX_REGISTERS) {
tinfo.reg = REG_UNSET;
}
info.regcm &= linfo.regcm;
info.regcm &= tinfo.regcm;
if (info.reg != REG_UNSET) {
internal_error(state, ins, "register conflict");
}
if (info.regcm == 0) {
internal_error(state, ins, "regcm conflict");
}
info.reg = tinfo.reg;
}
}
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_rhs_post_color(%p, %d) -> ( %d, %x)\n",
ins, index, info.reg, info.regcm);
#endif
return info;
}
static struct reg_info find_lhs_color(
struct compile_state *state, struct triple *ins, int index)
{
struct reg_info pre, post, info;
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_lhs_color(%p, %d)\n",
ins, index);
#endif
pre = find_lhs_pre_color(state, ins, index);
post = find_lhs_post_color(state, ins, index);
if ((pre.reg != post.reg) &&
(pre.reg != REG_UNSET) &&
(post.reg != REG_UNSET)) {
internal_error(state, ins, "register conflict");
}
info.regcm = pre.regcm & post.regcm;
info.reg = pre.reg;
if (info.reg == REG_UNSET) {
info.reg = post.reg;
}
#if DEBUG_TRIPLE_COLOR
fprintf(state->errout, "find_lhs_color(%p, %d) -> ( %d, %x) ... (%d, %x) (%d, %x)\n",
ins, index, info.reg, info.regcm,
pre.reg, pre.regcm, post.reg, post.regcm);
#endif
return info;
}
static struct triple *post_copy(struct compile_state *state, struct triple *ins)
{
struct triple_set *entry, *next;
struct triple *out;
struct reg_info info, rinfo;
info = arch_reg_lhs(state, ins, 0);
out = post_triple(state, ins, OP_COPY, ins->type, ins, 0);
use_triple(RHS(out, 0), out);
/* Get the users of ins to use out instead */
for(entry = ins->use; entry; entry = next) {
int i;
next = entry->next;
if (entry->member == out) {
continue;
}
i = find_rhs_use(state, entry->member, ins);
if (i < 0) {
continue;
}
rinfo = arch_reg_rhs(state, entry->member, i);
if ((info.reg == REG_UNNEEDED) && (rinfo.reg == REG_UNNEEDED)) {
continue;
}
replace_rhs_use(state, ins, out, entry->member);
}
transform_to_arch_instruction(state, out);
return out;
}
static struct triple *typed_pre_copy(
struct compile_state *state, struct type *type, struct triple *ins, int index)
{
/* Carefully insert enough operations so that I can
* enter any operation with a GPR32.
*/
struct triple *in;
struct triple **expr;
unsigned classes;
struct reg_info info;
int op;
if (ins->op == OP_PHI) {
internal_error(state, ins, "pre_copy on a phi?");
}
classes = arch_type_to_regcm(state, type);
info = arch_reg_rhs(state, ins, index);
expr = &RHS(ins, index);
if ((info.regcm & classes) == 0) {
FILE *fp = state->errout;
fprintf(fp, "src_type: ");
name_of(fp, ins->type);
fprintf(fp, "\ndst_type: ");
name_of(fp, type);
fprintf(fp, "\n");
internal_error(state, ins, "pre_copy with no register classes");
}
op = OP_COPY;
if (!equiv_types(type, (*expr)->type)) {
op = OP_CONVERT;
}
in = pre_triple(state, ins, op, type, *expr, 0);
unuse_triple(*expr, ins);
*expr = in;
use_triple(RHS(in, 0), in);
use_triple(in, ins);
transform_to_arch_instruction(state, in);
return in;
}
static struct triple *pre_copy(
struct compile_state *state, struct triple *ins, int index)
{
return typed_pre_copy(state, RHS(ins, index)->type, ins, index);
}
static void insert_copies_to_phi(struct compile_state *state)
{
/* To get out of ssa form we insert moves on the incoming
* edges to blocks containting phi functions.
*/
struct triple *first;
struct triple *phi;
/* Walk all of the operations to find the phi functions */
first = state->first;
for(phi = first->next; phi != first ; phi = phi->next) {
struct block_set *set;
struct block *block;
struct triple **slot, *copy;
int edge;
if (phi->op != OP_PHI) {
continue;
}
phi->id |= TRIPLE_FLAG_POST_SPLIT;
block = phi->u.block;
slot = &RHS(phi, 0);
/* Phi's that feed into mandatory live range joins
* cause nasty complications. Insert a copy of
* the phi value so I never have to deal with
* that in the rest of the code.
*/
copy = post_copy(state, phi);
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
/* Walk all of the incoming edges/blocks and insert moves.
*/
for(edge = 0, set = block->use; set; set = set->next, edge++) {
struct block *eblock;
struct triple *move;
struct triple *val;
struct triple *ptr;
eblock = set->member;
val = slot[edge];
if (val == phi) {
continue;
}
get_occurance(val->occurance);
move = build_triple(state, OP_COPY, val->type, val, 0,
val->occurance);
move->u.block = eblock;
move->id |= TRIPLE_FLAG_PRE_SPLIT;
use_triple(val, move);
slot[edge] = move;
unuse_triple(val, phi);
use_triple(move, phi);
/* Walk up the dominator tree until I have found the appropriate block */
while(eblock && !tdominates(state, val, eblock->last)) {
eblock = eblock->idom;
}
if (!eblock) {
internal_error(state, phi, "Cannot find block dominated by %p",
val);
}
/* Walk through the block backwards to find
* an appropriate location for the OP_COPY.
*/
for(ptr = eblock->last; ptr != eblock->first; ptr = ptr->prev) {
struct triple **expr;
if (ptr->op == OP_PIECE) {
ptr = MISC(ptr, 0);
}
if ((ptr == phi) || (ptr == val)) {
goto out;
}
expr = triple_lhs(state, ptr, 0);
for(;expr; expr = triple_lhs(state, ptr, expr)) {
if ((*expr) == val) {
goto out;
}
}
expr = triple_rhs(state, ptr, 0);
for(;expr; expr = triple_rhs(state, ptr, expr)) {
if ((*expr) == phi) {
goto out;
}
}
}
out:
if (triple_is_branch(state, ptr)) {
internal_error(state, ptr,
"Could not insert write to phi");
}
insert_triple(state, after_lhs(state, ptr), move);
if (eblock->last == after_lhs(state, ptr)->prev) {
eblock->last = move;
}
transform_to_arch_instruction(state, move);
}
}
print_blocks(state, __func__, state->dbgout);
}
struct triple_reg_set;
struct reg_block;
static int do_triple_set(struct triple_reg_set **head,
struct triple *member, struct triple *new_member)
{
struct triple_reg_set **ptr, *new;
if (!member)
return 0;
ptr = head;
while(*ptr) {
if ((*ptr)->member == member) {
return 0;
}
ptr = &(*ptr)->next;
}
new = xcmalloc(sizeof(*new), "triple_set");
new->member = member;
new->new = new_member;
new->next = *head;
*head = new;
return 1;
}
static void do_triple_unset(struct triple_reg_set **head, struct triple *member)
{
struct triple_reg_set *entry, **ptr;
ptr = head;
while(*ptr) {
entry = *ptr;
if (entry->member == member) {
*ptr = entry->next;
xfree(entry);
return;
}
else {
ptr = &entry->next;
}
}
}
static int in_triple(struct reg_block *rb, struct triple *in)
{
return do_triple_set(&rb->in, in, 0);
}
#if DEBUG_ROMCC_WARNING
static void unin_triple(struct reg_block *rb, struct triple *unin)
{
do_triple_unset(&rb->in, unin);
}
#endif
static int out_triple(struct reg_block *rb, struct triple *out)
{
return do_triple_set(&rb->out, out, 0);
}
#if DEBUG_ROMCC_WARNING
static void unout_triple(struct reg_block *rb, struct triple *unout)
{
do_triple_unset(&rb->out, unout);
}
#endif
static int initialize_regblock(struct reg_block *blocks,
struct block *block, int vertex)
{
struct block_set *user;
if (!block || (blocks[block->vertex].block == block)) {
return vertex;
}
vertex += 1;
/* Renumber the blocks in a convinient fashion */
block->vertex = vertex;
blocks[vertex].block = block;
blocks[vertex].vertex = vertex;
for(user = block->use; user; user = user->next) {
vertex = initialize_regblock(blocks, user->member, vertex);
}
return vertex;
}
static struct triple *part_to_piece(struct compile_state *state, struct triple *ins)
{
/* Part to piece is a best attempt and it cannot be correct all by
* itself. If various values are read as different sizes in different
* parts of the code this function cannot work. Or rather it cannot
* work in conjunction with compute_variable_liftimes. As the
* analysis will get confused.
*/
struct triple *base;
unsigned reg;
if (!is_lvalue(state, ins)) {
return ins;
}
base = 0;
reg = 0;
while(ins && triple_is_part(state, ins) && (ins->op != OP_PIECE)) {
base = MISC(ins, 0);
switch(ins->op) {
case OP_INDEX:
reg += index_reg_offset(state, base->type, ins->u.cval)/REG_SIZEOF_REG;
break;
case OP_DOT:
reg += field_reg_offset(state, base->type, ins->u.field)/REG_SIZEOF_REG;
break;
default:
internal_error(state, ins, "unhandled part");
break;
}
ins = base;
}
if (base) {
if (reg > base->lhs) {
internal_error(state, base, "part out of range?");
}
ins = LHS(base, reg);
}
return ins;
}
static int this_def(struct compile_state *state,
struct triple *ins, struct triple *other)
{
if (ins == other) {
return 1;
}
if (ins->op == OP_WRITE) {
ins = part_to_piece(state, MISC(ins, 0));
}
return ins == other;
}
static int phi_in(struct compile_state *state, struct reg_block *blocks,
struct reg_block *rb, struct block *suc)
{
/* Read the conditional input set of a successor block
* (i.e. the input to the phi nodes) and place it in the
* current blocks output set.
*/
struct block_set *set;
struct triple *ptr;
int edge;
int done, change;
change = 0;
/* Find the edge I am coming in on */
for(edge = 0, set = suc->use; set; set = set->next, edge++) {
if (set->member == rb->block) {
break;
}
}
if (!set) {
internal_error(state, 0, "Not coming on a control edge?");
}
for(done = 0, ptr = suc->first; !done; ptr = ptr->next) {
struct triple **slot, *expr, *ptr2;
int out_change, done2;
done = (ptr == suc->last);
if (ptr->op != OP_PHI) {
continue;
}
slot = &RHS(ptr, 0);
expr = slot[edge];
out_change = out_triple(rb, expr);
if (!out_change) {
continue;
}
/* If we don't define the variable also plast it
* in the current blocks input set.
*/
ptr2 = rb->block->first;
for(done2 = 0; !done2; ptr2 = ptr2->next) {
if (this_def(state, ptr2, expr)) {
break;
}
done2 = (ptr2 == rb->block->last);
}
if (!done2) {
continue;
}
change |= in_triple(rb, expr);
}
return change;
}
static int reg_in(struct compile_state *state, struct reg_block *blocks,
struct reg_block *rb, struct block *suc)
{
struct triple_reg_set *in_set;
int change;
change = 0;
/* Read the input set of a successor block
* and place it in the current blocks output set.
*/
in_set = blocks[suc->vertex].in;
for(; in_set; in_set = in_set->next) {
int out_change, done;
struct triple *first, *last, *ptr;
out_change = out_triple(rb, in_set->member);
if (!out_change) {
continue;
}
/* If we don't define the variable also place it
* in the current blocks input set.
*/
first = rb->block->first;
last = rb->block->last;
done = 0;
for(ptr = first; !done; ptr = ptr->next) {
if (this_def(state, ptr, in_set->member)) {
break;
}
done = (ptr == last);
}
if (!done) {
continue;
}
change |= in_triple(rb, in_set->member);
}
change |= phi_in(state, blocks, rb, suc);
return change;
}
static int use_in(struct compile_state *state, struct reg_block *rb)
{
/* Find the variables we use but don't define and add
* it to the current blocks input set.
*/
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME is this O(N^2) algorithm bad?"
#endif
struct block *block;
struct triple *ptr;
int done;
int change;
block = rb->block;
change = 0;
for(done = 0, ptr = block->last; !done; ptr = ptr->prev) {
struct triple **expr;
done = (ptr == block->first);
/* The variable a phi function uses depends on the
* control flow, and is handled in phi_in, not
* here.
*/
if (ptr->op == OP_PHI) {
continue;
}
expr = triple_rhs(state, ptr, 0);
for(;expr; expr = triple_rhs(state, ptr, expr)) {
struct triple *rhs, *test;
int tdone;
rhs = part_to_piece(state, *expr);
if (!rhs) {
continue;
}
/* See if rhs is defined in this block.
* A write counts as a definition.
*/
for(tdone = 0, test = ptr; !tdone; test = test->prev) {
tdone = (test == block->first);
if (this_def(state, test, rhs)) {
rhs = 0;
break;
}
}
/* If I still have a valid rhs add it to in */
change |= in_triple(rb, rhs);
}
}
return change;
}
static struct reg_block *compute_variable_lifetimes(
struct compile_state *state, struct basic_blocks *bb)
{
struct reg_block *blocks;
int change;
blocks = xcmalloc(
sizeof(*blocks)*(bb->last_vertex + 1), "reg_block");
initialize_regblock(blocks, bb->last_block, 0);
do {
int i;
change = 0;
for(i = 1; i <= bb->last_vertex; i++) {
struct block_set *edge;
struct reg_block *rb;
rb = &blocks[i];
/* Add the all successor's input set to in */
for(edge = rb->block->edges; edge; edge = edge->next) {
change |= reg_in(state, blocks, rb, edge->member);
}
/* Add use to in... */
change |= use_in(state, rb);
}
} while(change);
return blocks;
}
static void free_variable_lifetimes(struct compile_state *state,
struct basic_blocks *bb, struct reg_block *blocks)
{
int i;
/* free in_set && out_set on each block */
for(i = 1; i <= bb->last_vertex; i++) {
struct triple_reg_set *entry, *next;
struct reg_block *rb;
rb = &blocks[i];
for(entry = rb->in; entry ; entry = next) {
next = entry->next;
do_triple_unset(&rb->in, entry->member);
}
for(entry = rb->out; entry; entry = next) {
next = entry->next;
do_triple_unset(&rb->out, entry->member);
}
}
xfree(blocks);
}
typedef void (*wvl_cb_t)(
struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg);
static void walk_variable_lifetimes(struct compile_state *state,
struct basic_blocks *bb, struct reg_block *blocks,
wvl_cb_t cb, void *arg)
{
int i;
for(i = 1; i <= state->bb.last_vertex; i++) {
struct triple_reg_set *live;
struct triple_reg_set *entry, *next;
struct triple *ptr, *prev;
struct reg_block *rb;
struct block *block;
int done;
/* Get the blocks */
rb = &blocks[i];
block = rb->block;
/* Copy out into live */
live = 0;
for(entry = rb->out; entry; entry = next) {
next = entry->next;
do_triple_set(&live, entry->member, entry->new);
}
/* Walk through the basic block calculating live */
for(done = 0, ptr = block->last; !done; ptr = prev) {
struct triple **expr;
prev = ptr->prev;
done = (ptr == block->first);
/* Ensure the current definition is in live */
if (triple_is_def(state, ptr)) {
do_triple_set(&live, ptr, 0);
}
/* Inform the callback function of what is
* going on.
*/
cb(state, blocks, live, rb, ptr, arg);
/* Remove the current definition from live */
do_triple_unset(&live, ptr);
/* Add the current uses to live.
*
* It is safe to skip phi functions because they do
* not have any block local uses, and the block
* output sets already properly account for what
* control flow depedent uses phi functions do have.
*/
if (ptr->op == OP_PHI) {
continue;
}
expr = triple_rhs(state, ptr, 0);
for(;expr; expr = triple_rhs(state, ptr, expr)) {
/* If the triple is not a definition skip it. */
if (!*expr || !triple_is_def(state, *expr)) {
continue;
}
do_triple_set(&live, *expr, 0);
}
}
/* Free live */
for(entry = live; entry; entry = next) {
next = entry->next;
do_triple_unset(&live, entry->member);
}
}
}
struct print_live_variable_info {
struct reg_block *rb;
FILE *fp;
};
#if DEBUG_EXPLICIT_CLOSURES
static void print_live_variables_block(
struct compile_state *state, struct block *block, void *arg)
{
struct print_live_variable_info *info = arg;
struct block_set *edge;
FILE *fp = info->fp;
struct reg_block *rb;
struct triple *ptr;
int phi_present;
int done;
rb = &info->rb[block->vertex];
fprintf(fp, "\nblock: %p (%d),",
block, block->vertex);
for(edge = block->edges; edge; edge = edge->next) {
fprintf(fp, " %p<-%p",
edge->member,
edge->member && edge->member->use?edge->member->use->member : 0);
}
fprintf(fp, "\n");
if (rb->in) {
struct triple_reg_set *in_set;
fprintf(fp, " in:");
for(in_set = rb->in; in_set; in_set = in_set->next) {
fprintf(fp, " %-10p", in_set->member);
}
fprintf(fp, "\n");
}
phi_present = 0;
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
done = (ptr == block->last);
if (ptr->op == OP_PHI) {
phi_present = 1;
break;
}
}
if (phi_present) {
int edge;
for(edge = 0; edge < block->users; edge++) {
fprintf(fp, " in(%d):", edge);
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
struct triple **slot;
done = (ptr == block->last);
if (ptr->op != OP_PHI) {
continue;
}
slot = &RHS(ptr, 0);
fprintf(fp, " %-10p", slot[edge]);
}
fprintf(fp, "\n");
}
}
if (block->first->op == OP_LABEL) {
fprintf(fp, "%p:\n", block->first);
}
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
done = (ptr == block->last);
display_triple(fp, ptr);
}
if (rb->out) {
struct triple_reg_set *out_set;
fprintf(fp, " out:");
for(out_set = rb->out; out_set; out_set = out_set->next) {
fprintf(fp, " %-10p", out_set->member);
}
fprintf(fp, "\n");
}
fprintf(fp, "\n");
}
static void print_live_variables(struct compile_state *state,
struct basic_blocks *bb, struct reg_block *rb, FILE *fp)
{
struct print_live_variable_info info;
info.rb = rb;
info.fp = fp;
fprintf(fp, "\nlive variables by block\n");
walk_blocks(state, bb, print_live_variables_block, &info);
}
#endif
static int count_triples(struct compile_state *state)
{
struct triple *first, *ins;
int triples = 0;
first = state->first;
ins = first;
do {
triples++;
ins = ins->next;
} while (ins != first);
return triples;
}
struct dead_triple {
struct triple *triple;
struct dead_triple *work_next;
struct block *block;
int old_id;
int flags;
#define TRIPLE_FLAG_ALIVE 1
#define TRIPLE_FLAG_FREE 1
};
static void print_dead_triples(struct compile_state *state,
struct dead_triple *dtriple)
{
struct triple *first, *ins;
struct dead_triple *dt;
FILE *fp;
if (!(state->compiler->debug & DEBUG_TRIPLES)) {
return;
}
fp = state->dbgout;
fprintf(fp, "--------------- dtriples ---------------\n");
first = state->first;
ins = first;
do {
dt = &dtriple[ins->id];
if ((ins->op == OP_LABEL) && (ins->use)) {
fprintf(fp, "\n%p:\n", ins);
}
fprintf(fp, "%c",
(dt->flags & TRIPLE_FLAG_ALIVE)?' ': '-');
display_triple(fp, ins);
if (triple_is_branch(state, ins)) {
fprintf(fp, "\n");
}
ins = ins->next;
} while(ins != first);
fprintf(fp, "\n");
}
static void awaken(
struct compile_state *state,
struct dead_triple *dtriple, struct triple **expr,
struct dead_triple ***work_list_tail)
{
struct triple *triple;
struct dead_triple *dt;
if (!expr) {
return;
}
triple = *expr;
if (!triple) {
return;
}
if (triple->id <= 0) {
internal_error(state, triple, "bad triple id: %d",
triple->id);
}
if (triple->op == OP_NOOP) {
internal_error(state, triple, "awakening noop?");
return;
}
dt = &dtriple[triple->id];
if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
dt->flags |= TRIPLE_FLAG_ALIVE;
if (!dt->work_next) {
**work_list_tail = dt;
*work_list_tail = &dt->work_next;
}
}
}
static void eliminate_inefectual_code(struct compile_state *state)
{
struct dead_triple *dtriple, *work_list, **work_list_tail, *dt;
int triples, i;
struct triple *first, *ins;
if (!(state->compiler->flags & COMPILER_ELIMINATE_INEFECTUAL_CODE)) {
return;
}
/* Setup the work list */
work_list = 0;
work_list_tail = &work_list;
first = state->first;
/* Count how many triples I have */
triples = count_triples(state);
/* Now put then in an array and mark all of the triples dead */
dtriple = xcmalloc(sizeof(*dtriple) * (triples + 1), "dtriples");
ins = first;
i = 1;
do {
dtriple[i].triple = ins;
dtriple[i].block = block_of_triple(state, ins);
dtriple[i].flags = 0;
dtriple[i].old_id = ins->id;
ins->id = i;
/* See if it is an operation we always keep */
if (!triple_is_pure(state, ins, dtriple[i].old_id)) {
awaken(state, dtriple, &ins, &work_list_tail);
}
i++;
ins = ins->next;
} while(ins != first);
while(work_list) {
struct block *block;
struct dead_triple *dt;
struct block_set *user;
struct triple **expr;
dt = work_list;
work_list = dt->work_next;
if (!work_list) {
work_list_tail = &work_list;
}
/* Make certain the block the current instruction is in lives */
block = block_of_triple(state, dt->triple);
awaken(state, dtriple, &block->first, &work_list_tail);
if (triple_is_branch(state, block->last)) {
awaken(state, dtriple, &block->last, &work_list_tail);
} else {
awaken(state, dtriple, &block->last->next, &work_list_tail);
}
/* Wake up the data depencencies of this triple */
expr = 0;
do {
expr = triple_rhs(state, dt->triple, expr);
awaken(state, dtriple, expr, &work_list_tail);
} while(expr);
do {
expr = triple_lhs(state, dt->triple, expr);
awaken(state, dtriple, expr, &work_list_tail);
} while(expr);
do {
expr = triple_misc(state, dt->triple, expr);
awaken(state, dtriple, expr, &work_list_tail);
} while(expr);
/* Wake up the forward control dependencies */
do {
expr = triple_targ(state, dt->triple, expr);
awaken(state, dtriple, expr, &work_list_tail);
} while(expr);
/* Wake up the reverse control dependencies of this triple */
for(user = dt->block->ipdomfrontier; user; user = user->next) {
struct triple *last;
last = user->member->last;
while((last->op == OP_NOOP) && (last != user->member->first)) {
#if DEBUG_ROMCC_WARNINGS
#warning "Should we bring the awakening noops back?"
#endif
// internal_warning(state, last, "awakening noop?");
last = last->prev;
}
awaken(state, dtriple, &last, &work_list_tail);
}
}
print_dead_triples(state, dtriple);
for(dt = &dtriple[1]; dt <= &dtriple[triples]; dt++) {
if ((dt->triple->op == OP_NOOP) &&
(dt->flags & TRIPLE_FLAG_ALIVE)) {
internal_error(state, dt->triple, "noop effective?");
}
dt->triple->id = dt->old_id; /* Restore the color */
if (!(dt->flags & TRIPLE_FLAG_ALIVE)) {
release_triple(state, dt->triple);
}
}
xfree(dtriple);
rebuild_ssa_form(state);
print_blocks(state, __func__, state->dbgout);
}
static void insert_mandatory_copies(struct compile_state *state)
{
struct triple *ins, *first;
/* The object is with a minimum of inserted copies,
* to resolve in fundamental register conflicts between
* register value producers and consumers.
* Theoretically we may be greater than minimal when we
* are inserting copies before instructions but that
* case should be rare.
*/
first = state->first;
ins = first;
do {
struct triple_set *entry, *next;
struct triple *tmp;
struct reg_info info;
unsigned reg, regcm;
int do_post_copy, do_pre_copy;
tmp = 0;
if (!triple_is_def(state, ins)) {
goto next;
}
/* Find the architecture specific color information */
info = find_lhs_pre_color(state, ins, 0);
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
reg = REG_UNSET;
regcm = arch_type_to_regcm(state, ins->type);
do_post_copy = do_pre_copy = 0;
/* Walk through the uses of ins and check for conflicts */
for(entry = ins->use; entry; entry = next) {
struct reg_info rinfo;
int i;
next = entry->next;
i = find_rhs_use(state, entry->member, ins);
if (i < 0) {
continue;
}
/* Find the users color requirements */
rinfo = arch_reg_rhs(state, entry->member, i);
if (rinfo.reg >= MAX_REGISTERS) {
rinfo.reg = REG_UNSET;
}
/* See if I need a pre_copy */
if (rinfo.reg != REG_UNSET) {
if ((reg != REG_UNSET) && (reg != rinfo.reg)) {
do_pre_copy = 1;
}
reg = rinfo.reg;
}
regcm &= rinfo.regcm;
regcm = arch_regcm_normalize(state, regcm);
if (regcm == 0) {
do_pre_copy = 1;
}
/* Always use pre_copies for constants.
* They do not take up any registers until a
* copy places them in one.
*/
if ((info.reg == REG_UNNEEDED) &&
(rinfo.reg != REG_UNNEEDED)) {
do_pre_copy = 1;
}
}
do_post_copy =
!do_pre_copy &&
(((info.reg != REG_UNSET) &&
(reg != REG_UNSET) &&
(info.reg != reg)) ||
((info.regcm & regcm) == 0));
reg = info.reg;
regcm = info.regcm;
/* Walk through the uses of ins and do a pre_copy or see if a post_copy is warranted */
for(entry = ins->use; entry; entry = next) {
struct reg_info rinfo;
int i;
next = entry->next;
i = find_rhs_use(state, entry->member, ins);
if (i < 0) {
continue;
}
/* Find the users color requirements */
rinfo = arch_reg_rhs(state, entry->member, i);
if (rinfo.reg >= MAX_REGISTERS) {
rinfo.reg = REG_UNSET;
}
/* Now see if it is time to do the pre_copy */
if (rinfo.reg != REG_UNSET) {
if (((reg != REG_UNSET) && (reg != rinfo.reg)) ||
((regcm & rinfo.regcm) == 0) ||
/* Don't let a mandatory coalesce sneak
* into a operation that is marked to prevent
* coalescing.
*/
((reg != REG_UNNEEDED) &&
((ins->id & TRIPLE_FLAG_POST_SPLIT) ||
(entry->member->id & TRIPLE_FLAG_PRE_SPLIT)))
) {
if (do_pre_copy) {
struct triple *user;
user = entry->member;
if (RHS(user, i) != ins) {
internal_error(state, user, "bad rhs");
}
tmp = pre_copy(state, user, i);
tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
continue;
} else {
do_post_copy = 1;
}
}
reg = rinfo.reg;
}
if ((regcm & rinfo.regcm) == 0) {
if (do_pre_copy) {
struct triple *user;
user = entry->member;
if (RHS(user, i) != ins) {
internal_error(state, user, "bad rhs");
}
tmp = pre_copy(state, user, i);
tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
continue;
} else {
do_post_copy = 1;
}
}
regcm &= rinfo.regcm;
}
if (do_post_copy) {
struct reg_info pre, post;
tmp = post_copy(state, ins);
tmp->id |= TRIPLE_FLAG_PRE_SPLIT;
pre = arch_reg_lhs(state, ins, 0);
post = arch_reg_lhs(state, tmp, 0);
if ((pre.reg == post.reg) && (pre.regcm == post.regcm)) {
internal_error(state, tmp, "useless copy");
}
}
next:
ins = ins->next;
} while(ins != first);
print_blocks(state, __func__, state->dbgout);
}
struct live_range_edge;
struct live_range_def;
struct live_range {
struct live_range_edge *edges;
struct live_range_def *defs;
/* Note. The list pointed to by defs is kept in order.
* That is baring splits in the flow control
* defs dominates defs->next wich dominates defs->next->next
* etc.
*/
unsigned color;
unsigned classes;
unsigned degree;
unsigned length;
struct live_range *group_next, **group_prev;
};
struct live_range_edge {
struct live_range_edge *next;
struct live_range *node;
};
struct live_range_def {
struct live_range_def *next;
struct live_range_def *prev;
struct live_range *lr;
struct triple *def;
unsigned orig_id;
};
#define LRE_HASH_SIZE 2048
struct lre_hash {
struct lre_hash *next;
struct live_range *left;
struct live_range *right;
};
struct reg_state {
struct lre_hash *hash[LRE_HASH_SIZE];
struct reg_block *blocks;
struct live_range_def *lrd;
struct live_range *lr;
struct live_range *low, **low_tail;
struct live_range *high, **high_tail;
unsigned defs;
unsigned ranges;
int passes, max_passes;
};
struct print_interference_block_info {
struct reg_state *rstate;
FILE *fp;
int need_edges;
};
static void print_interference_block(
struct compile_state *state, struct block *block, void *arg)
{
struct print_interference_block_info *info = arg;
struct reg_state *rstate = info->rstate;
struct block_set *edge;
FILE *fp = info->fp;
struct reg_block *rb;
struct triple *ptr;
int phi_present;
int done;
rb = &rstate->blocks[block->vertex];
fprintf(fp, "\nblock: %p (%d),",
block, block->vertex);
for(edge = block->edges; edge; edge = edge->next) {
fprintf(fp, " %p<-%p",
edge->member,
edge->member && edge->member->use?edge->member->use->member : 0);
}
fprintf(fp, "\n");
if (rb->in) {
struct triple_reg_set *in_set;
fprintf(fp, " in:");
for(in_set = rb->in; in_set; in_set = in_set->next) {
fprintf(fp, " %-10p", in_set->member);
}
fprintf(fp, "\n");
}
phi_present = 0;
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
done = (ptr == block->last);
if (ptr->op == OP_PHI) {
phi_present = 1;
break;
}
}
if (phi_present) {
int edge;
for(edge = 0; edge < block->users; edge++) {
fprintf(fp, " in(%d):", edge);
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
struct triple **slot;
done = (ptr == block->last);
if (ptr->op != OP_PHI) {
continue;
}
slot = &RHS(ptr, 0);
fprintf(fp, " %-10p", slot[edge]);
}
fprintf(fp, "\n");
}
}
if (block->first->op == OP_LABEL) {
fprintf(fp, "%p:\n", block->first);
}
for(done = 0, ptr = block->first; !done; ptr = ptr->next) {
struct live_range *lr;
unsigned id;
done = (ptr == block->last);
lr = rstate->lrd[ptr->id].lr;
id = ptr->id;
ptr->id = rstate->lrd[id].orig_id;
SET_REG(ptr->id, lr->color);
display_triple(fp, ptr);
ptr->id = id;
if (triple_is_def(state, ptr) && (lr->defs == 0)) {
internal_error(state, ptr, "lr has no defs!");
}
if (info->need_edges) {
if (lr->defs) {
struct live_range_def *lrd;
fprintf(fp, " range:");
lrd = lr->defs;
do {
fprintf(fp, " %-10p", lrd->def);
lrd = lrd->next;
} while(lrd != lr->defs);
fprintf(fp, "\n");
}
if (lr->edges > 0) {
struct live_range_edge *edge;
fprintf(fp, " edges:");
for(edge = lr->edges; edge; edge = edge->next) {
struct live_range_def *lrd;
lrd = edge->node->defs;
do {
fprintf(fp, " %-10p", lrd->def);
lrd = lrd->next;
} while(lrd != edge->node->defs);
fprintf(fp, "|");
}
fprintf(fp, "\n");
}
}
/* Do a bunch of sanity checks */
valid_ins(state, ptr);
if ((ptr->id < 0) || (ptr->id > rstate->defs)) {
internal_error(state, ptr, "Invalid triple id: %d",
ptr->id);
}
}
if (rb->out) {
struct triple_reg_set *out_set;
fprintf(fp, " out:");
for(out_set = rb->out; out_set; out_set = out_set->next) {
fprintf(fp, " %-10p", out_set->member);
}
fprintf(fp, "\n");
}
fprintf(fp, "\n");
}
static void print_interference_blocks(
struct compile_state *state, struct reg_state *rstate, FILE *fp, int need_edges)
{
struct print_interference_block_info info;
info.rstate = rstate;
info.fp = fp;
info.need_edges = need_edges;
fprintf(fp, "\nlive variables by block\n");
walk_blocks(state, &state->bb, print_interference_block, &info);
}
static unsigned regc_max_size(struct compile_state *state, int classes)
{
unsigned max_size;
int i;
max_size = 0;
for(i = 0; i < MAX_REGC; i++) {
if (classes & (1 << i)) {
unsigned size;
size = arch_regc_size(state, i);
if (size > max_size) {
max_size = size;
}
}
}
return max_size;
}
static int reg_is_reg(struct compile_state *state, int reg1, int reg2)
{
unsigned equivs[MAX_REG_EQUIVS];
int i;
if ((reg1 < 0) || (reg1 >= MAX_REGISTERS)) {
internal_error(state, 0, "invalid register");
}
if ((reg2 < 0) || (reg2 >= MAX_REGISTERS)) {
internal_error(state, 0, "invalid register");
}
arch_reg_equivs(state, equivs, reg1);
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
if (equivs[i] == reg2) {
return 1;
}
}
return 0;
}
static void reg_fill_used(struct compile_state *state, char *used, int reg)
{
unsigned equivs[MAX_REG_EQUIVS];
int i;
if (reg == REG_UNNEEDED) {
return;
}
arch_reg_equivs(state, equivs, reg);
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
used[equivs[i]] = 1;
}
return;
}
static void reg_inc_used(struct compile_state *state, char *used, int reg)
{
unsigned equivs[MAX_REG_EQUIVS];
int i;
if (reg == REG_UNNEEDED) {
return;
}
arch_reg_equivs(state, equivs, reg);
for(i = 0; (i < MAX_REG_EQUIVS) && equivs[i] != REG_UNSET; i++) {
used[equivs[i]] += 1;
}
return;
}
static unsigned int hash_live_edge(
struct live_range *left, struct live_range *right)
{
unsigned int hash, val;
unsigned long lval, rval;
lval = ((unsigned long)left)/sizeof(struct live_range);
rval = ((unsigned long)right)/sizeof(struct live_range);
hash = 0;
while(lval) {
val = lval & 0xff;
lval >>= 8;
hash = (hash *263) + val;
}
while(rval) {
val = rval & 0xff;
rval >>= 8;
hash = (hash *263) + val;
}
hash = hash & (LRE_HASH_SIZE - 1);
return hash;
}
static struct lre_hash **lre_probe(struct reg_state *rstate,
struct live_range *left, struct live_range *right)
{
struct lre_hash **ptr;
unsigned int index;
/* Ensure left <= right */
if (left > right) {
struct live_range *tmp;
tmp = left;
left = right;
right = tmp;
}
index = hash_live_edge(left, right);
ptr = &rstate->hash[index];
while(*ptr) {
if (((*ptr)->left == left) && ((*ptr)->right == right)) {
break;
}
ptr = &(*ptr)->next;
}
return ptr;
}
static int interfere(struct reg_state *rstate,
struct live_range *left, struct live_range *right)
{
struct lre_hash **ptr;
ptr = lre_probe(rstate, left, right);
return ptr && *ptr;
}
static void add_live_edge(struct reg_state *rstate,
struct live_range *left, struct live_range *right)
{
/* FIXME the memory allocation overhead is noticeable here... */
struct lre_hash **ptr, *new_hash;
struct live_range_edge *edge;
if (left == right) {
return;
}
if ((left == &rstate->lr[0]) || (right == &rstate->lr[0])) {
return;
}
/* Ensure left <= right */
if (left > right) {
struct live_range *tmp;
tmp = left;
left = right;
right = tmp;
}
ptr = lre_probe(rstate, left, right);
if (*ptr) {
return;
}
#if 0
fprintf(state->errout, "new_live_edge(%p, %p)\n",
left, right);
#endif
new_hash = xmalloc(sizeof(*new_hash), "lre_hash");
new_hash->next = *ptr;
new_hash->left = left;
new_hash->right = right;
*ptr = new_hash;
edge = xmalloc(sizeof(*edge), "live_range_edge");
edge->next = left->edges;
edge->node = right;
left->edges = edge;
left->degree += 1;
edge = xmalloc(sizeof(*edge), "live_range_edge");
edge->next = right->edges;
edge->node = left;
right->edges = edge;
right->degree += 1;
}
static void remove_live_edge(struct reg_state *rstate,
struct live_range *left, struct live_range *right)
{
struct live_range_edge *edge, **ptr;
struct lre_hash **hptr, *entry;
hptr = lre_probe(rstate, left, right);
if (!hptr || !*hptr) {
return;
}
entry = *hptr;
*hptr = entry->next;
xfree(entry);
for(ptr = &left->edges; *ptr; ptr = &(*ptr)->next) {
edge = *ptr;
if (edge->node == right) {
*ptr = edge->next;
memset(edge, 0, sizeof(*edge));
xfree(edge);
right->degree--;
break;
}
}
for(ptr = &right->edges; *ptr; ptr = &(*ptr)->next) {
edge = *ptr;
if (edge->node == left) {
*ptr = edge->next;
memset(edge, 0, sizeof(*edge));
xfree(edge);
left->degree--;
break;
}
}
}
static void remove_live_edges(struct reg_state *rstate, struct live_range *range)
{
struct live_range_edge *edge, *next;
for(edge = range->edges; edge; edge = next) {
next = edge->next;
remove_live_edge(rstate, range, edge->node);
}
}
static void transfer_live_edges(struct reg_state *rstate,
struct live_range *dest, struct live_range *src)
{
struct live_range_edge *edge, *next;
for(edge = src->edges; edge; edge = next) {
struct live_range *other;
next = edge->next;
other = edge->node;
remove_live_edge(rstate, src, other);
add_live_edge(rstate, dest, other);
}
}
/* Interference graph...
*
* new(n) --- Return a graph with n nodes but no edges.
* add(g,x,y) --- Return a graph including g with an between x and y
* interfere(g, x, y) --- Return true if there exists an edge between the nodes
* x and y in the graph g
* degree(g, x) --- Return the degree of the node x in the graph g
* neighbors(g, x, f) --- Apply function f to each neighbor of node x in the graph g
*
* Implement with a hash table && a set of adjcency vectors.
* The hash table supports constant time implementations of add and interfere.
* The adjacency vectors support an efficient implementation of neighbors.
*/
/*
* +---------------------------------------------------+
* | +--------------+ |
* v v | |
* renumber -> build graph -> colalesce -> spill_costs -> simplify -> select
*
* -- In simplify implment optimistic coloring... (No backtracking)
* -- Implement Rematerialization it is the only form of spilling we can perform
* Essentially this means dropping a constant from a register because
* we can regenerate it later.
*
* --- Very conservative colalescing (don't colalesce just mark the opportunities)
* coalesce at phi points...
* --- Bias coloring if at all possible do the coalesing a compile time.
*
*
*/
#if DEBUG_ROMCC_WARNING
static void different_colored(
struct compile_state *state, struct reg_state *rstate,
struct triple *parent, struct triple *ins)
{
struct live_range *lr;
struct triple **expr;
lr = rstate->lrd[ins->id].lr;
expr = triple_rhs(state, ins, 0);
for(;expr; expr = triple_rhs(state, ins, expr)) {
struct live_range *lr2;
if (!*expr || (*expr == parent) || (*expr == ins)) {
continue;
}
lr2 = rstate->lrd[(*expr)->id].lr;
if (lr->color == lr2->color) {
internal_error(state, ins, "live range too big");
}
}
}
#endif
static struct live_range *coalesce_ranges(
struct compile_state *state, struct reg_state *rstate,
struct live_range *lr1, struct live_range *lr2)
{
struct live_range_def *head, *mid1, *mid2, *end, *lrd;
unsigned color;
unsigned classes;
if (lr1 == lr2) {
return lr1;
}
if (!lr1->defs || !lr2->defs) {
internal_error(state, 0,
"cannot coalese dead live ranges");
}
if ((lr1->color == REG_UNNEEDED) ||
(lr2->color == REG_UNNEEDED)) {
internal_error(state, 0,
"cannot coalesce live ranges without a possible color");
}
if ((lr1->color != lr2->color) &&
(lr1->color != REG_UNSET) &&
(lr2->color != REG_UNSET)) {
internal_error(state, lr1->defs->def,
"cannot coalesce live ranges of different colors");
}
color = lr1->color;
if (color == REG_UNSET) {
color = lr2->color;
}
classes = lr1->classes & lr2->classes;
if (!classes) {
internal_error(state, lr1->defs->def,
"cannot coalesce live ranges with dissimilar register classes");
}
if (state->compiler->debug & DEBUG_COALESCING) {
FILE *fp = state->errout;
fprintf(fp, "coalescing:");
lrd = lr1->defs;
do {
fprintf(fp, " %p", lrd->def);
lrd = lrd->next;
} while(lrd != lr1->defs);
fprintf(fp, " |");
lrd = lr2->defs;
do {
fprintf(fp, " %p", lrd->def);
lrd = lrd->next;
} while(lrd != lr2->defs);
fprintf(fp, "\n");
}
/* If there is a clear dominate live range put it in lr1,
* For purposes of this test phi functions are
* considered dominated by the definitions that feed into
* them.
*/
if ((lr1->defs->prev->def->op == OP_PHI) ||
((lr2->defs->prev->def->op != OP_PHI) &&
tdominates(state, lr2->defs->def, lr1->defs->def))) {
struct live_range *tmp;
tmp = lr1;
lr1 = lr2;
lr2 = tmp;
}
#if 0
if (lr1->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
fprintf(state->errout, "lr1 post\n");
}
if (lr1->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
fprintf(state->errout, "lr1 pre\n");
}
if (lr2->defs->orig_id & TRIPLE_FLAG_POST_SPLIT) {
fprintf(state->errout, "lr2 post\n");
}
if (lr2->defs->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
fprintf(state->errout, "lr2 pre\n");
}
#endif
#if 0
fprintf(state->errout, "coalesce color1(%p): %3d color2(%p) %3d\n",
lr1->defs->def,
lr1->color,
lr2->defs->def,
lr2->color);
#endif
/* Append lr2 onto lr1 */
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME should this be a merge instead of a splice?"
#endif
/* This FIXME item applies to the correctness of live_range_end
* and to the necessity of making multiple passes of coalesce_live_ranges.
* A failure to find some coalesce opportunities in coaleace_live_ranges
* does not impact the correct of the compiler just the efficiency with
* which registers are allocated.
*/
head = lr1->defs;
mid1 = lr1->defs->prev;
mid2 = lr2->defs;
end = lr2->defs->prev;
head->prev = end;
end->next = head;
mid1->next = mid2;
mid2->prev = mid1;
/* Fixup the live range in the added live range defs */
lrd = head;
do {
lrd->lr = lr1;
lrd = lrd->next;
} while(lrd != head);
/* Mark lr2 as free. */
lr2->defs = 0;
lr2->color = REG_UNNEEDED;
lr2->classes = 0;
if (!lr1->defs) {
internal_error(state, 0, "lr1->defs == 0 ?");
}
lr1->color = color;
lr1->classes = classes;
/* Keep the graph in sync by transfering the edges from lr2 to lr1 */
transfer_live_edges(rstate, lr1, lr2);
return lr1;
}
static struct live_range_def *live_range_head(
struct compile_state *state, struct live_range *lr,
struct live_range_def *last)
{
struct live_range_def *result;
result = 0;
if (last == 0) {
result = lr->defs;
}
else if (!tdominates(state, lr->defs->def, last->next->def)) {
result = last->next;
}
return result;
}
static struct live_range_def *live_range_end(
struct compile_state *state, struct live_range *lr,
struct live_range_def *last)
{
struct live_range_def *result;
result = 0;
if (last == 0) {
result = lr->defs->prev;
}
else if (!tdominates(state, last->prev->def, lr->defs->prev->def)) {
result = last->prev;
}
return result;
}
static void initialize_live_ranges(
struct compile_state *state, struct reg_state *rstate)
{
struct triple *ins, *first;
size_t count, size;
int i, j;
first = state->first;
/* First count how many instructions I have.
*/
count = count_triples(state);
/* Potentially I need one live range definitions for each
* instruction.
*/
rstate->defs = count;
/* Potentially I need one live range for each instruction
* plus an extra for the dummy live range.
*/
rstate->ranges = count + 1;
size = sizeof(rstate->lrd[0]) * rstate->defs;
rstate->lrd = xcmalloc(size, "live_range_def");
size = sizeof(rstate->lr[0]) * rstate->ranges;
rstate->lr = xcmalloc(size, "live_range");
/* Setup the dummy live range */
rstate->lr[0].classes = 0;
rstate->lr[0].color = REG_UNSET;
rstate->lr[0].defs = 0;
i = j = 0;
ins = first;
do {
/* If the triple is a variable give it a live range */
if (triple_is_def(state, ins)) {
struct reg_info info;
/* Find the architecture specific color information */
info = find_def_color(state, ins);
i++;
rstate->lr[i].defs = &rstate->lrd[j];
rstate->lr[i].color = info.reg;
rstate->lr[i].classes = info.regcm;
rstate->lr[i].degree = 0;
rstate->lrd[j].lr = &rstate->lr[i];
}
/* Otherwise give the triple the dummy live range. */
else {
rstate->lrd[j].lr = &rstate->lr[0];
}
/* Initalize the live_range_def */
rstate->lrd[j].next = &rstate->lrd[j];
rstate->lrd[j].prev = &rstate->lrd[j];
rstate->lrd[j].def = ins;
rstate->lrd[j].orig_id = ins->id;
ins->id = j;
j++;
ins = ins->next;
} while(ins != first);
rstate->ranges = i;
/* Make a second pass to handle achitecture specific register
* constraints.
*/
ins = first;
do {
int zlhs, zrhs, i, j;
if (ins->id > rstate->defs) {
internal_error(state, ins, "bad id");
}
/* Walk through the template of ins and coalesce live ranges */
zlhs = ins->lhs;
if ((zlhs == 0) && triple_is_def(state, ins)) {
zlhs = 1;
}
zrhs = ins->rhs;
if (state->compiler->debug & DEBUG_COALESCING2) {
fprintf(state->errout, "mandatory coalesce: %p %d %d\n",
ins, zlhs, zrhs);
}
for(i = 0; i < zlhs; i++) {
struct reg_info linfo;
struct live_range_def *lhs;
linfo = arch_reg_lhs(state, ins, i);
if (linfo.reg < MAX_REGISTERS) {
continue;
}
if (triple_is_def(state, ins)) {
lhs = &rstate->lrd[ins->id];
} else {
lhs = &rstate->lrd[LHS(ins, i)->id];
}
if (state->compiler->debug & DEBUG_COALESCING2) {
fprintf(state->errout, "coalesce lhs(%d): %p %d\n",
i, lhs, linfo.reg);
}
for(j = 0; j < zrhs; j++) {
struct reg_info rinfo;
struct live_range_def *rhs;
rinfo = arch_reg_rhs(state, ins, j);
if (rinfo.reg < MAX_REGISTERS) {
continue;
}
rhs = &rstate->lrd[RHS(ins, j)->id];
if (state->compiler->debug & DEBUG_COALESCING2) {
fprintf(state->errout, "coalesce rhs(%d): %p %d\n",
j, rhs, rinfo.reg);
}
if (rinfo.reg == linfo.reg) {
coalesce_ranges(state, rstate,
lhs->lr, rhs->lr);
}
}
}
ins = ins->next;
} while(ins != first);
}
static void graph_ins(
struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg)
{
struct reg_state *rstate = arg;
struct live_range *def;
struct triple_reg_set *entry;
/* If the triple is not a definition
* we do not have a definition to add to
* the interference graph.
*/
if (!triple_is_def(state, ins)) {
return;
}
def = rstate->lrd[ins->id].lr;
/* Create an edge between ins and everything that is
* alive, unless the live_range cannot share
* a physical register with ins.
*/
for(entry = live; entry; entry = entry->next) {
struct live_range *lr;
if ((entry->member->id < 0) || (entry->member->id > rstate->defs)) {
internal_error(state, 0, "bad entry?");
}
lr = rstate->lrd[entry->member->id].lr;
if (def == lr) {
continue;
}
if (!arch_regcm_intersect(def->classes, lr->classes)) {
continue;
}
add_live_edge(rstate, def, lr);
}
return;
}
#if DEBUG_CONSISTENCY > 1
static struct live_range *get_verify_live_range(
struct compile_state *state, struct reg_state *rstate, struct triple *ins)
{
struct live_range *lr;
struct live_range_def *lrd;
int ins_found;
if ((ins->id < 0) || (ins->id > rstate->defs)) {
internal_error(state, ins, "bad ins?");
}
lr = rstate->lrd[ins->id].lr;
ins_found = 0;
lrd = lr->defs;
do {
if (lrd->def == ins) {
ins_found = 1;
}
lrd = lrd->next;
} while(lrd != lr->defs);
if (!ins_found) {
internal_error(state, ins, "ins not in live range");
}
return lr;
}
static void verify_graph_ins(
struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg)
{
struct reg_state *rstate = arg;
struct triple_reg_set *entry1, *entry2;
/* Compare live against edges and make certain the code is working */
for(entry1 = live; entry1; entry1 = entry1->next) {
struct live_range *lr1;
lr1 = get_verify_live_range(state, rstate, entry1->member);
for(entry2 = live; entry2; entry2 = entry2->next) {
struct live_range *lr2;
struct live_range_edge *edge2;
int lr1_found;
int lr2_degree;
if (entry2 == entry1) {
continue;
}
lr2 = get_verify_live_range(state, rstate, entry2->member);
if (lr1 == lr2) {
internal_error(state, entry2->member,
"live range with 2 values simultaneously alive");
}
if (!arch_regcm_intersect(lr1->classes, lr2->classes)) {
continue;
}
if (!interfere(rstate, lr1, lr2)) {
internal_error(state, entry2->member,
"edges don't interfere?");
}
lr1_found = 0;
lr2_degree = 0;
for(edge2 = lr2->edges; edge2; edge2 = edge2->next) {
lr2_degree++;
if (edge2->node == lr1) {
lr1_found = 1;
}
}
if (lr2_degree != lr2->degree) {
internal_error(state, entry2->member,
"computed degree: %d does not match reported degree: %d\n",
lr2_degree, lr2->degree);
}
if (!lr1_found) {
internal_error(state, entry2->member, "missing edge");
}
}
}
return;
}
#endif
static void print_interference_ins(
struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg)
{
struct reg_state *rstate = arg;
struct live_range *lr;
unsigned id;
FILE *fp = state->dbgout;
lr = rstate->lrd[ins->id].lr;
id = ins->id;
ins->id = rstate->lrd[id].orig_id;
SET_REG(ins->id, lr->color);
display_triple(state->dbgout, ins);
ins->id = id;
if (lr->defs) {
struct live_range_def *lrd;
fprintf(fp, " range:");
lrd = lr->defs;
do {
fprintf(fp, " %-10p", lrd->def);
lrd = lrd->next;
} while(lrd != lr->defs);
fprintf(fp, "\n");
}
if (live) {
struct triple_reg_set *entry;
fprintf(fp, " live:");
for(entry = live; entry; entry = entry->next) {
fprintf(fp, " %-10p", entry->member);
}
fprintf(fp, "\n");
}
if (lr->edges) {
struct live_range_edge *entry;
fprintf(fp, " edges:");
for(entry = lr->edges; entry; entry = entry->next) {
struct live_range_def *lrd;
lrd = entry->node->defs;
do {
fprintf(fp, " %-10p", lrd->def);
lrd = lrd->next;
} while(lrd != entry->node->defs);
fprintf(fp, "|");
}
fprintf(fp, "\n");
}
if (triple_is_branch(state, ins)) {
fprintf(fp, "\n");
}
return;
}
static int coalesce_live_ranges(
struct compile_state *state, struct reg_state *rstate)
{
/* At the point where a value is moved from one
* register to another that value requires two
* registers, thus increasing register pressure.
* Live range coaleescing reduces the register
* pressure by keeping a value in one register
* longer.
*
* In the case of a phi function all paths leading
* into it must be allocated to the same register
* otherwise the phi function may not be removed.
*
* Forcing a value to stay in a single register
* for an extended period of time does have
* limitations when applied to non homogenous
* register pool.
*
* The two cases I have identified are:
* 1) Two forced register assignments may
* collide.
* 2) Registers may go unused because they
* are only good for storing the value
* and not manipulating it.
*
* Because of this I need to split live ranges,
* even outside of the context of coalesced live
* ranges. The need to split live ranges does
* impose some constraints on live range coalescing.
*
* - Live ranges may not be coalesced across phi
* functions. This creates a 2 headed live
* range that cannot be sanely split.
*
* - phi functions (coalesced in initialize_live_ranges)
* are handled as pre split live ranges so we will
* never attempt to split them.
*/
int coalesced;
int i;
coalesced = 0;
for(i = 0; i <= rstate->ranges; i++) {
struct live_range *lr1;
struct live_range_def *lrd1;
lr1 = &rstate->lr[i];
if (!lr1->defs) {
continue;
}
lrd1 = live_range_end(state, lr1, 0);
for(; lrd1; lrd1 = live_range_end(state, lr1, lrd1)) {
struct triple_set *set;
if (lrd1->def->op != OP_COPY) {
continue;
}
/* Skip copies that are the result of a live range split. */
if (lrd1->orig_id & TRIPLE_FLAG_POST_SPLIT) {
continue;
}
for(set = lrd1->def->use; set; set = set->next) {
struct live_range_def *lrd2;
struct live_range *lr2, *res;
lrd2 = &rstate->lrd[set->member->id];
/* Don't coalesce with instructions
* that are the result of a live range
* split.
*/
if (lrd2->orig_id & TRIPLE_FLAG_PRE_SPLIT) {
continue;
}
lr2 = rstate->lrd[set->member->id].lr;
if (lr1 == lr2) {
continue;
}
if ((lr1->color != lr2->color) &&
(lr1->color != REG_UNSET) &&
(lr2->color != REG_UNSET)) {
continue;
}
if ((lr1->classes & lr2->classes) == 0) {
continue;
}
if (interfere(rstate, lr1, lr2)) {
continue;
}
res = coalesce_ranges(state, rstate, lr1, lr2);
coalesced += 1;
if (res != lr1) {
goto next;
}
}
}
next:
;
}
return coalesced;
}
static void fix_coalesce_conflicts(struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg)
{
int *conflicts = arg;
int zlhs, zrhs, i, j;
/* See if we have a mandatory coalesce operation between
* a lhs and a rhs value. If so and the rhs value is also
* alive then this triple needs to be pre copied. Otherwise
* we would have two definitions in the same live range simultaneously
* alive.
*/
zlhs = ins->lhs;
if ((zlhs == 0) && triple_is_def(state, ins)) {
zlhs = 1;
}
zrhs = ins->rhs;
for(i = 0; i < zlhs; i++) {
struct reg_info linfo;
linfo = arch_reg_lhs(state, ins, i);
if (linfo.reg < MAX_REGISTERS) {
continue;
}
for(j = 0; j < zrhs; j++) {
struct reg_info rinfo;
struct triple *rhs;
struct triple_reg_set *set;
int found;
found = 0;
rinfo = arch_reg_rhs(state, ins, j);
if (rinfo.reg != linfo.reg) {
continue;
}
rhs = RHS(ins, j);
for(set = live; set && !found; set = set->next) {
if (set->member == rhs) {
found = 1;
}
}
if (found) {
struct triple *copy;
copy = pre_copy(state, ins, j);
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
(*conflicts)++;
}
}
}
return;
}
static int correct_coalesce_conflicts(
struct compile_state *state, struct reg_block *blocks)
{
int conflicts;
conflicts = 0;
walk_variable_lifetimes(state, &state->bb, blocks,
fix_coalesce_conflicts, &conflicts);
return conflicts;
}
static void replace_set_use(struct compile_state *state,
struct triple_reg_set *head, struct triple *orig, struct triple *new)
{
struct triple_reg_set *set;
for(set = head; set; set = set->next) {
if (set->member == orig) {
set->member = new;
}
}
}
static void replace_block_use(struct compile_state *state,
struct reg_block *blocks, struct triple *orig, struct triple *new)
{
int i;
#if DEBUG_ROMCC_WARNINGS
#warning "WISHLIST visit just those blocks that need it *"
#endif
for(i = 1; i <= state->bb.last_vertex; i++) {
struct reg_block *rb;
rb = &blocks[i];
replace_set_use(state, rb->in, orig, new);
replace_set_use(state, rb->out, orig, new);
}
}
static void color_instructions(struct compile_state *state)
{
struct triple *ins, *first;
first = state->first;
ins = first;
do {
if (triple_is_def(state, ins)) {
struct reg_info info;
info = find_lhs_color(state, ins, 0);
if (info.reg >= MAX_REGISTERS) {
info.reg = REG_UNSET;
}
SET_INFO(ins->id, info);
}
ins = ins->next;
} while(ins != first);
}
static struct reg_info read_lhs_color(
struct compile_state *state, struct triple *ins, int index)
{
struct reg_info info;
if ((index == 0) && triple_is_def(state, ins)) {
info.reg = ID_REG(ins->id);
info.regcm = ID_REGCM(ins->id);
}
else if (index < ins->lhs) {
info = read_lhs_color(state, LHS(ins, index), 0);
}
else {
internal_error(state, ins, "Bad lhs %d", index);
info.reg = REG_UNSET;
info.regcm = 0;
}
return info;
}
static struct triple *resolve_tangle(
struct compile_state *state, struct triple *tangle)
{
struct reg_info info, uinfo;
struct triple_set *set, *next;
struct triple *copy;
#if DEBUG_ROMCC_WARNINGS
#warning "WISHLIST recalculate all affected instructions colors"
#endif
info = find_lhs_color(state, tangle, 0);
for(set = tangle->use; set; set = next) {
struct triple *user;
int i, zrhs;
next = set->next;
user = set->member;
zrhs = user->rhs;
for(i = 0; i < zrhs; i++) {
if (RHS(user, i) != tangle) {
continue;
}
uinfo = find_rhs_post_color(state, user, i);
if (uinfo.reg == info.reg) {
copy = pre_copy(state, user, i);
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
SET_INFO(copy->id, uinfo);
}
}
}
copy = 0;
uinfo = find_lhs_pre_color(state, tangle, 0);
if (uinfo.reg == info.reg) {
struct reg_info linfo;
copy = post_copy(state, tangle);
copy->id |= TRIPLE_FLAG_PRE_SPLIT;
linfo = find_lhs_color(state, copy, 0);
SET_INFO(copy->id, linfo);
}
info = find_lhs_color(state, tangle, 0);
SET_INFO(tangle->id, info);
return copy;
}
static void fix_tangles(struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live,
struct reg_block *rb, struct triple *ins, void *arg)
{
int *tangles = arg;
struct triple *tangle;
do {
char used[MAX_REGISTERS];
struct triple_reg_set *set;
tangle = 0;
/* Find out which registers have multiple uses at this point */
memset(used, 0, sizeof(used));
for(set = live; set; set = set->next) {
struct reg_info info;
info = read_lhs_color(state, set->member, 0);
if (info.reg == REG_UNSET) {
continue;
}
reg_inc_used(state, used, info.reg);
}
/* Now find the least dominated definition of a register in
* conflict I have seen so far.
*/
for(set = live; set; set = set->next) {
struct reg_info info;
info = read_lhs_color(state, set->member, 0);
if (used[info.reg] < 2) {
continue;
}
/* Changing copies that feed into phi functions
* is incorrect.
*/
if (set->member->use &&
(set->member->use->member->op == OP_PHI)) {
continue;
}
if (!tangle || tdominates(state, set->member, tangle)) {
tangle = set->member;
}
}
/* If I have found a tangle resolve it */
if (tangle) {
struct triple *post_copy;
(*tangles)++;
post_copy = resolve_tangle(state, tangle);
if (post_copy) {
replace_block_use(state, blocks, tangle, post_copy);
}
if (post_copy && (tangle != ins)) {
replace_set_use(state, live, tangle, post_copy);
}
}
} while(tangle);
return;
}
static int correct_tangles(
struct compile_state *state, struct reg_block *blocks)
{
int tangles;
tangles = 0;
color_instructions(state);
walk_variable_lifetimes(state, &state->bb, blocks,
fix_tangles, &tangles);
return tangles;
}
static void ids_from_rstate(struct compile_state *state, struct reg_state *rstate);
static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate);
struct triple *find_constrained_def(
struct compile_state *state, struct live_range *range, struct triple *constrained)
{
struct live_range_def *lrd, *lrd_next;
lrd_next = range->defs;
do {
struct reg_info info;
unsigned regcm;
lrd = lrd_next;
lrd_next = lrd->next;
regcm = arch_type_to_regcm(state, lrd->def->type);
info = find_lhs_color(state, lrd->def, 0);
regcm = arch_regcm_reg_normalize(state, regcm);
info.regcm = arch_regcm_reg_normalize(state, info.regcm);
/* If the 2 register class masks are equal then
* the current register class is not constrained.
*/
if (regcm == info.regcm) {
continue;
}
/* If there is just one use.
* That use cannot accept a larger register class.
* There are no intervening definitions except
* definitions that feed into that use.
* Then a triple is not constrained.
* FIXME handle this case!
*/
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME ignore cases that cannot be fixed (a definition followed by a use)"
#endif
/* Of the constrained live ranges deal with the
* least dominated one first.
*/
if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
fprintf(state->errout, "canidate: %p %-8s regcm: %x %x\n",
lrd->def, tops(lrd->def->op), regcm, info.regcm);
}
if (!constrained ||
tdominates(state, lrd->def, constrained))
{
constrained = lrd->def;
}
} while(lrd_next != range->defs);
return constrained;
}
static int split_constrained_ranges(
struct compile_state *state, struct reg_state *rstate,
struct live_range *range)
{
/* Walk through the edges in conflict and our current live
* range, and find definitions that are more severly constrained
* than they type of data they contain require.
*
* Then pick one of those ranges and relax the constraints.
*/
struct live_range_edge *edge;
struct triple *constrained;
constrained = 0;
for(edge = range->edges; edge; edge = edge->next) {
constrained = find_constrained_def(state, edge->node, constrained);
}
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME should I call find_constrained_def here only if no previous constrained def was found?"
#endif
if (!constrained) {
constrained = find_constrained_def(state, range, constrained);
}
if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
fprintf(state->errout, "constrained: ");
display_triple(state->errout, constrained);
}
if (constrained) {
ids_from_rstate(state, rstate);
cleanup_rstate(state, rstate);
resolve_tangle(state, constrained);
}
return !!constrained;
}
static int split_ranges(
struct compile_state *state, struct reg_state *rstate,
char *used, struct live_range *range)
{
int split;
if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
fprintf(state->errout, "split_ranges %d %s %p\n",
rstate->passes, tops(range->defs->def->op), range->defs->def);
}
if ((range->color == REG_UNNEEDED) ||
(rstate->passes >= rstate->max_passes)) {
return 0;
}
split = split_constrained_ranges(state, rstate, range);
/* Ideally I would split the live range that will not be used
* for the longest period of time in hopes that this will
* (a) allow me to spill a register or
* (b) allow me to place a value in another register.
*
* So far I don't have a test case for this, the resolving
* of mandatory constraints has solved all of my
* know issues. So I have choosen not to write any
* code until I cat get a better feel for cases where
* it would be useful to have.
*
*/
#if DEBUG_ROMCC_WARNINGS
#warning "WISHLIST implement live range splitting..."
#endif
if (!split && (state->compiler->debug & DEBUG_RANGE_CONFLICTS2)) {
FILE *fp = state->errout;
print_interference_blocks(state, rstate, fp, 0);
print_dominators(state, fp, &state->bb);
}
return split;
}
static FILE *cgdebug_fp(struct compile_state *state)
{
FILE *fp;
fp = 0;
if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH2)) {
fp = state->errout;
}
if (!fp && (state->compiler->debug & DEBUG_COLOR_GRAPH)) {
fp = state->dbgout;
}
return fp;
}
static void cgdebug_printf(struct compile_state *state, const char *fmt, ...)
{
FILE *fp;
fp = cgdebug_fp(state);
if (fp) {
va_list args;
va_start(args, fmt);
vfprintf(fp, fmt, args);
va_end(args);
}
}
static void cgdebug_flush(struct compile_state *state)
{
FILE *fp;
fp = cgdebug_fp(state);
if (fp) {
fflush(fp);
}
}
static void cgdebug_loc(struct compile_state *state, struct triple *ins)
{
FILE *fp;
fp = cgdebug_fp(state);
if (fp) {
loc(fp, state, ins);
}
}
static int select_free_color(struct compile_state *state,
struct reg_state *rstate, struct live_range *range)
{
struct triple_set *entry;
struct live_range_def *lrd;
struct live_range_def *phi;
struct live_range_edge *edge;
char used[MAX_REGISTERS];
struct triple **expr;
/* Instead of doing just the trivial color select here I try
* a few extra things because a good color selection will help reduce
* copies.
*/
/* Find the registers currently in use */
memset(used, 0, sizeof(used));
for(edge = range->edges; edge; edge = edge->next) {
if (edge->node->color == REG_UNSET) {
continue;
}
reg_fill_used(state, used, edge->node->color);
}
if (state->compiler->debug & DEBUG_COLOR_GRAPH2) {
int i;
i = 0;
for(edge = range->edges; edge; edge = edge->next) {
i++;
}
cgdebug_printf(state, "\n%s edges: %d",
tops(range->defs->def->op), i);
cgdebug_loc(state, range->defs->def);
cgdebug_printf(state, "\n");
for(i = 0; i < MAX_REGISTERS; i++) {
if (used[i]) {
cgdebug_printf(state, "used: %s\n",
arch_reg_str(i));
}
}
}
/* If a color is already assigned see if it will work */
if (range->color != REG_UNSET) {
struct live_range_def *lrd;
if (!used[range->color]) {
return 1;
}
for(edge = range->edges; edge; edge = edge->next) {
if (edge->node->color != range->color) {
continue;
}
warning(state, edge->node->defs->def, "edge: ");
lrd = edge->node->defs;
do {
warning(state, lrd->def, " %p %s",
lrd->def, tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != edge->node->defs);
}
lrd = range->defs;
warning(state, range->defs->def, "def: ");
do {
warning(state, lrd->def, " %p %s",
lrd->def, tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != range->defs);
internal_error(state, range->defs->def,
"live range with already used color %s",
arch_reg_str(range->color));
}
/* If I feed into an expression reuse it's color.
* This should help remove copies in the case of 2 register instructions
* and phi functions.
*/
phi = 0;
lrd = live_range_end(state, range, 0);
for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_end(state, range, lrd)) {
entry = lrd->def->use;
for(;(range->color == REG_UNSET) && entry; entry = entry->next) {
struct live_range_def *insd;
unsigned regcm;
insd = &rstate->lrd[entry->member->id];
if (insd->lr->defs == 0) {
continue;
}
if (!phi && (insd->def->op == OP_PHI) &&
!interfere(rstate, range, insd->lr)) {
phi = insd;
}
if (insd->lr->color == REG_UNSET) {
continue;
}
regcm = insd->lr->classes;
if (((regcm & range->classes) == 0) ||
(used[insd->lr->color])) {
continue;
}
if (interfere(rstate, range, insd->lr)) {
continue;
}
range->color = insd->lr->color;
}
}
/* If I feed into a phi function reuse it's color or the color
* of something else that feeds into the phi function.
*/
if (phi) {
if (phi->lr->color != REG_UNSET) {
if (used[phi->lr->color]) {
range->color = phi->lr->color;
}
}
else {
expr = triple_rhs(state, phi->def, 0);
for(; expr; expr = triple_rhs(state, phi->def, expr)) {
struct live_range *lr;
unsigned regcm;
if (!*expr) {
continue;
}
lr = rstate->lrd[(*expr)->id].lr;
if (lr->color == REG_UNSET) {
continue;
}
regcm = lr->classes;
if (((regcm & range->classes) == 0) ||
(used[lr->color])) {
continue;
}
if (interfere(rstate, range, lr)) {
continue;
}
range->color = lr->color;
}
}
}
/* If I don't interfere with a rhs node reuse it's color */
lrd = live_range_head(state, range, 0);
for(; (range->color == REG_UNSET) && lrd ; lrd = live_range_head(state, range, lrd)) {
expr = triple_rhs(state, lrd->def, 0);
for(; expr; expr = triple_rhs(state, lrd->def, expr)) {
struct live_range *lr;
unsigned regcm;
if (!*expr) {
continue;
}
lr = rstate->lrd[(*expr)->id].lr;
if (lr->color == REG_UNSET) {
continue;
}
regcm = lr->classes;
if (((regcm & range->classes) == 0) ||
(used[lr->color])) {
continue;
}
if (interfere(rstate, range, lr)) {
continue;
}
range->color = lr->color;
break;
}
}
/* If I have not opportunitically picked a useful color
* pick the first color that is free.
*/
if (range->color == REG_UNSET) {
range->color =
arch_select_free_register(state, used, range->classes);
}
if (range->color == REG_UNSET) {
struct live_range_def *lrd;
int i;
if (split_ranges(state, rstate, used, range)) {
return 0;
}
for(edge = range->edges; edge; edge = edge->next) {
warning(state, edge->node->defs->def, "edge reg %s",
arch_reg_str(edge->node->color));
lrd = edge->node->defs;
do {
warning(state, lrd->def, " %s %p",
tops(lrd->def->op), lrd->def);
lrd = lrd->next;
} while(lrd != edge->node->defs);
}
warning(state, range->defs->def, "range: ");
lrd = range->defs;
do {
warning(state, lrd->def, " %s %p",
tops(lrd->def->op), lrd->def);
lrd = lrd->next;
} while(lrd != range->defs);
warning(state, range->defs->def, "classes: %x",
range->classes);
for(i = 0; i < MAX_REGISTERS; i++) {
if (used[i]) {
warning(state, range->defs->def, "used: %s",
arch_reg_str(i));
}
}
error(state, range->defs->def, "too few registers");
}
range->classes &= arch_reg_regcm(state, range->color);
if ((range->color == REG_UNSET) || (range->classes == 0)) {
internal_error(state, range->defs->def, "select_free_color did not?");
}
return 1;
}
static int color_graph(struct compile_state *state, struct reg_state *rstate)
{
int colored;
struct live_range_edge *edge;
struct live_range *range;
if (rstate->low) {
cgdebug_printf(state, "Lo: ");
range = rstate->low;
if (*range->group_prev != range) {
internal_error(state, 0, "lo: *prev != range?");
}
*range->group_prev = range->group_next;
if (range->group_next) {
range->group_next->group_prev = range->group_prev;
}
if (&range->group_next == rstate->low_tail) {
rstate->low_tail = range->group_prev;
}
if (rstate->low == range) {
internal_error(state, 0, "low: next != prev?");
}
}
else if (rstate->high) {
cgdebug_printf(state, "Hi: ");
range = rstate->high;
if (*range->group_prev != range) {
internal_error(state, 0, "hi: *prev != range?");
}
*range->group_prev = range->group_next;
if (range->group_next) {
range->group_next->group_prev = range->group_prev;
}
if (&range->group_next == rstate->high_tail) {
rstate->high_tail = range->group_prev;
}
if (rstate->high == range) {
internal_error(state, 0, "high: next != prev?");
}
}
else {
return 1;
}
cgdebug_printf(state, " %d\n", range - rstate->lr);
range->group_prev = 0;
for(edge = range->edges; edge; edge = edge->next) {
struct live_range *node;
node = edge->node;
/* Move nodes from the high to the low list */
if (node->group_prev && (node->color == REG_UNSET) &&
(node->degree == regc_max_size(state, node->classes))) {
if (*node->group_prev != node) {
internal_error(state, 0, "move: *prev != node?");
}
*node->group_prev = node->group_next;
if (node->group_next) {
node->group_next->group_prev = node->group_prev;
}
if (&node->group_next == rstate->high_tail) {
rstate->high_tail = node->group_prev;
}
cgdebug_printf(state, "Moving...%d to low\n", node - rstate->lr);
node->group_prev = rstate->low_tail;
node->group_next = 0;
*rstate->low_tail = node;
rstate->low_tail = &node->group_next;
if (*node->group_prev != node) {
internal_error(state, 0, "move2: *prev != node?");
}
}
node->degree -= 1;
}
colored = color_graph(state, rstate);
if (colored) {
cgdebug_printf(state, "Coloring %d @", range - rstate->lr);
cgdebug_loc(state, range->defs->def);
cgdebug_flush(state);
colored = select_free_color(state, rstate, range);
if (colored) {
cgdebug_printf(state, " %s\n", arch_reg_str(range->color));
}
}
return colored;
}
static void verify_colors(struct compile_state *state, struct reg_state *rstate)
{
struct live_range *lr;
struct live_range_edge *edge;
struct triple *ins, *first;
char used[MAX_REGISTERS];
first = state->first;
ins = first;
do {
if (triple_is_def(state, ins)) {
if ((ins->id < 0) || (ins->id > rstate->defs)) {
internal_error(state, ins,
"triple without a live range def");
}
lr = rstate->lrd[ins->id].lr;
if (lr->color == REG_UNSET) {
internal_error(state, ins,
"triple without a color");
}
/* Find the registers used by the edges */
memset(used, 0, sizeof(used));
for(edge = lr->edges; edge; edge = edge->next) {
if (edge->node->color == REG_UNSET) {
internal_error(state, 0,
"live range without a color");
}
reg_fill_used(state, used, edge->node->color);
}
if (used[lr->color]) {
internal_error(state, ins,
"triple with already used color");
}
}
ins = ins->next;
} while(ins != first);
}
static void color_triples(struct compile_state *state, struct reg_state *rstate)
{
struct live_range_def *lrd;
struct live_range *lr;
struct triple *first, *ins;
first = state->first;
ins = first;
do {
if ((ins->id < 0) || (ins->id > rstate->defs)) {
internal_error(state, ins,
"triple without a live range");
}
lrd = &rstate->lrd[ins->id];
lr = lrd->lr;
ins->id = lrd->orig_id;
SET_REG(ins->id, lr->color);
ins = ins->next;
} while (ins != first);
}
static struct live_range *merge_sort_lr(
struct live_range *first, struct live_range *last)
{
struct live_range *mid, *join, **join_tail, *pick;
size_t size;
size = (last - first) + 1;
if (size >= 2) {
mid = first + size/2;
first = merge_sort_lr(first, mid -1);
mid = merge_sort_lr(mid, last);
join = 0;
join_tail = &join;
/* merge the two lists */
while(first && mid) {
if ((first->degree < mid->degree) ||
((first->degree == mid->degree) &&
(first->length < mid->length))) {
pick = first;
first = first->group_next;
if (first) {
first->group_prev = 0;
}
}
else {
pick = mid;
mid = mid->group_next;
if (mid) {
mid->group_prev = 0;
}
}
pick->group_next = 0;
pick->group_prev = join_tail;
*join_tail = pick;
join_tail = &pick->group_next;
}
/* Splice the remaining list */
pick = (first)? first : mid;
*join_tail = pick;
if (pick) {
pick->group_prev = join_tail;
}
}
else {
if (!first->defs) {
first = 0;
}
join = first;
}
return join;
}
static void ids_from_rstate(struct compile_state *state,
struct reg_state *rstate)
{
struct triple *ins, *first;
if (!rstate->defs) {
return;
}
/* Display the graph if desired */
if (state->compiler->debug & DEBUG_INTERFERENCE) {
FILE *fp = state->dbgout;
print_interference_blocks(state, rstate, fp, 0);
print_control_flow(state, fp, &state->bb);
fflush(fp);
}
first = state->first;
ins = first;
do {
if (ins->id) {
struct live_range_def *lrd;
lrd = &rstate->lrd[ins->id];
ins->id = lrd->orig_id;
}
ins = ins->next;
} while(ins != first);
}
static void cleanup_live_edges(struct reg_state *rstate)
{
int i;
/* Free the edges on each node */
for(i = 1; i <= rstate->ranges; i++) {
remove_live_edges(rstate, &rstate->lr[i]);
}
}
static void cleanup_rstate(struct compile_state *state, struct reg_state *rstate)
{
cleanup_live_edges(rstate);
xfree(rstate->lrd);
xfree(rstate->lr);
/* Free the variable lifetime information */
if (rstate->blocks) {
free_variable_lifetimes(state, &state->bb, rstate->blocks);
}
rstate->defs = 0;
rstate->ranges = 0;
rstate->lrd = 0;
rstate->lr = 0;
rstate->blocks = 0;
}
static void verify_consistency(struct compile_state *state);
static void allocate_registers(struct compile_state *state)
{
struct reg_state rstate;
int colored;
/* Clear out the reg_state */
memset(&rstate, 0, sizeof(rstate));
rstate.max_passes = state->compiler->max_allocation_passes;
do {
struct live_range **point, **next;
int tangles;
int coalesced;
if (state->compiler->debug & DEBUG_RANGE_CONFLICTS) {
FILE *fp = state->errout;
fprintf(fp, "pass: %d\n", rstate.passes);
fflush(fp);
}
/* Restore ids */
ids_from_rstate(state, &rstate);
/* Cleanup the temporary data structures */
cleanup_rstate(state, &rstate);
/* Compute the variable lifetimes */
rstate.blocks = compute_variable_lifetimes(state, &state->bb);
/* Fix invalid mandatory live range coalesce conflicts */
correct_coalesce_conflicts(state, rstate.blocks);
/* Fix two simultaneous uses of the same register.
* In a few pathlogical cases a partial untangle moves
* the tangle to a part of the graph we won't revisit.
* So we keep looping until we have no more tangle fixes
* to apply.
*/
do {
tangles = correct_tangles(state, rstate.blocks);
} while(tangles);
print_blocks(state, "resolve_tangles", state->dbgout);
verify_consistency(state);
/* Allocate and initialize the live ranges */
initialize_live_ranges(state, &rstate);
/* Note currently doing coalescing in a loop appears to
* buys me nothing. The code is left this way in case
* there is some value in it. Or if a future bugfix
* yields some benefit.
*/
do {
if (state->compiler->debug & DEBUG_COALESCING) {
fprintf(state->errout, "coalescing\n");
}
/* Remove any previous live edge calculations */
cleanup_live_edges(&rstate);
/* Compute the interference graph */
walk_variable_lifetimes(
state, &state->bb, rstate.blocks,
graph_ins, &rstate);
/* Display the interference graph if desired */
if (state->compiler->debug & DEBUG_INTERFERENCE) {
print_interference_blocks(state, &rstate, state->dbgout, 1);
fprintf(state->dbgout, "\nlive variables by instruction\n");
walk_variable_lifetimes(
state, &state->bb, rstate.blocks,
print_interference_ins, &rstate);
}
coalesced = coalesce_live_ranges(state, &rstate);
if (state->compiler->debug & DEBUG_COALESCING) {
fprintf(state->errout, "coalesced: %d\n", coalesced);
}
} while(coalesced);
#if DEBUG_CONSISTENCY > 1
# if 0
fprintf(state->errout, "verify_graph_ins...\n");
# endif
/* Verify the interference graph */
walk_variable_lifetimes(
state, &state->bb, rstate.blocks,
verify_graph_ins, &rstate);
# if 0
fprintf(state->errout, "verify_graph_ins done\n");
#endif
#endif
/* Build the groups low and high. But with the nodes
* first sorted by degree order.
*/
rstate.low_tail = &rstate.low;
rstate.high_tail = &rstate.high;
rstate.high = merge_sort_lr(&rstate.lr[1], &rstate.lr[rstate.ranges]);
if (rstate.high) {
rstate.high->group_prev = &rstate.high;
}
for(point = &rstate.high; *point; point = &(*point)->group_next)
;
rstate.high_tail = point;
/* Walk through the high list and move everything that needs
* to be onto low.
*/
for(point = &rstate.high; *point; point = next) {
struct live_range *range;
next = &(*point)->group_next;
range = *point;
/* If it has a low degree or it already has a color
* place the node in low.
*/
if ((range->degree < regc_max_size(state, range->classes)) ||
(range->color != REG_UNSET)) {
cgdebug_printf(state, "Lo: %5d degree %5d%s\n",
range - rstate.lr, range->degree,
(range->color != REG_UNSET) ? " (colored)": "");
*range->group_prev = range->group_next;
if (range->group_next) {
range->group_next->group_prev = range->group_prev;
}
if (&range->group_next == rstate.high_tail) {
rstate.high_tail = range->group_prev;
}
range->group_prev = rstate.low_tail;
range->group_next = 0;
*rstate.low_tail = range;
rstate.low_tail = &range->group_next;
next = point;
}
else {
cgdebug_printf(state, "hi: %5d degree %5d%s\n",
range - rstate.lr, range->degree,
(range->color != REG_UNSET) ? " (colored)": "");
}
}
/* Color the live_ranges */
colored = color_graph(state, &rstate);
rstate.passes++;
} while (!colored);
/* Verify the graph was properly colored */
verify_colors(state, &rstate);
/* Move the colors from the graph to the triples */
color_triples(state, &rstate);
/* Cleanup the temporary data structures */
cleanup_rstate(state, &rstate);
/* Display the new graph */
print_blocks(state, __func__, state->dbgout);
}
/* Sparce Conditional Constant Propogation
* =========================================
*/
struct ssa_edge;
struct flow_block;
struct lattice_node {
unsigned old_id;
struct triple *def;
struct ssa_edge *out;
struct flow_block *fblock;
struct triple *val;
/* lattice high val == def
* lattice const is_const(val)
* lattice low other
*/
};
struct ssa_edge {
struct lattice_node *src;
struct lattice_node *dst;
struct ssa_edge *work_next;
struct ssa_edge *work_prev;
struct ssa_edge *out_next;
};
struct flow_edge {
struct flow_block *src;
struct flow_block *dst;
struct flow_edge *work_next;
struct flow_edge *work_prev;
struct flow_edge *in_next;
struct flow_edge *out_next;
int executable;
};
#define MAX_FLOW_BLOCK_EDGES 3
struct flow_block {
struct block *block;
struct flow_edge *in;
struct flow_edge *out;
struct flow_edge *edges;
};
struct scc_state {
int ins_count;
struct lattice_node *lattice;
struct ssa_edge *ssa_edges;
struct flow_block *flow_blocks;
struct flow_edge *flow_work_list;
struct ssa_edge *ssa_work_list;
};
static int is_scc_const(struct compile_state *state, struct triple *ins)
{
return ins && (triple_is_ubranch(state, ins) || is_const(ins));
}
static int is_lattice_hi(struct compile_state *state, struct lattice_node *lnode)
{
return !is_scc_const(state, lnode->val) && (lnode->val == lnode->def);
}
static int is_lattice_const(struct compile_state *state, struct lattice_node *lnode)
{
return is_scc_const(state, lnode->val);
}
static int is_lattice_lo(struct compile_state *state, struct lattice_node *lnode)
{
return (lnode->val != lnode->def) && !is_scc_const(state, lnode->val);
}
static void scc_add_fedge(struct compile_state *state, struct scc_state *scc,
struct flow_edge *fedge)
{
if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
fprintf(state->errout, "adding fedge: %p (%4d -> %5d)\n",
fedge,
fedge->src->block?fedge->src->block->last->id: 0,
fedge->dst->block?fedge->dst->block->first->id: 0);
}
if ((fedge == scc->flow_work_list) ||
(fedge->work_next != fedge) ||
(fedge->work_prev != fedge)) {
if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
fprintf(state->errout, "dupped fedge: %p\n",
fedge);
}
return;
}
if (!scc->flow_work_list) {
scc->flow_work_list = fedge;
fedge->work_next = fedge->work_prev = fedge;
}
else {
struct flow_edge *ftail;
ftail = scc->flow_work_list->work_prev;
fedge->work_next = ftail->work_next;
fedge->work_prev = ftail;
fedge->work_next->work_prev = fedge;
fedge->work_prev->work_next = fedge;
}
}
static struct flow_edge *scc_next_fedge(
struct compile_state *state, struct scc_state *scc)
{
struct flow_edge *fedge;
fedge = scc->flow_work_list;
if (fedge) {
fedge->work_next->work_prev = fedge->work_prev;
fedge->work_prev->work_next = fedge->work_next;
if (fedge->work_next != fedge) {
scc->flow_work_list = fedge->work_next;
} else {
scc->flow_work_list = 0;
}
fedge->work_next = fedge->work_prev = fedge;
}
return fedge;
}
static void scc_add_sedge(struct compile_state *state, struct scc_state *scc,
struct ssa_edge *sedge)
{
if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
fprintf(state->errout, "adding sedge: %5ld (%4d -> %5d)\n",
(long)(sedge - scc->ssa_edges),
sedge->src->def->id,
sedge->dst->def->id);
}
if ((sedge == scc->ssa_work_list) ||
(sedge->work_next != sedge) ||
(sedge->work_prev != sedge)) {
if (state->compiler->debug & DEBUG_SCC_TRANSFORM2) {
fprintf(state->errout, "dupped sedge: %5ld\n",
(long)(sedge - scc->ssa_edges));
}
return;
}
if (!scc->ssa_work_list) {
scc->ssa_work_list = sedge;
sedge->work_next = sedge->work_prev = sedge;
}
else {
struct ssa_edge *stail;
stail = scc->ssa_work_list->work_prev;
sedge->work_next = stail->work_next;
sedge->work_prev = stail;
sedge->work_next->work_prev = sedge;
sedge->work_prev->work_next = sedge;
}
}
static struct ssa_edge *scc_next_sedge(
struct compile_state *state, struct scc_state *scc)
{
struct ssa_edge *sedge;
sedge = scc->ssa_work_list;
if (sedge) {
sedge->work_next->work_prev = sedge->work_prev;
sedge->work_prev->work_next = sedge->work_next;
if (sedge->work_next != sedge) {
scc->ssa_work_list = sedge->work_next;
} else {
scc->ssa_work_list = 0;
}
sedge->work_next = sedge->work_prev = sedge;
}
return sedge;
}
static void initialize_scc_state(
struct compile_state *state, struct scc_state *scc)
{
int ins_count, ssa_edge_count;
int ins_index, ssa_edge_index, fblock_index;
struct triple *first, *ins;
struct block *block;
struct flow_block *fblock;
memset(scc, 0, sizeof(*scc));
/* Inialize pass zero find out how much memory we need */
first = state->first;
ins = first;
ins_count = ssa_edge_count = 0;
do {
struct triple_set *edge;
ins_count += 1;
for(edge = ins->use; edge; edge = edge->next) {
ssa_edge_count++;
}
ins = ins->next;
} while(ins != first);
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
fprintf(state->errout, "ins_count: %d ssa_edge_count: %d vertex_count: %d\n",
ins_count, ssa_edge_count, state->bb.last_vertex);
}
scc->ins_count = ins_count;
scc->lattice =
xcmalloc(sizeof(*scc->lattice)*(ins_count + 1), "lattice");
scc->ssa_edges =
xcmalloc(sizeof(*scc->ssa_edges)*(ssa_edge_count + 1), "ssa_edges");
scc->flow_blocks =
xcmalloc(sizeof(*scc->flow_blocks)*(state->bb.last_vertex + 1),
"flow_blocks");
/* Initialize pass one collect up the nodes */
fblock = 0;
block = 0;
ins_index = ssa_edge_index = fblock_index = 0;
ins = first;
do {
if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
block = ins->u.block;
if (!block) {
internal_error(state, ins, "label without block");
}
fblock_index += 1;
block->vertex = fblock_index;
fblock = &scc->flow_blocks[fblock_index];
fblock->block = block;
fblock->edges = xcmalloc(sizeof(*fblock->edges)*block->edge_count,
"flow_edges");
}
{
struct lattice_node *lnode;
ins_index += 1;
lnode = &scc->lattice[ins_index];
lnode->def = ins;
lnode->out = 0;
lnode->fblock = fblock;
lnode->val = ins; /* LATTICE HIGH */
if (lnode->val->op == OP_UNKNOWNVAL) {
lnode->val = 0; /* LATTICE LOW by definition */
}
lnode->old_id = ins->id;
ins->id = ins_index;
}
ins = ins->next;
} while(ins != first);
/* Initialize pass two collect up the edges */
block = 0;
fblock = 0;
ins = first;
do {
{
struct triple_set *edge;
struct ssa_edge **stail;
struct lattice_node *lnode;
lnode = &scc->lattice[ins->id];
lnode->out = 0;
stail = &lnode->out;
for(edge = ins->use; edge; edge = edge->next) {
struct ssa_edge *sedge;
ssa_edge_index += 1;
sedge = &scc->ssa_edges[ssa_edge_index];
*stail = sedge;
stail = &sedge->out_next;
sedge->src = lnode;
sedge->dst = &scc->lattice[edge->member->id];
sedge->work_next = sedge->work_prev = sedge;
sedge->out_next = 0;
}
}
if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
struct flow_edge *fedge, **ftail;
struct block_set *bedge;
block = ins->u.block;
fblock = &scc->flow_blocks[block->vertex];
fblock->in = 0;
fblock->out = 0;
ftail = &fblock->out;
fedge = fblock->edges;
bedge = block->edges;
for(; bedge; bedge = bedge->next, fedge++) {
fedge->dst = &scc->flow_blocks[bedge->member->vertex];
if (fedge->dst->block != bedge->member) {
internal_error(state, 0, "block mismatch");
}
*ftail = fedge;
ftail = &fedge->out_next;
fedge->out_next = 0;
}
for(fedge = fblock->out; fedge; fedge = fedge->out_next) {
fedge->src = fblock;
fedge->work_next = fedge->work_prev = fedge;
fedge->executable = 0;
}
}
ins = ins->next;
} while (ins != first);
block = 0;
fblock = 0;
ins = first;
do {
if ((ins->op == OP_LABEL) && (block != ins->u.block)) {
struct flow_edge **ftail;
struct block_set *bedge;
block = ins->u.block;
fblock = &scc->flow_blocks[block->vertex];
ftail = &fblock->in;
for(bedge = block->use; bedge; bedge = bedge->next) {
struct block *src_block;
struct flow_block *sfblock;
struct flow_edge *sfedge;
src_block = bedge->member;
sfblock = &scc->flow_blocks[src_block->vertex];
for(sfedge = sfblock->out; sfedge; sfedge = sfedge->out_next) {
if (sfedge->dst == fblock) {
break;
}
}
if (!sfedge) {
internal_error(state, 0, "edge mismatch");
}
*ftail = sfedge;
ftail = &sfedge->in_next;
sfedge->in_next = 0;
}
}
ins = ins->next;
} while(ins != first);
/* Setup a dummy block 0 as a node above the start node */
{
struct flow_block *fblock, *dst;
struct flow_edge *fedge;
fblock = &scc->flow_blocks[0];
fblock->block = 0;
fblock->edges = xcmalloc(sizeof(*fblock->edges)*1, "flow_edges");
fblock->in = 0;
fblock->out = fblock->edges;
dst = &scc->flow_blocks[state->bb.first_block->vertex];
fedge = fblock->edges;
fedge->src = fblock;
fedge->dst = dst;
fedge->work_next = fedge;
fedge->work_prev = fedge;
fedge->in_next = fedge->dst->in;
fedge->out_next = 0;
fedge->executable = 0;
fedge->dst->in = fedge;
/* Initialize the work lists */
scc->flow_work_list = 0;
scc->ssa_work_list = 0;
scc_add_fedge(state, scc, fedge);
}
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
fprintf(state->errout, "ins_index: %d ssa_edge_index: %d fblock_index: %d\n",
ins_index, ssa_edge_index, fblock_index);
}
}
static void free_scc_state(
struct compile_state *state, struct scc_state *scc)
{
int i;
for(i = 0; i < state->bb.last_vertex + 1; i++) {
struct flow_block *fblock;
fblock = &scc->flow_blocks[i];
if (fblock->edges) {
xfree(fblock->edges);
fblock->edges = 0;
}
}
xfree(scc->flow_blocks);
xfree(scc->ssa_edges);
xfree(scc->lattice);
}
static struct lattice_node *triple_to_lattice(
struct compile_state *state, struct scc_state *scc, struct triple *ins)
{
if (ins->id <= 0) {
internal_error(state, ins, "bad id");
}
return &scc->lattice[ins->id];
}
static struct triple *preserve_lval(
struct compile_state *state, struct lattice_node *lnode)
{
struct triple *old;
/* Preserve the original value */
if (lnode->val) {
old = dup_triple(state, lnode->val);
if (lnode->val != lnode->def) {
xfree(lnode->val);
}
lnode->val = 0;
} else {
old = 0;
}
return old;
}
static int lval_changed(struct compile_state *state,
struct triple *old, struct lattice_node *lnode)
{
int changed;
/* See if the lattice value has changed */
changed = 1;
if (!old && !lnode->val) {
changed = 0;
}
if (changed &&
lnode->val && old &&
(memcmp(lnode->val->param, old->param,
TRIPLE_SIZE(lnode->val) * sizeof(lnode->val->param[0])) == 0) &&
(memcmp(&lnode->val->u, &old->u, sizeof(old->u)) == 0)) {
changed = 0;
}
if (old) {
xfree(old);
}
return changed;
}
static void scc_debug_lnode(
struct compile_state *state, struct scc_state *scc,
struct lattice_node *lnode, int changed)
{
if ((state->compiler->debug & DEBUG_SCC_TRANSFORM2) && lnode->val) {
display_triple_changes(state->errout, lnode->val, lnode->def);
}
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
FILE *fp = state->errout;
struct triple *val, **expr;
val = lnode->val? lnode->val : lnode->def;
fprintf(fp, "%p %s %3d %10s (",
lnode->def,
((lnode->def->op == OP_PHI)? "phi: ": "expr:"),
lnode->def->id,
tops(lnode->def->op));
expr = triple_rhs(state, lnode->def, 0);
for(;expr;expr = triple_rhs(state, lnode->def, expr)) {
if (*expr) {
fprintf(fp, " %d", (*expr)->id);
}
}
if (val->op == OP_INTCONST) {
fprintf(fp, " <0x%08lx>", (unsigned long)(val->u.cval));
}
fprintf(fp, " ) -> %s %s\n",
(is_lattice_hi(state, lnode)? "hi":
is_lattice_const(state, lnode)? "const" : "lo"),
changed? "changed" : ""
);
}
}
static int compute_lnode_val(struct compile_state *state, struct scc_state *scc,
struct lattice_node *lnode)
{
int changed;
struct triple *old, *scratch;
struct triple **dexpr, **vexpr;
int count, i;
/* Store the original value */
old = preserve_lval(state, lnode);
/* Reinitialize the value */
lnode->val = scratch = dup_triple(state, lnode->def);
scratch->id = lnode->old_id;
scratch->next = scratch;
scratch->prev = scratch;
scratch->use = 0;
count = TRIPLE_SIZE(scratch);
for(i = 0; i < count; i++) {
dexpr = &lnode->def->param[i];
vexpr = &scratch->param[i];
*vexpr = *dexpr;
if (((i < TRIPLE_MISC_OFF(scratch)) ||
(i >= TRIPLE_TARG_OFF(scratch))) &&
*dexpr) {
struct lattice_node *tmp;
tmp = triple_to_lattice(state, scc, *dexpr);
*vexpr = (tmp->val)? tmp->val : tmp->def;
}
}
if (triple_is_branch(state, scratch)) {
scratch->next = lnode->def->next;
}
/* Recompute the value */
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME see if simplify does anything bad"
#endif
/* So far it looks like only the strength reduction
* optimization are things I need to worry about.
*/
simplify(state, scratch);
/* Cleanup my value */
if (scratch->use) {
internal_error(state, lnode->def, "scratch used?");
}
if ((scratch->prev != scratch) ||
((scratch->next != scratch) &&
(!triple_is_branch(state, lnode->def) ||
(scratch->next != lnode->def->next)))) {
internal_error(state, lnode->def, "scratch in list?");
}
/* undo any uses... */
count = TRIPLE_SIZE(scratch);
for(i = 0; i < count; i++) {
vexpr = &scratch->param[i];
if (*vexpr) {
unuse_triple(*vexpr, scratch);
}
}
if (lnode->val->op == OP_UNKNOWNVAL) {
lnode->val = 0; /* Lattice low by definition */
}
/* Find the case when I am lattice high */
if (lnode->val &&
(lnode->val->op == lnode->def->op) &&
(memcmp(lnode->val->param, lnode->def->param,
count * sizeof(lnode->val->param[0])) == 0) &&
(memcmp(&lnode->val->u, &lnode->def->u, sizeof(lnode->def->u)) == 0)) {
lnode->val = lnode->def;
}
/* Only allow lattice high when all of my inputs
* are also lattice high. Occassionally I can
* have constants with a lattice low input, so
* I do not need to check that case.
*/
if (is_lattice_hi(state, lnode)) {
struct lattice_node *tmp;
int rhs;
rhs = lnode->val->rhs;
for(i = 0; i < rhs; i++) {
tmp = triple_to_lattice(state, scc, RHS(lnode->val, i));
if (!is_lattice_hi(state, tmp)) {
lnode->val = 0;
break;
}
}
}
/* Find the cases that are always lattice lo */
if (lnode->val &&
triple_is_def(state, lnode->val) &&
!triple_is_pure(state, lnode->val, lnode->old_id)) {
lnode->val = 0;
}
/* See if the lattice value has changed */
changed = lval_changed(state, old, lnode);
/* See if this value should not change */
if ((lnode->val != lnode->def) &&
(( !triple_is_def(state, lnode->def) &&
!triple_is_cbranch(state, lnode->def)) ||
(lnode->def->op == OP_PIECE))) {
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME constant propogate through expressions with multiple left hand sides"
#endif
if (changed) {
internal_warning(state, lnode->def, "non def changes value?");
}
lnode->val = 0;
}
/* See if we need to free the scratch value */
if (lnode->val != scratch) {
xfree(scratch);
}
return changed;
}
static void scc_visit_cbranch(struct compile_state *state, struct scc_state *scc,
struct lattice_node *lnode)
{
struct lattice_node *cond;
struct flow_edge *left, *right;
int changed;
/* Update the branch value */
changed = compute_lnode_val(state, scc, lnode);
scc_debug_lnode(state, scc, lnode, changed);
/* This only applies to conditional branches */
if (!triple_is_cbranch(state, lnode->def)) {
internal_error(state, lnode->def, "not a conditional branch");
}
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
struct flow_edge *fedge;
FILE *fp = state->errout;
fprintf(fp, "%s: %d (",
tops(lnode->def->op),
lnode->def->id);
for(fedge = lnode->fblock->out; fedge; fedge = fedge->out_next) {
fprintf(fp, " %d", fedge->dst->block->vertex);
}
fprintf(fp, " )");
if (lnode->def->rhs > 0) {
fprintf(fp, " <- %d",
RHS(lnode->def, 0)->id);
}
fprintf(fp, "\n");
}
cond = triple_to_lattice(state, scc, RHS(lnode->def,0));
for(left = cond->fblock->out; left; left = left->out_next) {
if (left->dst->block->first == lnode->def->next) {
break;
}
}
if (!left) {
internal_error(state, lnode->def, "Cannot find left branch edge");
}
for(right = cond->fblock->out; right; right = right->out_next) {
if (right->dst->block->first == TARG(lnode->def, 0)) {
break;
}
}
if (!right) {
internal_error(state, lnode->def, "Cannot find right branch edge");
}
/* I should only come here if the controlling expressions value
* has changed, which means it must be either a constant or lo.
*/
if (is_lattice_hi(state, cond)) {
internal_error(state, cond->def, "condition high?");
return;
}
if (is_lattice_lo(state, cond)) {
scc_add_fedge(state, scc, left);
scc_add_fedge(state, scc, right);
}
else if (cond->val->u.cval) {
scc_add_fedge(state, scc, right);
} else {
scc_add_fedge(state, scc, left);
}
}
static void scc_add_sedge_dst(struct compile_state *state,
struct scc_state *scc, struct ssa_edge *sedge)
{
if (triple_is_cbranch(state, sedge->dst->def)) {
scc_visit_cbranch(state, scc, sedge->dst);
}
else if (triple_is_def(state, sedge->dst->def)) {
scc_add_sedge(state, scc, sedge);
}
}
static void scc_visit_phi(struct compile_state *state, struct scc_state *scc,
struct lattice_node *lnode)
{
struct lattice_node *tmp;
struct triple **slot, *old;
struct flow_edge *fedge;
int changed;
int index;
if (lnode->def->op != OP_PHI) {
internal_error(state, lnode->def, "not phi");
}
/* Store the original value */
old = preserve_lval(state, lnode);
/* default to lattice high */
lnode->val = lnode->def;
slot = &RHS(lnode->def, 0);
index = 0;
for(fedge = lnode->fblock->in; fedge; index++, fedge = fedge->in_next) {
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
fprintf(state->errout, "Examining edge: %d vertex: %d executable: %d\n",
index,
fedge->dst->block->vertex,
fedge->executable
);
}
if (!fedge->executable) {
continue;
}
if (!slot[index]) {
internal_error(state, lnode->def, "no phi value");
}
tmp = triple_to_lattice(state, scc, slot[index]);
/* meet(X, lattice low) = lattice low */
if (is_lattice_lo(state, tmp)) {
lnode->val = 0;
}
/* meet(X, lattice high) = X */
else if (is_lattice_hi(state, tmp)) {
lnode->val = lnode->val;
}
/* meet(lattice high, X) = X */
else if (is_lattice_hi(state, lnode)) {
lnode->val = dup_triple(state, tmp->val);
/* Only change the type if necessary */
if (!is_subset_type(lnode->def->type, tmp->val->type)) {
lnode->val->type = lnode->def->type;
}
}
/* meet(const, const) = const or lattice low */
else if (!constants_equal(state, lnode->val, tmp->val)) {
lnode->val = 0;
}
/* meet(lattice low, X) = lattice low */
if (is_lattice_lo(state, lnode)) {
lnode->val = 0;
break;
}
}
changed = lval_changed(state, old, lnode);
scc_debug_lnode(state, scc, lnode, changed);
/* If the lattice value has changed update the work lists. */
if (changed) {
struct ssa_edge *sedge;
for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
scc_add_sedge_dst(state, scc, sedge);
}
}
}
static void scc_visit_expr(struct compile_state *state, struct scc_state *scc,
struct lattice_node *lnode)
{
int changed;
if (!triple_is_def(state, lnode->def)) {
internal_warning(state, lnode->def, "not visiting an expression?");
}
changed = compute_lnode_val(state, scc, lnode);
scc_debug_lnode(state, scc, lnode, changed);
if (changed) {
struct ssa_edge *sedge;
for(sedge = lnode->out; sedge; sedge = sedge->out_next) {
scc_add_sedge_dst(state, scc, sedge);
}
}
}
static void scc_writeback_values(
struct compile_state *state, struct scc_state *scc)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
struct lattice_node *lnode;
lnode = triple_to_lattice(state, scc, ins);
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
if (is_lattice_hi(state, lnode) &&
(lnode->val->op != OP_NOOP))
{
struct flow_edge *fedge;
int executable;
executable = 0;
for(fedge = lnode->fblock->in;
!executable && fedge; fedge = fedge->in_next) {
executable |= fedge->executable;
}
if (executable) {
internal_warning(state, lnode->def,
"lattice node %d %s->%s still high?",
ins->id,
tops(lnode->def->op),
tops(lnode->val->op));
}
}
}
/* Restore id */
ins->id = lnode->old_id;
if (lnode->val && (lnode->val != ins)) {
/* See if it something I know how to write back */
switch(lnode->val->op) {
case OP_INTCONST:
mkconst(state, ins, lnode->val->u.cval);
break;
case OP_ADDRCONST:
mkaddr_const(state, ins,
MISC(lnode->val, 0), lnode->val->u.cval);
break;
default:
/* By default don't copy the changes,
* recompute them in place instead.
*/
simplify(state, ins);
break;
}
if (is_const(lnode->val) &&
!constants_equal(state, lnode->val, ins)) {
internal_error(state, 0, "constants not equal");
}
/* Free the lattice nodes */
xfree(lnode->val);
lnode->val = 0;
}
ins = ins->next;
} while(ins != first);
}
static void scc_transform(struct compile_state *state)
{
struct scc_state scc;
if (!(state->compiler->flags & COMPILER_SCC_TRANSFORM)) {
return;
}
initialize_scc_state(state, &scc);
while(scc.flow_work_list || scc.ssa_work_list) {
struct flow_edge *fedge;
struct ssa_edge *sedge;
struct flow_edge *fptr;
while((fedge = scc_next_fedge(state, &scc))) {
struct block *block;
struct triple *ptr;
struct flow_block *fblock;
int reps;
int done;
if (fedge->executable) {
continue;
}
if (!fedge->dst) {
internal_error(state, 0, "fedge without dst");
}
if (!fedge->src) {
internal_error(state, 0, "fedge without src");
}
fedge->executable = 1;
fblock = fedge->dst;
block = fblock->block;
reps = 0;
for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
if (fptr->executable) {
reps++;
}
}
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
fprintf(state->errout, "vertex: %d reps: %d\n",
block->vertex, reps);
}
done = 0;
for(ptr = block->first; !done; ptr = ptr->next) {
struct lattice_node *lnode;
done = (ptr == block->last);
lnode = &scc.lattice[ptr->id];
if (ptr->op == OP_PHI) {
scc_visit_phi(state, &scc, lnode);
}
else if ((reps == 1) && triple_is_def(state, ptr))
{
scc_visit_expr(state, &scc, lnode);
}
}
/* Add unconditional branch edges */
if (!triple_is_cbranch(state, fblock->block->last)) {
struct flow_edge *out;
for(out = fblock->out; out; out = out->out_next) {
scc_add_fedge(state, &scc, out);
}
}
}
while((sedge = scc_next_sedge(state, &scc))) {
struct lattice_node *lnode;
struct flow_block *fblock;
lnode = sedge->dst;
fblock = lnode->fblock;
if (state->compiler->debug & DEBUG_SCC_TRANSFORM) {
fprintf(state->errout, "sedge: %5ld (%5d -> %5d)\n",
(unsigned long)sedge - (unsigned long)scc.ssa_edges,
sedge->src->def->id,
sedge->dst->def->id);
}
if (lnode->def->op == OP_PHI) {
scc_visit_phi(state, &scc, lnode);
}
else {
for(fptr = fblock->in; fptr; fptr = fptr->in_next) {
if (fptr->executable) {
break;
}
}
if (fptr) {
scc_visit_expr(state, &scc, lnode);
}
}
}
}
scc_writeback_values(state, &scc);
free_scc_state(state, &scc);
rebuild_ssa_form(state);
print_blocks(state, __func__, state->dbgout);
}
static void transform_to_arch_instructions(struct compile_state *state)
{
struct triple *ins, *first;
first = state->first;
ins = first;
do {
ins = transform_to_arch_instruction(state, ins);
} while(ins != first);
print_blocks(state, __func__, state->dbgout);
}
#if DEBUG_CONSISTENCY
static void verify_uses(struct compile_state *state)
{
struct triple *first, *ins;
struct triple_set *set;
first = state->first;
ins = first;
do {
struct triple **expr;
expr = triple_rhs(state, ins, 0);
for(; expr; expr = triple_rhs(state, ins, expr)) {
struct triple *rhs;
rhs = *expr;
for(set = rhs?rhs->use:0; set; set = set->next) {
if (set->member == ins) {
break;
}
}
if (!set) {
internal_error(state, ins, "rhs not used");
}
}
expr = triple_lhs(state, ins, 0);
for(; expr; expr = triple_lhs(state, ins, expr)) {
struct triple *lhs;
lhs = *expr;
for(set = lhs?lhs->use:0; set; set = set->next) {
if (set->member == ins) {
break;
}
}
if (!set) {
internal_error(state, ins, "lhs not used");
}
}
expr = triple_misc(state, ins, 0);
if (ins->op != OP_PHI) {
for(; expr; expr = triple_targ(state, ins, expr)) {
struct triple *misc;
misc = *expr;
for(set = misc?misc->use:0; set; set = set->next) {
if (set->member == ins) {
break;
}
}
if (!set) {
internal_error(state, ins, "misc not used");
}
}
}
if (!triple_is_ret(state, ins)) {
expr = triple_targ(state, ins, 0);
for(; expr; expr = triple_targ(state, ins, expr)) {
struct triple *targ;
targ = *expr;
for(set = targ?targ->use:0; set; set = set->next) {
if (set->member == ins) {
break;
}
}
if (!set) {
internal_error(state, ins, "targ not used");
}
}
}
ins = ins->next;
} while(ins != first);
}
static void verify_blocks_present(struct compile_state *state)
{
struct triple *first, *ins;
if (!state->bb.first_block) {
return;
}
first = state->first;
ins = first;
do {
valid_ins(state, ins);
if (triple_stores_block(state, ins)) {
if (!ins->u.block) {
internal_error(state, ins,
"%p not in a block?", ins);
}
}
ins = ins->next;
} while(ins != first);
}
static int edge_present(struct compile_state *state, struct block *block, struct triple *edge)
{
struct block_set *bedge;
struct block *targ;
targ = block_of_triple(state, edge);
for(bedge = block->edges; bedge; bedge = bedge->next) {
if (bedge->member == targ) {
return 1;
}
}
return 0;
}
static void verify_blocks(struct compile_state *state)
{
struct triple *ins;
struct block *block;
int blocks;
block = state->bb.first_block;
if (!block) {
return;
}
blocks = 0;
do {
int users;
struct block_set *user, *edge;
blocks++;
for(ins = block->first; ins != block->last->next; ins = ins->next) {
if (triple_stores_block(state, ins) && (ins->u.block != block)) {
internal_error(state, ins, "inconsitent block specified");
}
valid_ins(state, ins);
}
users = 0;
for(user = block->use; user; user = user->next) {
users++;
if (!user->member->first) {
internal_error(state, block->first, "user is empty");
}
if ((block == state->bb.last_block) &&
(user->member == state->bb.first_block)) {
continue;
}
for(edge = user->member->edges; edge; edge = edge->next) {
if (edge->member == block) {
break;
}
}
if (!edge) {
internal_error(state, user->member->first,
"user does not use block");
}
}
if (triple_is_branch(state, block->last)) {
struct triple **expr;
expr = triple_edge_targ(state, block->last, 0);
for(;expr; expr = triple_edge_targ(state, block->last, expr)) {
if (*expr && !edge_present(state, block, *expr)) {
internal_error(state, block->last, "no edge to targ");
}
}
}
if (!triple_is_ubranch(state, block->last) &&
(block != state->bb.last_block) &&
!edge_present(state, block, block->last->next)) {
internal_error(state, block->last, "no edge to block->last->next");
}
for(edge = block->edges; edge; edge = edge->next) {
for(user = edge->member->use; user; user = user->next) {
if (user->member == block) {
break;
}
}
if (!user || user->member != block) {
internal_error(state, block->first,
"block does not use edge");
}
if (!edge->member->first) {
internal_error(state, block->first, "edge block is empty");
}
}
if (block->users != users) {
internal_error(state, block->first,
"computed users %d != stored users %d",
users, block->users);
}
if (!triple_stores_block(state, block->last->next)) {
internal_error(state, block->last->next,
"cannot find next block");
}
block = block->last->next->u.block;
if (!block) {
internal_error(state, block->last->next,
"bad next block");
}
} while(block != state->bb.first_block);
if (blocks != state->bb.last_vertex) {
internal_error(state, 0, "computed blocks: %d != stored blocks %d",
blocks, state->bb.last_vertex);
}
}
static void verify_domination(struct compile_state *state)
{
struct triple *first, *ins;
struct triple_set *set;
if (!state->bb.first_block) {
return;
}
first = state->first;
ins = first;
do {
for(set = ins->use; set; set = set->next) {
struct triple **slot;
struct triple *use_point;
int i, zrhs;
use_point = 0;
zrhs = set->member->rhs;
slot = &RHS(set->member, 0);
/* See if the use is on the right hand side */
for(i = 0; i < zrhs; i++) {
if (slot[i] == ins) {
break;
}
}
if (i < zrhs) {
use_point = set->member;
if (set->member->op == OP_PHI) {
struct block_set *bset;
int edge;
bset = set->member->u.block->use;
for(edge = 0; bset && (edge < i); edge++) {
bset = bset->next;
}
if (!bset) {
internal_error(state, set->member,
"no edge for phi rhs %d", i);
}
use_point = bset->member->last;
}
}
if (use_point &&
!tdominates(state, ins, use_point)) {
if (is_const(ins)) {
internal_warning(state, ins,
"non dominated rhs use point %p?", use_point);
}
else {
internal_error(state, ins,
"non dominated rhs use point %p?", use_point);
}
}
}
ins = ins->next;
} while(ins != first);
}
static void verify_rhs(struct compile_state *state)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
struct triple **slot;
int zrhs, i;
zrhs = ins->rhs;
slot = &RHS(ins, 0);
for(i = 0; i < zrhs; i++) {
if (slot[i] == 0) {
internal_error(state, ins,
"missing rhs %d on %s",
i, tops(ins->op));
}
if ((ins->op != OP_PHI) && (slot[i] == ins)) {
internal_error(state, ins,
"ins == rhs[%d] on %s",
i, tops(ins->op));
}
}
ins = ins->next;
} while(ins != first);
}
static void verify_piece(struct compile_state *state)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
struct triple *ptr;
int lhs, i;
lhs = ins->lhs;
for(ptr = ins->next, i = 0; i < lhs; i++, ptr = ptr->next) {
if (ptr != LHS(ins, i)) {
internal_error(state, ins, "malformed lhs on %s",
tops(ins->op));
}
if (ptr->op != OP_PIECE) {
internal_error(state, ins, "bad lhs op %s at %d on %s",
tops(ptr->op), i, tops(ins->op));
}
if (ptr->u.cval != i) {
internal_error(state, ins, "bad u.cval of %d %d expected",
ptr->u.cval, i);
}
}
ins = ins->next;
} while(ins != first);
}
static void verify_ins_colors(struct compile_state *state)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
ins = ins->next;
} while(ins != first);
}
static void verify_unknown(struct compile_state *state)
{
struct triple *first, *ins;
if ( (unknown_triple.next != &unknown_triple) ||
(unknown_triple.prev != &unknown_triple) ||
#if 0
(unknown_triple.use != 0) ||
#endif
(unknown_triple.op != OP_UNKNOWNVAL) ||
(unknown_triple.lhs != 0) ||
(unknown_triple.rhs != 0) ||
(unknown_triple.misc != 0) ||
(unknown_triple.targ != 0) ||
(unknown_triple.template_id != 0) ||
(unknown_triple.id != -1) ||
(unknown_triple.type != &unknown_type) ||
(unknown_triple.occurance != &dummy_occurance) ||
(unknown_triple.param[0] != 0) ||
(unknown_triple.param[1] != 0)) {
internal_error(state, &unknown_triple, "unknown_triple corrupted!");
}
if ( (dummy_occurance.count != 2) ||
(strcmp(dummy_occurance.filename, __FILE__) != 0) ||
(strcmp(dummy_occurance.function, "") != 0) ||
(dummy_occurance.col != 0) ||
(dummy_occurance.parent != 0)) {
internal_error(state, &unknown_triple, "dummy_occurance corrupted!");
}
if ( (unknown_type.type != TYPE_UNKNOWN)) {
internal_error(state, &unknown_triple, "unknown_type corrupted!");
}
first = state->first;
ins = first;
do {
int params, i;
if (ins == &unknown_triple) {
internal_error(state, ins, "unknown triple in list");
}
params = TRIPLE_SIZE(ins);
for(i = 0; i < params; i++) {
if (ins->param[i] == &unknown_triple) {
internal_error(state, ins, "unknown triple used!");
}
}
ins = ins->next;
} while(ins != first);
}
static void verify_types(struct compile_state *state)
{
struct triple *first, *ins;
first = state->first;
ins = first;
do {
struct type *invalid;
invalid = invalid_type(state, ins->type);
if (invalid) {
FILE *fp = state->errout;
fprintf(fp, "type: ");
name_of(fp, ins->type);
fprintf(fp, "\n");
fprintf(fp, "invalid type: ");
name_of(fp, invalid);
fprintf(fp, "\n");
internal_error(state, ins, "invalid ins type");
}
} while(ins != first);
}
static void verify_copy(struct compile_state *state)
{
struct triple *first, *ins, *next;
first = state->first;
next = ins = first;
do {
ins = next;
next = ins->next;
if (ins->op != OP_COPY) {
continue;
}
if (!equiv_types(ins->type, RHS(ins, 0)->type)) {
FILE *fp = state->errout;
fprintf(fp, "src type: ");
name_of(fp, RHS(ins, 0)->type);
fprintf(fp, "\n");
fprintf(fp, "dst type: ");
name_of(fp, ins->type);
fprintf(fp, "\n");
internal_error(state, ins, "type mismatch in copy");
}
} while(next != first);
}
static void verify_consistency(struct compile_state *state)
{
verify_unknown(state);
verify_uses(state);
verify_blocks_present(state);
verify_blocks(state);
verify_domination(state);
verify_rhs(state);
verify_piece(state);
verify_ins_colors(state);
verify_types(state);
verify_copy(state);
if (state->compiler->debug & DEBUG_VERIFICATION) {
fprintf(state->dbgout, "consistency verified\n");
}
}
#else
static void verify_consistency(struct compile_state *state) {}
#endif /* DEBUG_CONSISTENCY */
static void optimize(struct compile_state *state)
{
/* Join all of the functions into one giant function */
join_functions(state);
/* Dump what the instruction graph intially looks like */
print_triples(state);
/* Replace structures with simpler data types */
decompose_compound_types(state);
print_triples(state);
verify_consistency(state);
/* Analyze the intermediate code */
state->bb.first = state->first;
analyze_basic_blocks(state, &state->bb);
/* Transform the code to ssa form. */
/*
* The transformation to ssa form puts a phi function
* on each of edge of a dominance frontier where that
* phi function might be needed. At -O2 if we don't
* eleminate the excess phi functions we can get an
* exponential code size growth. So I kill the extra
* phi functions early and I kill them often.
*/
transform_to_ssa_form(state);
verify_consistency(state);
/* Remove dead code */
eliminate_inefectual_code(state);
verify_consistency(state);
/* Do strength reduction and simple constant optimizations */
simplify_all(state);
verify_consistency(state);
/* Propogate constants throughout the code */
scc_transform(state);
verify_consistency(state);
#if DEBUG_ROMCC_WARNINGS
#warning "WISHLIST implement single use constants (least possible register pressure)"
#warning "WISHLIST implement induction variable elimination"
#endif
/* Select architecture instructions and an initial partial
* coloring based on architecture constraints.
*/
transform_to_arch_instructions(state);
verify_consistency(state);
/* Remove dead code */
eliminate_inefectual_code(state);
verify_consistency(state);
/* Color all of the variables to see if they will fit in registers */
insert_copies_to_phi(state);
verify_consistency(state);
insert_mandatory_copies(state);
verify_consistency(state);
allocate_registers(state);
verify_consistency(state);
/* Remove the optimization information.
* This is more to check for memory consistency than to free memory.
*/
free_basic_blocks(state, &state->bb);
}
static void print_op_asm(struct compile_state *state,
struct triple *ins, FILE *fp)
{
struct asm_info *info;
const char *ptr;
unsigned lhs, rhs, i;
info = ins->u.ainfo;
lhs = ins->lhs;
rhs = ins->rhs;
/* Don't count the clobbers in lhs */
for(i = 0; i < lhs; i++) {
if (LHS(ins, i)->type == &void_type) {
break;
}
}
lhs = i;
fprintf(fp, "#ASM\n");
fputc('\t', fp);
for(ptr = info->str; *ptr; ptr++) {
char *next;
unsigned long param;
struct triple *piece;
if (*ptr != '%') {
fputc(*ptr, fp);
continue;
}
ptr++;
if (*ptr == '%') {
fputc('%', fp);
continue;
}
param = strtoul(ptr, &next, 10);
if (ptr == next) {
error(state, ins, "Invalid asm template");
}
if (param >= (lhs + rhs)) {
error(state, ins, "Invalid param %%%u in asm template",
param);
}
piece = (param < lhs)? LHS(ins, param) : RHS(ins, param - lhs);
fprintf(fp, "%s",
arch_reg_str(ID_REG(piece->id)));
ptr = next -1;
}
fprintf(fp, "\n#NOT ASM\n");
}
/* Only use the low x86 byte registers. This allows me
* allocate the entire register when a byte register is used.
*/
#define X86_4_8BIT_GPRS 1
/* x86 featrues */
#define X86_MMX_REGS (1<<0)
#define X86_XMM_REGS (1<<1)
#define X86_NOOP_COPY (1<<2)
/* The x86 register classes */
#define REGC_FLAGS 0
#define REGC_GPR8 1
#define REGC_GPR16 2
#define REGC_GPR32 3
#define REGC_DIVIDEND64 4
#define REGC_DIVIDEND32 5
#define REGC_MMX 6
#define REGC_XMM 7
#define REGC_GPR32_8 8
#define REGC_GPR16_8 9
#define REGC_GPR8_LO 10
#define REGC_IMM32 11
#define REGC_IMM16 12
#define REGC_IMM8 13
#define LAST_REGC REGC_IMM8
#if LAST_REGC >= MAX_REGC
#error "MAX_REGC is to low"
#endif
/* Register class masks */
#define REGCM_FLAGS (1 << REGC_FLAGS)
#define REGCM_GPR8 (1 << REGC_GPR8)
#define REGCM_GPR16 (1 << REGC_GPR16)
#define REGCM_GPR32 (1 << REGC_GPR32)
#define REGCM_DIVIDEND64 (1 << REGC_DIVIDEND64)
#define REGCM_DIVIDEND32 (1 << REGC_DIVIDEND32)
#define REGCM_MMX (1 << REGC_MMX)
#define REGCM_XMM (1 << REGC_XMM)
#define REGCM_GPR32_8 (1 << REGC_GPR32_8)
#define REGCM_GPR16_8 (1 << REGC_GPR16_8)
#define REGCM_GPR8_LO (1 << REGC_GPR8_LO)
#define REGCM_IMM32 (1 << REGC_IMM32)
#define REGCM_IMM16 (1 << REGC_IMM16)
#define REGCM_IMM8 (1 << REGC_IMM8)
#define REGCM_ALL ((1 << (LAST_REGC + 1)) - 1)
#define REGCM_IMMALL (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)
/* The x86 registers */
#define REG_EFLAGS 2
#define REGC_FLAGS_FIRST REG_EFLAGS
#define REGC_FLAGS_LAST REG_EFLAGS
#define REG_AL 3
#define REG_BL 4
#define REG_CL 5
#define REG_DL 6
#define REG_AH 7
#define REG_BH 8
#define REG_CH 9
#define REG_DH 10
#define REGC_GPR8_LO_FIRST REG_AL
#define REGC_GPR8_LO_LAST REG_DL
#define REGC_GPR8_FIRST REG_AL
#define REGC_GPR8_LAST REG_DH
#define REG_AX 11
#define REG_BX 12
#define REG_CX 13
#define REG_DX 14
#define REG_SI 15
#define REG_DI 16
#define REG_BP 17
#define REG_SP 18
#define REGC_GPR16_FIRST REG_AX
#define REGC_GPR16_LAST REG_SP
#define REG_EAX 19
#define REG_EBX 20
#define REG_ECX 21
#define REG_EDX 22
#define REG_ESI 23
#define REG_EDI 24
#define REG_EBP 25
#define REG_ESP 26
#define REGC_GPR32_FIRST REG_EAX
#define REGC_GPR32_LAST REG_ESP
#define REG_EDXEAX 27
#define REGC_DIVIDEND64_FIRST REG_EDXEAX
#define REGC_DIVIDEND64_LAST REG_EDXEAX
#define REG_DXAX 28
#define REGC_DIVIDEND32_FIRST REG_DXAX
#define REGC_DIVIDEND32_LAST REG_DXAX
#define REG_MMX0 29
#define REG_MMX1 30
#define REG_MMX2 31
#define REG_MMX3 32
#define REG_MMX4 33
#define REG_MMX5 34
#define REG_MMX6 35
#define REG_MMX7 36
#define REGC_MMX_FIRST REG_MMX0
#define REGC_MMX_LAST REG_MMX7
#define REG_XMM0 37
#define REG_XMM1 38
#define REG_XMM2 39
#define REG_XMM3 40
#define REG_XMM4 41
#define REG_XMM5 42
#define REG_XMM6 43
#define REG_XMM7 44
#define REGC_XMM_FIRST REG_XMM0
#define REGC_XMM_LAST REG_XMM7
#if DEBUG_ROMCC_WARNINGS
#warning "WISHLIST figure out how to use pinsrw and pextrw to better use extended regs"
#endif
#define LAST_REG REG_XMM7
#define REGC_GPR32_8_FIRST REG_EAX
#define REGC_GPR32_8_LAST REG_EDX
#define REGC_GPR16_8_FIRST REG_AX
#define REGC_GPR16_8_LAST REG_DX
#define REGC_IMM8_FIRST -1
#define REGC_IMM8_LAST -1
#define REGC_IMM16_FIRST -2
#define REGC_IMM16_LAST -1
#define REGC_IMM32_FIRST -4
#define REGC_IMM32_LAST -1
#if LAST_REG >= MAX_REGISTERS
#error "MAX_REGISTERS to low"
#endif
static unsigned regc_size[LAST_REGC +1] = {
[REGC_FLAGS] = REGC_FLAGS_LAST - REGC_FLAGS_FIRST + 1,
[REGC_GPR8] = REGC_GPR8_LAST - REGC_GPR8_FIRST + 1,
[REGC_GPR16] = REGC_GPR16_LAST - REGC_GPR16_FIRST + 1,
[REGC_GPR32] = REGC_GPR32_LAST - REGC_GPR32_FIRST + 1,
[REGC_DIVIDEND64] = REGC_DIVIDEND64_LAST - REGC_DIVIDEND64_FIRST + 1,
[REGC_DIVIDEND32] = REGC_DIVIDEND32_LAST - REGC_DIVIDEND32_FIRST + 1,
[REGC_MMX] = REGC_MMX_LAST - REGC_MMX_FIRST + 1,
[REGC_XMM] = REGC_XMM_LAST - REGC_XMM_FIRST + 1,
[REGC_GPR32_8] = REGC_GPR32_8_LAST - REGC_GPR32_8_FIRST + 1,
[REGC_GPR16_8] = REGC_GPR16_8_LAST - REGC_GPR16_8_FIRST + 1,
[REGC_GPR8_LO] = REGC_GPR8_LO_LAST - REGC_GPR8_LO_FIRST + 1,
[REGC_IMM32] = 0,
[REGC_IMM16] = 0,
[REGC_IMM8] = 0,
};
static const struct {
int first, last;
} regcm_bound[LAST_REGC + 1] = {
[REGC_FLAGS] = { REGC_FLAGS_FIRST, REGC_FLAGS_LAST },
[REGC_GPR8] = { REGC_GPR8_FIRST, REGC_GPR8_LAST },
[REGC_GPR16] = { REGC_GPR16_FIRST, REGC_GPR16_LAST },
[REGC_GPR32] = { REGC_GPR32_FIRST, REGC_GPR32_LAST },
[REGC_DIVIDEND64] = { REGC_DIVIDEND64_FIRST, REGC_DIVIDEND64_LAST },
[REGC_DIVIDEND32] = { REGC_DIVIDEND32_FIRST, REGC_DIVIDEND32_LAST },
[REGC_MMX] = { REGC_MMX_FIRST, REGC_MMX_LAST },
[REGC_XMM] = { REGC_XMM_FIRST, REGC_XMM_LAST },
[REGC_GPR32_8] = { REGC_GPR32_8_FIRST, REGC_GPR32_8_LAST },
[REGC_GPR16_8] = { REGC_GPR16_8_FIRST, REGC_GPR16_8_LAST },
[REGC_GPR8_LO] = { REGC_GPR8_LO_FIRST, REGC_GPR8_LO_LAST },
[REGC_IMM32] = { REGC_IMM32_FIRST, REGC_IMM32_LAST },
[REGC_IMM16] = { REGC_IMM16_FIRST, REGC_IMM16_LAST },
[REGC_IMM8] = { REGC_IMM8_FIRST, REGC_IMM8_LAST },
};
#if ARCH_INPUT_REGS != 4
#error ARCH_INPUT_REGS size mismatch
#endif
static const struct reg_info arch_input_regs[ARCH_INPUT_REGS] = {
{ .reg = REG_EAX, .regcm = REGCM_GPR32 },
{ .reg = REG_EBX, .regcm = REGCM_GPR32 },
{ .reg = REG_ECX, .regcm = REGCM_GPR32 },
{ .reg = REG_EDX, .regcm = REGCM_GPR32 },
};
#if ARCH_OUTPUT_REGS != 4
#error ARCH_INPUT_REGS size mismatch
#endif
static const struct reg_info arch_output_regs[ARCH_OUTPUT_REGS] = {
{ .reg = REG_EAX, .regcm = REGCM_GPR32 },
{ .reg = REG_EBX, .regcm = REGCM_GPR32 },
{ .reg = REG_ECX, .regcm = REGCM_GPR32 },
{ .reg = REG_EDX, .regcm = REGCM_GPR32 },
};
static void init_arch_state(struct arch_state *arch)
{
memset(arch, 0, sizeof(*arch));
arch->features = 0;
}
static const struct compiler_flag arch_flags[] = {
{ "mmx", X86_MMX_REGS },
{ "sse", X86_XMM_REGS },
{ "noop-copy", X86_NOOP_COPY },
{ 0, 0 },
};
static const struct compiler_flag arch_cpus[] = {
{ "i386", 0 },
{ "p2", X86_MMX_REGS },
{ "p3", X86_MMX_REGS | X86_XMM_REGS },
{ "p4", X86_MMX_REGS | X86_XMM_REGS },
{ "k7", X86_MMX_REGS },
{ "k8", X86_MMX_REGS | X86_XMM_REGS },
{ "c3", X86_MMX_REGS },
{ "c3-2", X86_MMX_REGS | X86_XMM_REGS }, /* Nehemiah */
{ 0, 0 }
};
static int arch_encode_flag(struct arch_state *arch, const char *flag)
{
int result;
int act;
act = 1;
result = -1;
if (strncmp(flag, "no-", 3) == 0) {
flag += 3;
act = 0;
}
if (act && strncmp(flag, "cpu=", 4) == 0) {
flag += 4;
result = set_flag(arch_cpus, &arch->features, 1, flag);
}
else {
result = set_flag(arch_flags, &arch->features, act, flag);
}
return result;
}
static void arch_usage(FILE *fp)
{
flag_usage(fp, arch_flags, "-m", "-mno-");
flag_usage(fp, arch_cpus, "-mcpu=", 0);
}
static unsigned arch_regc_size(struct compile_state *state, int class)
{
if ((class < 0) || (class > LAST_REGC)) {
return 0;
}
return regc_size[class];
}
static int arch_regcm_intersect(unsigned regcm1, unsigned regcm2)
{
/* See if two register classes may have overlapping registers */
unsigned gpr_mask = REGCM_GPR8 | REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
REGCM_GPR32_8 | REGCM_GPR32 |
REGCM_DIVIDEND32 | REGCM_DIVIDEND64;
/* Special case for the immediates */
if ((regcm1 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
((regcm1 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0) &&
(regcm2 & (REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) &&
((regcm2 & ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8)) == 0)) {
return 0;
}
return (regcm1 & regcm2) ||
((regcm1 & gpr_mask) && (regcm2 & gpr_mask));
}
static void arch_reg_equivs(
struct compile_state *state, unsigned *equiv, int reg)
{
if ((reg < 0) || (reg > LAST_REG)) {
internal_error(state, 0, "invalid register");
}
*equiv++ = reg;
switch(reg) {
case REG_AL:
#if X86_4_8BIT_GPRS
*equiv++ = REG_AH;
#endif
*equiv++ = REG_AX;
*equiv++ = REG_EAX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_AH:
#if X86_4_8BIT_GPRS
*equiv++ = REG_AL;
#endif
*equiv++ = REG_AX;
*equiv++ = REG_EAX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_BL:
#if X86_4_8BIT_GPRS
*equiv++ = REG_BH;
#endif
*equiv++ = REG_BX;
*equiv++ = REG_EBX;
break;
case REG_BH:
#if X86_4_8BIT_GPRS
*equiv++ = REG_BL;
#endif
*equiv++ = REG_BX;
*equiv++ = REG_EBX;
break;
case REG_CL:
#if X86_4_8BIT_GPRS
*equiv++ = REG_CH;
#endif
*equiv++ = REG_CX;
*equiv++ = REG_ECX;
break;
case REG_CH:
#if X86_4_8BIT_GPRS
*equiv++ = REG_CL;
#endif
*equiv++ = REG_CX;
*equiv++ = REG_ECX;
break;
case REG_DL:
#if X86_4_8BIT_GPRS
*equiv++ = REG_DH;
#endif
*equiv++ = REG_DX;
*equiv++ = REG_EDX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_DH:
#if X86_4_8BIT_GPRS
*equiv++ = REG_DL;
#endif
*equiv++ = REG_DX;
*equiv++ = REG_EDX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_AX:
*equiv++ = REG_AL;
*equiv++ = REG_AH;
*equiv++ = REG_EAX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_BX:
*equiv++ = REG_BL;
*equiv++ = REG_BH;
*equiv++ = REG_EBX;
break;
case REG_CX:
*equiv++ = REG_CL;
*equiv++ = REG_CH;
*equiv++ = REG_ECX;
break;
case REG_DX:
*equiv++ = REG_DL;
*equiv++ = REG_DH;
*equiv++ = REG_EDX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_SI:
*equiv++ = REG_ESI;
break;
case REG_DI:
*equiv++ = REG_EDI;
break;
case REG_BP:
*equiv++ = REG_EBP;
break;
case REG_SP:
*equiv++ = REG_ESP;
break;
case REG_EAX:
*equiv++ = REG_AL;
*equiv++ = REG_AH;
*equiv++ = REG_AX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_EBX:
*equiv++ = REG_BL;
*equiv++ = REG_BH;
*equiv++ = REG_BX;
break;
case REG_ECX:
*equiv++ = REG_CL;
*equiv++ = REG_CH;
*equiv++ = REG_CX;
break;
case REG_EDX:
*equiv++ = REG_DL;
*equiv++ = REG_DH;
*equiv++ = REG_DX;
*equiv++ = REG_DXAX;
*equiv++ = REG_EDXEAX;
break;
case REG_ESI:
*equiv++ = REG_SI;
break;
case REG_EDI:
*equiv++ = REG_DI;
break;
case REG_EBP:
*equiv++ = REG_BP;
break;
case REG_ESP:
*equiv++ = REG_SP;
break;
case REG_DXAX:
*equiv++ = REG_AL;
*equiv++ = REG_AH;
*equiv++ = REG_DL;
*equiv++ = REG_DH;
*equiv++ = REG_AX;
*equiv++ = REG_DX;
*equiv++ = REG_EAX;
*equiv++ = REG_EDX;
*equiv++ = REG_EDXEAX;
break;
case REG_EDXEAX:
*equiv++ = REG_AL;
*equiv++ = REG_AH;
*equiv++ = REG_DL;
*equiv++ = REG_DH;
*equiv++ = REG_AX;
*equiv++ = REG_DX;
*equiv++ = REG_EAX;
*equiv++ = REG_EDX;
*equiv++ = REG_DXAX;
break;
}
*equiv++ = REG_UNSET;
}
static unsigned arch_avail_mask(struct compile_state *state)
{
unsigned avail_mask;
/* REGCM_GPR8 is not available */
avail_mask = REGCM_GPR8_LO | REGCM_GPR16_8 | REGCM_GPR16 |
REGCM_GPR32 | REGCM_GPR32_8 |
REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 | REGCM_FLAGS;
if (state->arch->features & X86_MMX_REGS) {
avail_mask |= REGCM_MMX;
}
if (state->arch->features & X86_XMM_REGS) {
avail_mask |= REGCM_XMM;
}
return avail_mask;
}
static unsigned arch_regcm_normalize(struct compile_state *state, unsigned regcm)
{
unsigned mask, result;
int class, class2;
result = regcm;
for(class = 0, mask = 1; mask; mask <<= 1, class++) {
if ((result & mask) == 0) {
continue;
}
if (class > LAST_REGC) {
result &= ~mask;
}
for(class2 = 0; class2 <= LAST_REGC; class2++) {
if ((regcm_bound[class2].first >= regcm_bound[class].first) &&
(regcm_bound[class2].last <= regcm_bound[class].last)) {
result |= (1 << class2);
}
}
}
result &= arch_avail_mask(state);
return result;
}
static unsigned arch_regcm_reg_normalize(struct compile_state *state, unsigned regcm)
{
/* Like arch_regcm_normalize except immediate register classes are excluded */
regcm = arch_regcm_normalize(state, regcm);
/* Remove the immediate register classes */
regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
return regcm;
}
static unsigned arch_reg_regcm(struct compile_state *state, int reg)
{
unsigned mask;
int class;
mask = 0;
for(class = 0; class <= LAST_REGC; class++) {
if ((reg >= regcm_bound[class].first) &&
(reg <= regcm_bound[class].last)) {
mask |= (1 << class);
}
}
if (!mask) {
internal_error(state, 0, "reg %d not in any class", reg);
}
return mask;
}
static struct reg_info arch_reg_constraint(
struct compile_state *state, struct type *type, const char *constraint)
{
static const struct {
char class;
unsigned int mask;
unsigned int reg;
} constraints[] = {
{ 'r', REGCM_GPR32, REG_UNSET },
{ 'g', REGCM_GPR32, REG_UNSET },
{ 'p', REGCM_GPR32, REG_UNSET },
{ 'q', REGCM_GPR8_LO, REG_UNSET },
{ 'Q', REGCM_GPR32_8, REG_UNSET },
{ 'x', REGCM_XMM, REG_UNSET },
{ 'y', REGCM_MMX, REG_UNSET },
{ 'a', REGCM_GPR32, REG_EAX },
{ 'b', REGCM_GPR32, REG_EBX },
{ 'c', REGCM_GPR32, REG_ECX },
{ 'd', REGCM_GPR32, REG_EDX },
{ 'D', REGCM_GPR32, REG_EDI },
{ 'S', REGCM_GPR32, REG_ESI },
{ '\0', 0, REG_UNSET },
};
unsigned int regcm;
unsigned int mask, reg;
struct reg_info result;
const char *ptr;
regcm = arch_type_to_regcm(state, type);
reg = REG_UNSET;
mask = 0;
for(ptr = constraint; *ptr; ptr++) {
int i;
if (*ptr == ' ') {
continue;
}
for(i = 0; constraints[i].class != '\0'; i++) {
if (constraints[i].class == *ptr) {
break;
}
}
if (constraints[i].class == '\0') {
error(state, 0, "invalid register constraint ``%c''", *ptr);
break;
}
if ((constraints[i].mask & regcm) == 0) {
error(state, 0, "invalid register class %c specified",
*ptr);
}
mask |= constraints[i].mask;
if (constraints[i].reg != REG_UNSET) {
if ((reg != REG_UNSET) && (reg != constraints[i].reg)) {
error(state, 0, "Only one register may be specified");
}
reg = constraints[i].reg;
}
}
result.reg = reg;
result.regcm = mask;
return result;
}
static struct reg_info arch_reg_clobber(
struct compile_state *state, const char *clobber)
{
struct reg_info result;
if (strcmp(clobber, "memory") == 0) {
result.reg = REG_UNSET;
result.regcm = 0;
}
else if (strcmp(clobber, "eax") == 0) {
result.reg = REG_EAX;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "ebx") == 0) {
result.reg = REG_EBX;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "ecx") == 0) {
result.reg = REG_ECX;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "edx") == 0) {
result.reg = REG_EDX;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "esi") == 0) {
result.reg = REG_ESI;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "edi") == 0) {
result.reg = REG_EDI;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "ebp") == 0) {
result.reg = REG_EBP;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "esp") == 0) {
result.reg = REG_ESP;
result.regcm = REGCM_GPR32;
}
else if (strcmp(clobber, "cc") == 0) {
result.reg = REG_EFLAGS;
result.regcm = REGCM_FLAGS;
}
else if ((strncmp(clobber, "xmm", 3) == 0) &&
octdigitp(clobber[3]) && (clobber[4] == '\0')) {
result.reg = REG_XMM0 + octdigval(clobber[3]);
result.regcm = REGCM_XMM;
}
else if ((strncmp(clobber, "mm", 2) == 0) &&
octdigitp(clobber[3]) && (clobber[4] == '\0')) {
result.reg = REG_MMX0 + octdigval(clobber[3]);
result.regcm = REGCM_MMX;
}
else {
error(state, 0, "unknown register name `%s' in asm",
clobber);
result.reg = REG_UNSET;
result.regcm = 0;
}
return result;
}
static int do_select_reg(struct compile_state *state,
char *used, int reg, unsigned classes)
{
unsigned mask;
if (used[reg]) {
return REG_UNSET;
}
mask = arch_reg_regcm(state, reg);
return (classes & mask) ? reg : REG_UNSET;
}
static int arch_select_free_register(
struct compile_state *state, char *used, int classes)
{
/* Live ranges with the most neighbors are colored first.
*
* Generally it does not matter which colors are given
* as the register allocator attempts to color live ranges
* in an order where you are guaranteed not to run out of colors.
*
* Occasionally the register allocator cannot find an order
* of register selection that will find a free color. To
* increase the odds the register allocator will work when
* it guesses first give out registers from register classes
* least likely to run out of registers.
*
*/
int i, reg;
reg = REG_UNSET;
for(i = REGC_XMM_FIRST; (reg == REG_UNSET) && (i <= REGC_XMM_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_MMX_FIRST; (reg == REG_UNSET) && (i <= REGC_MMX_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_GPR32_LAST; (reg == REG_UNSET) && (i >= REGC_GPR32_FIRST); i--) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_GPR16_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR16_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_GPR8_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_GPR8_LO_FIRST; (reg == REG_UNSET) && (i <= REGC_GPR8_LO_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_DIVIDEND32_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND32_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_DIVIDEND64_FIRST; (reg == REG_UNSET) && (i <= REGC_DIVIDEND64_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
for(i = REGC_FLAGS_FIRST; (reg == REG_UNSET) && (i <= REGC_FLAGS_LAST); i++) {
reg = do_select_reg(state, used, i, classes);
}
return reg;
}
static unsigned arch_type_to_regcm(struct compile_state *state, struct type *type)
{
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME force types smaller (if legal) before I get here"
#endif
unsigned mask;
mask = 0;
switch(type->type & TYPE_MASK) {
case TYPE_ARRAY:
case TYPE_VOID:
mask = 0;
break;
case TYPE_CHAR:
case TYPE_UCHAR:
mask = REGCM_GPR8 | REGCM_GPR8_LO |
REGCM_GPR16 | REGCM_GPR16_8 |
REGCM_GPR32 | REGCM_GPR32_8 |
REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
REGCM_MMX | REGCM_XMM |
REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8;
break;
case TYPE_SHORT:
case TYPE_USHORT:
mask = REGCM_GPR16 | REGCM_GPR16_8 |
REGCM_GPR32 | REGCM_GPR32_8 |
REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
REGCM_MMX | REGCM_XMM |
REGCM_IMM32 | REGCM_IMM16;
break;
case TYPE_ENUM:
case TYPE_INT:
case TYPE_UINT:
case TYPE_LONG:
case TYPE_ULONG:
case TYPE_POINTER:
mask = REGCM_GPR32 | REGCM_GPR32_8 |
REGCM_DIVIDEND32 | REGCM_DIVIDEND64 |
REGCM_MMX | REGCM_XMM |
REGCM_IMM32;
break;
case TYPE_JOIN:
case TYPE_UNION:
mask = arch_type_to_regcm(state, type->left);
break;
case TYPE_OVERLAP:
mask = arch_type_to_regcm(state, type->left) &
arch_type_to_regcm(state, type->right);
break;
case TYPE_BITFIELD:
mask = arch_type_to_regcm(state, type->left);
break;
default:
fprintf(state->errout, "type: ");
name_of(state->errout, type);
fprintf(state->errout, "\n");
internal_error(state, 0, "no register class for type");
break;
}
mask = arch_regcm_normalize(state, mask);
return mask;
}
static int is_imm32(struct triple *imm)
{
// second condition commented out to prevent compiler warning:
// imm->u.cval is always 32bit unsigned, so the comparison is
// always true.
return ((imm->op == OP_INTCONST) /* && (imm->u.cval <= 0xffffffffUL) */ ) ||
(imm->op == OP_ADDRCONST);
}
static int is_imm16(struct triple *imm)
{
return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xffff));
}
static int is_imm8(struct triple *imm)
{
return ((imm->op == OP_INTCONST) && (imm->u.cval <= 0xff));
}
static int get_imm32(struct triple *ins, struct triple **expr)
{
struct triple *imm;
imm = *expr;
while(imm->op == OP_COPY) {
imm = RHS(imm, 0);
}
if (!is_imm32(imm)) {
return 0;
}
unuse_triple(*expr, ins);
use_triple(imm, ins);
*expr = imm;
return 1;
}
static int get_imm8(struct triple *ins, struct triple **expr)
{
struct triple *imm;
imm = *expr;
while(imm->op == OP_COPY) {
imm = RHS(imm, 0);
}
if (!is_imm8(imm)) {
return 0;
}
unuse_triple(*expr, ins);
use_triple(imm, ins);
*expr = imm;
return 1;
}
#define TEMPLATE_NOP 0
#define TEMPLATE_INTCONST8 1
#define TEMPLATE_INTCONST32 2
#define TEMPLATE_UNKNOWNVAL 3
#define TEMPLATE_COPY8_REG 5
#define TEMPLATE_COPY16_REG 6
#define TEMPLATE_COPY32_REG 7
#define TEMPLATE_COPY_IMM8 8
#define TEMPLATE_COPY_IMM16 9
#define TEMPLATE_COPY_IMM32 10
#define TEMPLATE_PHI8 11
#define TEMPLATE_PHI16 12
#define TEMPLATE_PHI32 13
#define TEMPLATE_STORE8 14
#define TEMPLATE_STORE16 15
#define TEMPLATE_STORE32 16
#define TEMPLATE_LOAD8 17
#define TEMPLATE_LOAD16 18
#define TEMPLATE_LOAD32 19
#define TEMPLATE_BINARY8_REG 20
#define TEMPLATE_BINARY16_REG 21
#define TEMPLATE_BINARY32_REG 22
#define TEMPLATE_BINARY8_IMM 23
#define TEMPLATE_BINARY16_IMM 24
#define TEMPLATE_BINARY32_IMM 25
#define TEMPLATE_SL8_CL 26
#define TEMPLATE_SL16_CL 27
#define TEMPLATE_SL32_CL 28
#define TEMPLATE_SL8_IMM 29
#define TEMPLATE_SL16_IMM 30
#define TEMPLATE_SL32_IMM 31
#define TEMPLATE_UNARY8 32
#define TEMPLATE_UNARY16 33
#define TEMPLATE_UNARY32 34
#define TEMPLATE_CMP8_REG 35
#define TEMPLATE_CMP16_REG 36
#define TEMPLATE_CMP32_REG 37
#define TEMPLATE_CMP8_IMM 38
#define TEMPLATE_CMP16_IMM 39
#define TEMPLATE_CMP32_IMM 40
#define TEMPLATE_TEST8 41
#define TEMPLATE_TEST16 42
#define TEMPLATE_TEST32 43
#define TEMPLATE_SET 44
#define TEMPLATE_JMP 45
#define TEMPLATE_RET 46
#define TEMPLATE_INB_DX 47
#define TEMPLATE_INB_IMM 48
#define TEMPLATE_INW_DX 49
#define TEMPLATE_INW_IMM 50
#define TEMPLATE_INL_DX 51
#define TEMPLATE_INL_IMM 52
#define TEMPLATE_OUTB_DX 53
#define TEMPLATE_OUTB_IMM 54
#define TEMPLATE_OUTW_DX 55
#define TEMPLATE_OUTW_IMM 56
#define TEMPLATE_OUTL_DX 57
#define TEMPLATE_OUTL_IMM 58
#define TEMPLATE_BSF 59
#define TEMPLATE_RDMSR 60
#define TEMPLATE_WRMSR 61
#define TEMPLATE_UMUL8 62
#define TEMPLATE_UMUL16 63
#define TEMPLATE_UMUL32 64
#define TEMPLATE_DIV8 65
#define TEMPLATE_DIV16 66
#define TEMPLATE_DIV32 67
#define LAST_TEMPLATE TEMPLATE_DIV32
#if LAST_TEMPLATE >= MAX_TEMPLATES
#error "MAX_TEMPLATES to low"
#endif
#define COPY8_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO | REGCM_MMX | REGCM_XMM)
#define COPY16_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_GPR16 | REGCM_MMX | REGCM_XMM)
#define COPY32_REGCM (REGCM_DIVIDEND64 | REGCM_DIVIDEND32 | REGCM_GPR32 | REGCM_MMX | REGCM_XMM)
static struct ins_template templates[] = {
[TEMPLATE_NOP] = {
.lhs = {
[ 0] = { REG_UNNEEDED, REGCM_IMMALL },
[ 1] = { REG_UNNEEDED, REGCM_IMMALL },
[ 2] = { REG_UNNEEDED, REGCM_IMMALL },
[ 3] = { REG_UNNEEDED, REGCM_IMMALL },
[ 4] = { REG_UNNEEDED, REGCM_IMMALL },
[ 5] = { REG_UNNEEDED, REGCM_IMMALL },
[ 6] = { REG_UNNEEDED, REGCM_IMMALL },
[ 7] = { REG_UNNEEDED, REGCM_IMMALL },
[ 8] = { REG_UNNEEDED, REGCM_IMMALL },
[ 9] = { REG_UNNEEDED, REGCM_IMMALL },
[10] = { REG_UNNEEDED, REGCM_IMMALL },
[11] = { REG_UNNEEDED, REGCM_IMMALL },
[12] = { REG_UNNEEDED, REGCM_IMMALL },
[13] = { REG_UNNEEDED, REGCM_IMMALL },
[14] = { REG_UNNEEDED, REGCM_IMMALL },
[15] = { REG_UNNEEDED, REGCM_IMMALL },
[16] = { REG_UNNEEDED, REGCM_IMMALL },
[17] = { REG_UNNEEDED, REGCM_IMMALL },
[18] = { REG_UNNEEDED, REGCM_IMMALL },
[19] = { REG_UNNEEDED, REGCM_IMMALL },
[20] = { REG_UNNEEDED, REGCM_IMMALL },
[21] = { REG_UNNEEDED, REGCM_IMMALL },
[22] = { REG_UNNEEDED, REGCM_IMMALL },
[23] = { REG_UNNEEDED, REGCM_IMMALL },
[24] = { REG_UNNEEDED, REGCM_IMMALL },
[25] = { REG_UNNEEDED, REGCM_IMMALL },
[26] = { REG_UNNEEDED, REGCM_IMMALL },
[27] = { REG_UNNEEDED, REGCM_IMMALL },
[28] = { REG_UNNEEDED, REGCM_IMMALL },
[29] = { REG_UNNEEDED, REGCM_IMMALL },
[30] = { REG_UNNEEDED, REGCM_IMMALL },
[31] = { REG_UNNEEDED, REGCM_IMMALL },
[32] = { REG_UNNEEDED, REGCM_IMMALL },
[33] = { REG_UNNEEDED, REGCM_IMMALL },
[34] = { REG_UNNEEDED, REGCM_IMMALL },
[35] = { REG_UNNEEDED, REGCM_IMMALL },
[36] = { REG_UNNEEDED, REGCM_IMMALL },
[37] = { REG_UNNEEDED, REGCM_IMMALL },
[38] = { REG_UNNEEDED, REGCM_IMMALL },
[39] = { REG_UNNEEDED, REGCM_IMMALL },
[40] = { REG_UNNEEDED, REGCM_IMMALL },
[41] = { REG_UNNEEDED, REGCM_IMMALL },
[42] = { REG_UNNEEDED, REGCM_IMMALL },
[43] = { REG_UNNEEDED, REGCM_IMMALL },
[44] = { REG_UNNEEDED, REGCM_IMMALL },
[45] = { REG_UNNEEDED, REGCM_IMMALL },
[46] = { REG_UNNEEDED, REGCM_IMMALL },
[47] = { REG_UNNEEDED, REGCM_IMMALL },
[48] = { REG_UNNEEDED, REGCM_IMMALL },
[49] = { REG_UNNEEDED, REGCM_IMMALL },
[50] = { REG_UNNEEDED, REGCM_IMMALL },
[51] = { REG_UNNEEDED, REGCM_IMMALL },
[52] = { REG_UNNEEDED, REGCM_IMMALL },
[53] = { REG_UNNEEDED, REGCM_IMMALL },
[54] = { REG_UNNEEDED, REGCM_IMMALL },
[55] = { REG_UNNEEDED, REGCM_IMMALL },
[56] = { REG_UNNEEDED, REGCM_IMMALL },
[57] = { REG_UNNEEDED, REGCM_IMMALL },
[58] = { REG_UNNEEDED, REGCM_IMMALL },
[59] = { REG_UNNEEDED, REGCM_IMMALL },
[60] = { REG_UNNEEDED, REGCM_IMMALL },
[61] = { REG_UNNEEDED, REGCM_IMMALL },
[62] = { REG_UNNEEDED, REGCM_IMMALL },
[63] = { REG_UNNEEDED, REGCM_IMMALL },
},
},
[TEMPLATE_INTCONST8] = {
.lhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
},
[TEMPLATE_INTCONST32] = {
.lhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 } },
},
[TEMPLATE_UNKNOWNVAL] = {
.lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
},
[TEMPLATE_COPY8_REG] = {
.lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
.rhs = { [0] = { REG_UNSET, COPY8_REGCM } },
},
[TEMPLATE_COPY16_REG] = {
.lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
.rhs = { [0] = { REG_UNSET, COPY16_REGCM } },
},
[TEMPLATE_COPY32_REG] = {
.lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
.rhs = { [0] = { REG_UNSET, COPY32_REGCM } },
},
[TEMPLATE_COPY_IMM8] = {
.lhs = { [0] = { REG_UNSET, COPY8_REGCM } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
},
[TEMPLATE_COPY_IMM16] = {
.lhs = { [0] = { REG_UNSET, COPY16_REGCM } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM16 | REGCM_IMM8 } },
},
[TEMPLATE_COPY_IMM32] = {
.lhs = { [0] = { REG_UNSET, COPY32_REGCM } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8 } },
},
[TEMPLATE_PHI8] = {
.lhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
.rhs = { [0] = { REG_VIRT0, COPY8_REGCM } },
},
[TEMPLATE_PHI16] = {
.lhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
.rhs = { [0] = { REG_VIRT0, COPY16_REGCM } },
},
[TEMPLATE_PHI32] = {
.lhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
.rhs = { [0] = { REG_VIRT0, COPY32_REGCM } },
},
[TEMPLATE_STORE8] = {
.rhs = {
[0] = { REG_UNSET, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR8_LO },
},
},
[TEMPLATE_STORE16] = {
.rhs = {
[0] = { REG_UNSET, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR16 },
},
},
[TEMPLATE_STORE32] = {
.rhs = {
[0] = { REG_UNSET, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR32 },
},
},
[TEMPLATE_LOAD8] = {
.lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_LOAD16] = {
.lhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_LOAD32] = {
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_BINARY8_REG] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR8_LO },
[1] = { REG_UNSET, REGCM_GPR8_LO },
},
},
[TEMPLATE_BINARY16_REG] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR16 },
[1] = { REG_UNSET, REGCM_GPR16 },
},
},
[TEMPLATE_BINARY32_REG] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR32 },
},
},
[TEMPLATE_BINARY8_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR8_LO },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_BINARY16_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR16 },
[1] = { REG_UNNEEDED, REGCM_IMM16 },
},
},
[TEMPLATE_BINARY32_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR32 },
[1] = { REG_UNNEEDED, REGCM_IMM32 },
},
},
[TEMPLATE_SL8_CL] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR8_LO },
[1] = { REG_CL, REGCM_GPR8_LO },
},
},
[TEMPLATE_SL16_CL] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR16 },
[1] = { REG_CL, REGCM_GPR8_LO },
},
},
[TEMPLATE_SL32_CL] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR32 },
[1] = { REG_CL, REGCM_GPR8_LO },
},
},
[TEMPLATE_SL8_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR8_LO },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_SL16_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR16 },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_SL32_IMM] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
.rhs = {
[0] = { REG_VIRT0, REGCM_GPR32 },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_UNARY8] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
.rhs = { [0] = { REG_VIRT0, REGCM_GPR8_LO } },
},
[TEMPLATE_UNARY16] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
.rhs = { [0] = { REG_VIRT0, REGCM_GPR16 } },
},
[TEMPLATE_UNARY32] = {
.lhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
.rhs = { [0] = { REG_VIRT0, REGCM_GPR32 } },
},
[TEMPLATE_CMP8_REG] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR8_LO },
[1] = { REG_UNSET, REGCM_GPR8_LO },
},
},
[TEMPLATE_CMP16_REG] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR16 },
[1] = { REG_UNSET, REGCM_GPR16 },
},
},
[TEMPLATE_CMP32_REG] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR32 },
},
},
[TEMPLATE_CMP8_IMM] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR8_LO },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_CMP16_IMM] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR16 },
[1] = { REG_UNNEEDED, REGCM_IMM16 },
},
},
[TEMPLATE_CMP32_IMM] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = {
[0] = { REG_UNSET, REGCM_GPR32 },
[1] = { REG_UNNEEDED, REGCM_IMM32 },
},
},
[TEMPLATE_TEST8] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
},
[TEMPLATE_TEST16] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR16 } },
},
[TEMPLATE_TEST32] = {
.lhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_SET] = {
.lhs = { [0] = { REG_UNSET, REGCM_GPR8_LO } },
.rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
},
[TEMPLATE_JMP] = {
.rhs = { [0] = { REG_EFLAGS, REGCM_FLAGS } },
},
[TEMPLATE_RET] = {
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_INB_DX] = {
.lhs = { [0] = { REG_AL, REGCM_GPR8_LO } },
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
},
[TEMPLATE_INB_IMM] = {
.lhs = { [0] = { REG_AL, REGCM_GPR8_LO } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
},
[TEMPLATE_INW_DX] = {
.lhs = { [0] = { REG_AX, REGCM_GPR16 } },
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
},
[TEMPLATE_INW_IMM] = {
.lhs = { [0] = { REG_AX, REGCM_GPR16 } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
},
[TEMPLATE_INL_DX] = {
.lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
.rhs = { [0] = { REG_DX, REGCM_GPR16 } },
},
[TEMPLATE_INL_IMM] = {
.lhs = { [0] = { REG_EAX, REGCM_GPR32 } },
.rhs = { [0] = { REG_UNNEEDED, REGCM_IMM8 } },
},
[TEMPLATE_OUTB_DX] = {
.rhs = {
[0] = { REG_AL, REGCM_GPR8_LO },
[1] = { REG_DX, REGCM_GPR16 },
},
},
[TEMPLATE_OUTB_IMM] = {
.rhs = {
[0] = { REG_AL, REGCM_GPR8_LO },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_OUTW_DX] = {
.rhs = {
[0] = { REG_AX, REGCM_GPR16 },
[1] = { REG_DX, REGCM_GPR16 },
},
},
[TEMPLATE_OUTW_IMM] = {
.rhs = {
[0] = { REG_AX, REGCM_GPR16 },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_OUTL_DX] = {
.rhs = {
[0] = { REG_EAX, REGCM_GPR32 },
[1] = { REG_DX, REGCM_GPR16 },
},
},
[TEMPLATE_OUTL_IMM] = {
.rhs = {
[0] = { REG_EAX, REGCM_GPR32 },
[1] = { REG_UNNEEDED, REGCM_IMM8 },
},
},
[TEMPLATE_BSF] = {
.lhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
.rhs = { [0] = { REG_UNSET, REGCM_GPR32 } },
},
[TEMPLATE_RDMSR] = {
.lhs = {
[0] = { REG_EAX, REGCM_GPR32 },
[1] = { REG_EDX, REGCM_GPR32 },
},
.rhs = { [0] = { REG_ECX, REGCM_GPR32 } },
},
[TEMPLATE_WRMSR] = {
.rhs = {
[0] = { REG_ECX, REGCM_GPR32 },
[1] = { REG_EAX, REGCM_GPR32 },
[2] = { REG_EDX, REGCM_GPR32 },
},
},
[TEMPLATE_UMUL8] = {
.lhs = { [0] = { REG_AX, REGCM_GPR16 } },
.rhs = {
[0] = { REG_AL, REGCM_GPR8_LO },
[1] = { REG_UNSET, REGCM_GPR8_LO },
},
},
[TEMPLATE_UMUL16] = {
.lhs = { [0] = { REG_DXAX, REGCM_DIVIDEND32 } },
.rhs = {
[0] = { REG_AX, REGCM_GPR16 },
[1] = { REG_UNSET, REGCM_GPR16 },
},
},
[TEMPLATE_UMUL32] = {
.lhs = { [0] = { REG_EDXEAX, REGCM_DIVIDEND64 } },
.rhs = {
[0] = { REG_EAX, REGCM_GPR32 },
[1] = { REG_UNSET, REGCM_GPR32 },
},
},
[TEMPLATE_DIV8] = {
.lhs = {
[0] = { REG_AL, REGCM_GPR8_LO },
[1] = { REG_AH, REGCM_GPR8 },
},
.rhs = {
[0] = { REG_AX, REGCM_GPR16 },
[1] = { REG_UNSET, REGCM_GPR8_LO },
},
},
[TEMPLATE_DIV16] = {
.lhs = {
[0] = { REG_AX, REGCM_GPR16 },
[1] = { REG_DX, REGCM_GPR16 },
},
.rhs = {
[0] = { REG_DXAX, REGCM_DIVIDEND32 },
[1] = { REG_UNSET, REGCM_GPR16 },
},
},
[TEMPLATE_DIV32] = {
.lhs = {
[0] = { REG_EAX, REGCM_GPR32 },
[1] = { REG_EDX, REGCM_GPR32 },
},
.rhs = {
[0] = { REG_EDXEAX, REGCM_DIVIDEND64 },
[1] = { REG_UNSET, REGCM_GPR32 },
},
},
};
static void fixup_branch(struct compile_state *state,
struct triple *branch, int jmp_op, int cmp_op, struct type *cmp_type,
struct triple *left, struct triple *right)
{
struct triple *test;
if (!left) {
internal_error(state, branch, "no branch test?");
}
test = pre_triple(state, branch,
cmp_op, cmp_type, left, right);
test->template_id = TEMPLATE_TEST32;
if (cmp_op == OP_CMP) {
test->template_id = TEMPLATE_CMP32_REG;
if (get_imm32(test, &RHS(test, 1))) {
test->template_id = TEMPLATE_CMP32_IMM;
}
}
use_triple(RHS(test, 0), test);
use_triple(RHS(test, 1), test);
unuse_triple(RHS(branch, 0), branch);
RHS(branch, 0) = test;
branch->op = jmp_op;
branch->template_id = TEMPLATE_JMP;
use_triple(RHS(branch, 0), branch);
}
static void fixup_branches(struct compile_state *state,
struct triple *cmp, struct triple *use, int jmp_op)
{
struct triple_set *entry, *next;
for(entry = use->use; entry; entry = next) {
next = entry->next;
if (entry->member->op == OP_COPY) {
fixup_branches(state, cmp, entry->member, jmp_op);
}
else if (entry->member->op == OP_CBRANCH) {
struct triple *branch;
struct triple *left, *right;
left = right = 0;
left = RHS(cmp, 0);
if (cmp->rhs > 1) {
right = RHS(cmp, 1);
}
branch = entry->member;
fixup_branch(state, branch, jmp_op,
cmp->op, cmp->type, left, right);
}
}
}
static void bool_cmp(struct compile_state *state,
struct triple *ins, int cmp_op, int jmp_op, int set_op)
{
struct triple_set *entry, *next;
struct triple *set, *convert;
/* Put a barrier up before the cmp which preceeds the
* copy instruction. If a set actually occurs this gives
* us a chance to move variables in registers out of the way.
*/
/* Modify the comparison operator */
ins->op = cmp_op;
ins->template_id = TEMPLATE_TEST32;
if (cmp_op == OP_CMP) {
ins->template_id = TEMPLATE_CMP32_REG;
if (get_imm32(ins, &RHS(ins, 1))) {
ins->template_id = TEMPLATE_CMP32_IMM;
}
}
/* Generate the instruction sequence that will transform the
* result of the comparison into a logical value.
*/
set = post_triple(state, ins, set_op, &uchar_type, ins, 0);
use_triple(ins, set);
set->template_id = TEMPLATE_SET;
convert = set;
if (!equiv_types(ins->type, set->type)) {
convert = post_triple(state, set, OP_CONVERT, ins->type, set, 0);
use_triple(set, convert);
convert->template_id = TEMPLATE_COPY32_REG;
}
for(entry = ins->use; entry; entry = next) {
next = entry->next;
if (entry->member == set) {
continue;
}
replace_rhs_use(state, ins, convert, entry->member);
}
fixup_branches(state, ins, convert, jmp_op);
}
struct reg_info arch_reg_lhs(struct compile_state *state, struct triple *ins, int index)
{
struct ins_template *template;
struct reg_info result;
int zlhs;
if (ins->op == OP_PIECE) {
index = ins->u.cval;
ins = MISC(ins, 0);
}
zlhs = ins->lhs;
if (triple_is_def(state, ins)) {
zlhs = 1;
}
if (index >= zlhs) {
internal_error(state, ins, "index %d out of range for %s",
index, tops(ins->op));
}
switch(ins->op) {
case OP_ASM:
template = &ins->u.ainfo->tmpl;
break;
default:
if (ins->template_id > LAST_TEMPLATE) {
internal_error(state, ins, "bad template number %d",
ins->template_id);
}
template = &templates[ins->template_id];
break;
}
result = template->lhs[index];
result.regcm = arch_regcm_normalize(state, result.regcm);
if (result.reg != REG_UNNEEDED) {
result.regcm &= ~(REGCM_IMM32 | REGCM_IMM16 | REGCM_IMM8);
}
if (result.regcm == 0) {
internal_error(state, ins, "lhs %d regcm == 0", index);
}
return result;
}
struct reg_info arch_reg_rhs(struct compile_state *state, struct triple *ins, int index)
{
struct reg_info result;
struct ins_template *template;
if ((index > ins->rhs) ||
(ins->op == OP_PIECE)) {
internal_error(state, ins, "index %d out of range for %s\n",
index, tops(ins->op));
}
switch(ins->op) {
case OP_ASM:
template = &ins->u.ainfo->tmpl;
break;
case OP_PHI:
index = 0;
/* Fall through */
default:
if (ins->template_id > LAST_TEMPLATE) {
internal_error(state, ins, "bad template number %d",
ins->template_id);
}
template = &templates[ins->template_id];
break;
}
result = template->rhs[index];
result.regcm = arch_regcm_normalize(state, result.regcm);
if (result.regcm == 0) {
internal_error(state, ins, "rhs %d regcm == 0", index);
}
return result;
}
static struct triple *mod_div(struct compile_state *state,
struct triple *ins, int div_op, int index)
{
struct triple *div, *piece1;
/* Generate the appropriate division instruction */
div = post_triple(state, ins, div_op, ins->type, 0, 0);
RHS(div, 0) = RHS(ins, 0);
RHS(div, 1) = RHS(ins, 1);
piece1 = LHS(div, 1);
div->template_id = TEMPLATE_DIV32;
use_triple(RHS(div, 0), div);
use_triple(RHS(div, 1), div);
use_triple(LHS(div, 0), div);
use_triple(LHS(div, 1), div);
/* Replate uses of ins with the appropriate piece of the div */
propogate_use(state, ins, LHS(div, index));
release_triple(state, ins);
/* Return the address of the next instruction */
return piece1->next;
}
static int noop_adecl(struct triple *adecl)
{
struct triple_set *use;
/* It's a noop if it doesn't specify stoorage */
if (adecl->lhs == 0) {
return 1;
}
/* Is the adecl used? If not it's a noop */
for(use = adecl->use; use ; use = use->next) {
if ((use->member->op != OP_PIECE) ||
(MISC(use->member, 0) != adecl)) {
return 0;
}
}
return 1;
}
static struct triple *x86_deposit(struct compile_state *state, struct triple *ins)
{
struct triple *mask, *nmask, *shift;
struct triple *val, *val_mask, *val_shift;
struct triple *targ, *targ_mask;
struct triple *new;
ulong_t the_mask, the_nmask;
targ = RHS(ins, 0);
val = RHS(ins, 1);
/* Get constant for the mask value */
the_mask = 1;
the_mask <<= ins->u.bitfield.size;
the_mask -= 1;
the_mask <<= ins->u.bitfield.offset;
mask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
mask->u.cval = the_mask;
/* Get the inverted mask value */
the_nmask = ~the_mask;
nmask = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
nmask->u.cval = the_nmask;
/* Get constant for the shift value */
shift = pre_triple(state, ins, OP_INTCONST, &uint_type, 0, 0);
shift->u.cval = ins->u.bitfield.offset;
/* Shift and mask the source value */
val_shift = val;
if (shift->u.cval != 0) {
val_shift = pre_triple(state, ins, OP_SL, val->type, val, shift);
use_triple(val, val_shift);
use_triple(shift, val_shift);
}
val_mask = val_shift;
if (is_signed(val->type)) {
val_mask = pre_triple(state, ins, OP_AND, val->type, val_shift, mask);
use_triple(val_shift, val_mask);
use_triple(mask, val_mask);
}
/* Mask the target value */
targ_mask = pre_triple(state, ins, OP_AND, targ->type, targ, nmask);
use_triple(targ, targ_mask);
use_triple(nmask, targ_mask);
/* Now combined them together */
new = pre_triple(state, ins, OP_OR, targ->type, targ_mask, val_mask);
use_triple(targ_mask, new);
use_triple(val_mask, new);
/* Move all of the users over to the new expression */
propogate_use(state, ins, new);
/* Delete the original triple */
release_triple(state, ins);
/* Restart the transformation at mask */
return mask;
}
static struct triple *x86_extract(struct compile_state *state, struct triple *ins)
{
struct triple *mask, *shift;
struct triple *val, *val_mask, *val_shift;
ulong_t the_mask;
val = RHS(ins, 0);
/* Get constant for the mask value */
the_mask = 1;
the_mask <<= ins->u.bitfield.size;
the_mask -= 1;
mask = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
mask->u.cval = the_mask;
/* Get constant for the right shift value */
shift = pre_triple(state, ins, OP_INTCONST, &int_type, 0, 0);
shift->u.cval = ins->u.bitfield.offset;
/* Shift arithmetic right, to correct the sign */
val_shift = val;
if (shift->u.cval != 0) {
int op;
if (ins->op == OP_SEXTRACT) {
op = OP_SSR;
} else {
op = OP_USR;
}
val_shift = pre_triple(state, ins, op, val->type, val, shift);
use_triple(val, val_shift);
use_triple(shift, val_shift);
}
/* Finally mask the value */
val_mask = pre_triple(state, ins, OP_AND, ins->type, val_shift, mask);
use_triple(val_shift, val_mask);
use_triple(mask, val_mask);
/* Move all of the users over to the new expression */
propogate_use(state, ins, val_mask);
/* Release the original instruction */
release_triple(state, ins);
return mask;
}
static struct triple *transform_to_arch_instruction(
struct compile_state *state, struct triple *ins)
{
/* Transform from generic 3 address instructions
* to archtecture specific instructions.
* And apply architecture specific constraints to instructions.
* Copies are inserted to preserve the register flexibility
* of 3 address instructions.
*/
struct triple *next, *value;
size_t size;
next = ins->next;
switch(ins->op) {
case OP_INTCONST:
ins->template_id = TEMPLATE_INTCONST32;
if (ins->u.cval < 256) {
ins->template_id = TEMPLATE_INTCONST8;
}
break;
case OP_ADDRCONST:
ins->template_id = TEMPLATE_INTCONST32;
break;
case OP_UNKNOWNVAL:
ins->template_id = TEMPLATE_UNKNOWNVAL;
break;
case OP_NOOP:
case OP_SDECL:
case OP_BLOBCONST:
case OP_LABEL:
ins->template_id = TEMPLATE_NOP;
break;
case OP_COPY:
case OP_CONVERT:
size = size_of(state, ins->type);
value = RHS(ins, 0);
if (is_imm8(value) && (size <= SIZEOF_I8)) {
ins->template_id = TEMPLATE_COPY_IMM8;
}
else if (is_imm16(value) && (size <= SIZEOF_I16)) {
ins->template_id = TEMPLATE_COPY_IMM16;
}
else if (is_imm32(value) && (size <= SIZEOF_I32)) {
ins->template_id = TEMPLATE_COPY_IMM32;
}
else if (is_const(value)) {
internal_error(state, ins, "bad constant passed to copy");
}
else if (size <= SIZEOF_I8) {
ins->template_id = TEMPLATE_COPY8_REG;
}
else if (size <= SIZEOF_I16) {
ins->template_id = TEMPLATE_COPY16_REG;
}
else if (size <= SIZEOF_I32) {
ins->template_id = TEMPLATE_COPY32_REG;
}
else {
internal_error(state, ins, "bad type passed to copy");
}
break;
case OP_PHI:
size = size_of(state, ins->type);
if (size <= SIZEOF_I8) {
ins->template_id = TEMPLATE_PHI8;
}
else if (size <= SIZEOF_I16) {
ins->template_id = TEMPLATE_PHI16;
}
else if (size <= SIZEOF_I32) {
ins->template_id = TEMPLATE_PHI32;
}
else {
internal_error(state, ins, "bad type passed to phi");
}
break;
case OP_ADECL:
/* Adecls should always be treated as dead code and
* removed. If we are not optimizing they may linger.
*/
if (!noop_adecl(ins)) {
internal_error(state, ins, "adecl remains?");
}
ins->template_id = TEMPLATE_NOP;
next = after_lhs(state, ins);
break;
case OP_STORE:
switch(ins->type->type & TYPE_MASK) {
case TYPE_CHAR: case TYPE_UCHAR:
ins->template_id = TEMPLATE_STORE8;
break;
case TYPE_SHORT: case TYPE_USHORT:
ins->template_id = TEMPLATE_STORE16;
break;
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
case TYPE_POINTER:
ins->template_id = TEMPLATE_STORE32;
break;
default:
internal_error(state, ins, "unknown type in store");
break;
}
break;
case OP_LOAD:
switch(ins->type->type & TYPE_MASK) {
case TYPE_CHAR: case TYPE_UCHAR:
case TYPE_SHORT: case TYPE_USHORT:
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
case TYPE_POINTER:
break;
default:
internal_error(state, ins, "unknown type in load");
break;
}
ins->template_id = TEMPLATE_LOAD32;
break;
case OP_ADD:
case OP_SUB:
case OP_AND:
case OP_XOR:
case OP_OR:
case OP_SMUL:
ins->template_id = TEMPLATE_BINARY32_REG;
if (get_imm32(ins, &RHS(ins, 1))) {
ins->template_id = TEMPLATE_BINARY32_IMM;
}
break;
case OP_SDIVT:
case OP_UDIVT:
ins->template_id = TEMPLATE_DIV32;
next = after_lhs(state, ins);
break;
case OP_UMUL:
ins->template_id = TEMPLATE_UMUL32;
break;
case OP_UDIV:
next = mod_div(state, ins, OP_UDIVT, 0);
break;
case OP_SDIV:
next = mod_div(state, ins, OP_SDIVT, 0);
break;
case OP_UMOD:
next = mod_div(state, ins, OP_UDIVT, 1);
break;
case OP_SMOD:
next = mod_div(state, ins, OP_SDIVT, 1);
break;
case OP_SL:
case OP_SSR:
case OP_USR:
ins->template_id = TEMPLATE_SL32_CL;
if (get_imm8(ins, &RHS(ins, 1))) {
ins->template_id = TEMPLATE_SL32_IMM;
} else if (size_of(state, RHS(ins, 1)->type) > SIZEOF_CHAR) {
typed_pre_copy(state, &uchar_type, ins, 1);
}
break;
case OP_INVERT:
case OP_NEG:
ins->template_id = TEMPLATE_UNARY32;
break;
case OP_EQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_EQ, OP_SET_EQ);
break;
case OP_NOTEQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_NOTEQ, OP_SET_NOTEQ);
break;
case OP_SLESS:
bool_cmp(state, ins, OP_CMP, OP_JMP_SLESS, OP_SET_SLESS);
break;
case OP_ULESS:
bool_cmp(state, ins, OP_CMP, OP_JMP_ULESS, OP_SET_ULESS);
break;
case OP_SMORE:
bool_cmp(state, ins, OP_CMP, OP_JMP_SMORE, OP_SET_SMORE);
break;
case OP_UMORE:
bool_cmp(state, ins, OP_CMP, OP_JMP_UMORE, OP_SET_UMORE);
break;
case OP_SLESSEQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_SLESSEQ, OP_SET_SLESSEQ);
break;
case OP_ULESSEQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_ULESSEQ, OP_SET_ULESSEQ);
break;
case OP_SMOREEQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_SMOREEQ, OP_SET_SMOREEQ);
break;
case OP_UMOREEQ:
bool_cmp(state, ins, OP_CMP, OP_JMP_UMOREEQ, OP_SET_UMOREEQ);
break;
case OP_LTRUE:
bool_cmp(state, ins, OP_TEST, OP_JMP_NOTEQ, OP_SET_NOTEQ);
break;
case OP_LFALSE:
bool_cmp(state, ins, OP_TEST, OP_JMP_EQ, OP_SET_EQ);
break;
case OP_BRANCH:
ins->op = OP_JMP;
ins->template_id = TEMPLATE_NOP;
break;
case OP_CBRANCH:
fixup_branch(state, ins, OP_JMP_NOTEQ, OP_TEST,
RHS(ins, 0)->type, RHS(ins, 0), 0);
break;
case OP_CALL:
ins->template_id = TEMPLATE_NOP;
break;
case OP_RET:
ins->template_id = TEMPLATE_RET;
break;
case OP_INB:
case OP_INW:
case OP_INL:
switch(ins->op) {
case OP_INB: ins->template_id = TEMPLATE_INB_DX; break;
case OP_INW: ins->template_id = TEMPLATE_INW_DX; break;
case OP_INL: ins->template_id = TEMPLATE_INL_DX; break;
}
if (get_imm8(ins, &RHS(ins, 0))) {
ins->template_id += 1;
}
break;
case OP_OUTB:
case OP_OUTW:
case OP_OUTL:
switch(ins->op) {
case OP_OUTB: ins->template_id = TEMPLATE_OUTB_DX; break;
case OP_OUTW: ins->template_id = TEMPLATE_OUTW_DX; break;
case OP_OUTL: ins->template_id = TEMPLATE_OUTL_DX; break;
}
if (get_imm8(ins, &RHS(ins, 1))) {
ins->template_id += 1;
}
break;
case OP_BSF:
case OP_BSR:
ins->template_id = TEMPLATE_BSF;
break;
case OP_RDMSR:
ins->template_id = TEMPLATE_RDMSR;
next = after_lhs(state, ins);
break;
case OP_WRMSR:
ins->template_id = TEMPLATE_WRMSR;
break;
case OP_HLT:
ins->template_id = TEMPLATE_NOP;
break;
case OP_ASM:
ins->template_id = TEMPLATE_NOP;
next = after_lhs(state, ins);
break;
/* Already transformed instructions */
case OP_TEST:
ins->template_id = TEMPLATE_TEST32;
break;
case OP_CMP:
ins->template_id = TEMPLATE_CMP32_REG;
if (get_imm32(ins, &RHS(ins, 1))) {
ins->template_id = TEMPLATE_CMP32_IMM;
}
break;
case OP_JMP:
ins->template_id = TEMPLATE_NOP;
break;
case OP_JMP_EQ: case OP_JMP_NOTEQ:
case OP_JMP_SLESS: case OP_JMP_ULESS:
case OP_JMP_SMORE: case OP_JMP_UMORE:
case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
ins->template_id = TEMPLATE_JMP;
break;
case OP_SET_EQ: case OP_SET_NOTEQ:
case OP_SET_SLESS: case OP_SET_ULESS:
case OP_SET_SMORE: case OP_SET_UMORE:
case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
ins->template_id = TEMPLATE_SET;
break;
case OP_DEPOSIT:
next = x86_deposit(state, ins);
break;
case OP_SEXTRACT:
case OP_UEXTRACT:
next = x86_extract(state, ins);
break;
/* Unhandled instructions */
case OP_PIECE:
default:
internal_error(state, ins, "unhandled ins: %d %s",
ins->op, tops(ins->op));
break;
}
return next;
}
static long next_label(struct compile_state *state)
{
static long label_counter = 1000;
return ++label_counter;
}
static void generate_local_labels(struct compile_state *state)
{
struct triple *first, *label;
first = state->first;
label = first;
do {
if ((label->op == OP_LABEL) ||
(label->op == OP_SDECL)) {
if (label->use) {
label->u.cval = next_label(state);
} else {
label->u.cval = 0;
}
}
label = label->next;
} while(label != first);
}
static int check_reg(struct compile_state *state,
struct triple *triple, int classes)
{
unsigned mask;
int reg;
reg = ID_REG(triple->id);
if (reg == REG_UNSET) {
internal_error(state, triple, "register not set");
}
mask = arch_reg_regcm(state, reg);
if (!(classes & mask)) {
internal_error(state, triple, "reg %d in wrong class",
reg);
}
return reg;
}
#if REG_XMM7 != 44
#error "Registers have renumberd fix arch_reg_str"
#endif
static const char *arch_regs[] = {
"%unset",
"%unneeded",
"%eflags",
"%al", "%bl", "%cl", "%dl", "%ah", "%bh", "%ch", "%dh",
"%ax", "%bx", "%cx", "%dx", "%si", "%di", "%bp", "%sp",
"%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi", "%ebp", "%esp",
"%edx:%eax",
"%dx:%ax",
"%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7",
"%xmm0", "%xmm1", "%xmm2", "%xmm3",
"%xmm4", "%xmm5", "%xmm6", "%xmm7",
};
static const char *arch_reg_str(int reg)
{
if (!((reg >= REG_EFLAGS) && (reg <= REG_XMM7))) {
reg = 0;
}
return arch_regs[reg];
}
static const char *reg(struct compile_state *state, struct triple *triple,
int classes)
{
int reg;
reg = check_reg(state, triple, classes);
return arch_reg_str(reg);
}
static int arch_reg_size(int reg)
{
int size;
size = 0;
if (reg == REG_EFLAGS) {
size = 32;
}
else if ((reg >= REG_AL) && (reg <= REG_DH)) {
size = 8;
}
else if ((reg >= REG_AX) && (reg <= REG_SP)) {
size = 16;
}
else if ((reg >= REG_EAX) && (reg <= REG_ESP)) {
size = 32;
}
else if (reg == REG_EDXEAX) {
size = 64;
}
else if (reg == REG_DXAX) {
size = 32;
}
else if ((reg >= REG_MMX0) && (reg <= REG_MMX7)) {
size = 64;
}
else if ((reg >= REG_XMM0) && (reg <= REG_XMM7)) {
size = 128;
}
return size;
}
static int reg_size(struct compile_state *state, struct triple *ins)
{
int reg;
reg = ID_REG(ins->id);
if (reg == REG_UNSET) {
internal_error(state, ins, "register not set");
}
return arch_reg_size(reg);
}
const char *type_suffix(struct compile_state *state, struct type *type)
{
const char *suffix;
switch(size_of(state, type)) {
case SIZEOF_I8: suffix = "b"; break;
case SIZEOF_I16: suffix = "w"; break;
case SIZEOF_I32: suffix = "l"; break;
default:
internal_error(state, 0, "unknown suffix");
suffix = 0;
break;
}
return suffix;
}
static void print_const_val(
struct compile_state *state, struct triple *ins, FILE *fp)
{
switch(ins->op) {
case OP_INTCONST:
fprintf(fp, " $%ld ",
(long)(ins->u.cval));
break;
case OP_ADDRCONST:
if ((MISC(ins, 0)->op != OP_SDECL) &&
(MISC(ins, 0)->op != OP_LABEL))
{
internal_error(state, ins, "bad base for addrconst");
}
if (MISC(ins, 0)->u.cval <= 0) {
internal_error(state, ins, "unlabeled constant");
}
fprintf(fp, " $L%s%lu+%lu ",
state->compiler->label_prefix,
(unsigned long)(MISC(ins, 0)->u.cval),
(unsigned long)(ins->u.cval));
break;
default:
internal_error(state, ins, "unknown constant type");
break;
}
}
static void print_const(struct compile_state *state,
struct triple *ins, FILE *fp)
{
switch(ins->op) {
case OP_INTCONST:
switch(ins->type->type & TYPE_MASK) {
case TYPE_CHAR:
case TYPE_UCHAR:
fprintf(fp, ".byte 0x%02lx\n",
(unsigned long)(ins->u.cval));
break;
case TYPE_SHORT:
case TYPE_USHORT:
fprintf(fp, ".short 0x%04lx\n",
(unsigned long)(ins->u.cval));
break;
case TYPE_INT:
case TYPE_UINT:
case TYPE_LONG:
case TYPE_ULONG:
case TYPE_POINTER:
fprintf(fp, ".int %lu\n",
(unsigned long)(ins->u.cval));
break;
default:
fprintf(state->errout, "type: ");
name_of(state->errout, ins->type);
fprintf(state->errout, "\n");
internal_error(state, ins, "Unknown constant type. Val: %lu",
(unsigned long)(ins->u.cval));
}
break;
case OP_ADDRCONST:
if ((MISC(ins, 0)->op != OP_SDECL) &&
(MISC(ins, 0)->op != OP_LABEL)) {
internal_error(state, ins, "bad base for addrconst");
}
if (MISC(ins, 0)->u.cval <= 0) {
internal_error(state, ins, "unlabeled constant");
}
fprintf(fp, ".int L%s%lu+%lu\n",
state->compiler->label_prefix,
(unsigned long)(MISC(ins, 0)->u.cval),
(unsigned long)(ins->u.cval));
break;
case OP_BLOBCONST:
{
unsigned char *blob;
size_t size, i;
size = size_of_in_bytes(state, ins->type);
blob = ins->u.blob;
for(i = 0; i < size; i++) {
fprintf(fp, ".byte 0x%02x\n",
blob[i]);
}
break;
}
default:
internal_error(state, ins, "Unknown constant type");
break;
}
}
#define TEXT_SECTION ".rom.text"
#define DATA_SECTION ".rom.data"
static long get_const_pool_ref(
struct compile_state *state, struct triple *ins, size_t size, FILE *fp)
{
size_t fill_bytes;
long ref;
ref = next_label(state);
fprintf(fp, ".section \"" DATA_SECTION "\"\n");
fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
fprintf(fp, "L%s%lu:\n", state->compiler->label_prefix, ref);
print_const(state, ins, fp);
fill_bytes = bits_to_bytes(size - size_of(state, ins->type));
if (fill_bytes) {
fprintf(fp, ".fill %ld, 1, 0\n", (long int)fill_bytes);
}
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
return ref;
}
static long get_mask_pool_ref(
struct compile_state *state, struct triple *ins, unsigned long mask, FILE *fp)
{
long ref;
if (mask == 0xff) {
ref = 1;
}
else if (mask == 0xffff) {
ref = 2;
}
else {
ref = 0;
internal_error(state, ins, "unhandled mask value");
}
return ref;
}
static void print_binary_op(struct compile_state *state,
const char *op, struct triple *ins, FILE *fp)
{
unsigned mask;
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
internal_error(state, ins, "invalid register assignment");
}
if (is_const(RHS(ins, 1))) {
fprintf(fp, "\t%s ", op);
print_const_val(state, RHS(ins, 1), fp);
fprintf(fp, ", %s\n",
reg(state, RHS(ins, 0), mask));
}
else {
unsigned lmask, rmask;
int lreg, rreg;
lreg = check_reg(state, RHS(ins, 0), mask);
rreg = check_reg(state, RHS(ins, 1), mask);
lmask = arch_reg_regcm(state, lreg);
rmask = arch_reg_regcm(state, rreg);
mask = lmask & rmask;
fprintf(fp, "\t%s %s, %s\n",
op,
reg(state, RHS(ins, 1), mask),
reg(state, RHS(ins, 0), mask));
}
}
static void print_unary_op(struct compile_state *state,
const char *op, struct triple *ins, FILE *fp)
{
unsigned mask;
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
fprintf(fp, "\t%s %s\n",
op,
reg(state, RHS(ins, 0), mask));
}
static void print_op_shift(struct compile_state *state,
const char *op, struct triple *ins, FILE *fp)
{
unsigned mask;
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
if (ID_REG(RHS(ins, 0)->id) != ID_REG(ins->id)) {
internal_error(state, ins, "invalid register assignment");
}
if (is_const(RHS(ins, 1))) {
fprintf(fp, "\t%s ", op);
print_const_val(state, RHS(ins, 1), fp);
fprintf(fp, ", %s\n",
reg(state, RHS(ins, 0), mask));
}
else {
fprintf(fp, "\t%s %s, %s\n",
op,
reg(state, RHS(ins, 1), REGCM_GPR8_LO),
reg(state, RHS(ins, 0), mask));
}
}
static void print_op_in(struct compile_state *state, struct triple *ins, FILE *fp)
{
const char *op;
int mask;
int dreg;
mask = 0;
switch(ins->op) {
case OP_INB: op = "inb", mask = REGCM_GPR8_LO; break;
case OP_INW: op = "inw", mask = REGCM_GPR16; break;
case OP_INL: op = "inl", mask = REGCM_GPR32; break;
default:
internal_error(state, ins, "not an in operation");
op = 0;
break;
}
dreg = check_reg(state, ins, mask);
if (!reg_is_reg(state, dreg, REG_EAX)) {
internal_error(state, ins, "dst != %%eax");
}
if (is_const(RHS(ins, 0))) {
fprintf(fp, "\t%s ", op);
print_const_val(state, RHS(ins, 0), fp);
fprintf(fp, ", %s\n",
reg(state, ins, mask));
}
else {
int addr_reg;
addr_reg = check_reg(state, RHS(ins, 0), REGCM_GPR16);
if (!reg_is_reg(state, addr_reg, REG_DX)) {
internal_error(state, ins, "src != %%dx");
}
fprintf(fp, "\t%s %s, %s\n",
op,
reg(state, RHS(ins, 0), REGCM_GPR16),
reg(state, ins, mask));
}
}
static void print_op_out(struct compile_state *state, struct triple *ins, FILE *fp)
{
const char *op;
int mask;
int lreg;
mask = 0;
switch(ins->op) {
case OP_OUTB: op = "outb", mask = REGCM_GPR8_LO; break;
case OP_OUTW: op = "outw", mask = REGCM_GPR16; break;
case OP_OUTL: op = "outl", mask = REGCM_GPR32; break;
default:
internal_error(state, ins, "not an out operation");
op = 0;
break;
}
lreg = check_reg(state, RHS(ins, 0), mask);
if (!reg_is_reg(state, lreg, REG_EAX)) {
internal_error(state, ins, "src != %%eax");
}
if (is_const(RHS(ins, 1))) {
fprintf(fp, "\t%s %s,",
op, reg(state, RHS(ins, 0), mask));
print_const_val(state, RHS(ins, 1), fp);
fprintf(fp, "\n");
}
else {
int addr_reg;
addr_reg = check_reg(state, RHS(ins, 1), REGCM_GPR16);
if (!reg_is_reg(state, addr_reg, REG_DX)) {
internal_error(state, ins, "dst != %%dx");
}
fprintf(fp, "\t%s %s, %s\n",
op,
reg(state, RHS(ins, 0), mask),
reg(state, RHS(ins, 1), REGCM_GPR16));
}
}
static void print_op_move(struct compile_state *state,
struct triple *ins, FILE *fp)
{
/* op_move is complex because there are many types
* of registers we can move between.
* Because OP_COPY will be introduced in arbitrary locations
* OP_COPY must not affect flags.
* OP_CONVERT can change the flags and it is the only operation
* where it is expected the types in the registers can change.
*/
int omit_copy = 1; /* Is it o.k. to omit a noop copy? */
struct triple *dst, *src;
if (state->arch->features & X86_NOOP_COPY) {
omit_copy = 0;
}
if ((ins->op == OP_COPY) || (ins->op == OP_CONVERT)) {
src = RHS(ins, 0);
dst = ins;
}
else {
internal_error(state, ins, "unknown move operation");
src = dst = 0;
}
if (reg_size(state, dst) < size_of(state, dst->type)) {
internal_error(state, ins, "Invalid destination register");
}
if (!equiv_types(src->type, dst->type) && (dst->op == OP_COPY)) {
fprintf(state->errout, "src type: ");
name_of(state->errout, src->type);
fprintf(state->errout, "\n");
fprintf(state->errout, "dst type: ");
name_of(state->errout, dst->type);
fprintf(state->errout, "\n");
internal_error(state, ins, "Type mismatch for OP_COPY");
}
if (!is_const(src)) {
int src_reg, dst_reg;
int src_regcm, dst_regcm;
src_reg = ID_REG(src->id);
dst_reg = ID_REG(dst->id);
src_regcm = arch_reg_regcm(state, src_reg);
dst_regcm = arch_reg_regcm(state, dst_reg);
/* If the class is the same just move the register */
if (src_regcm & dst_regcm &
(REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32)) {
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmov %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
}
/* Move 32bit to 16bit */
else if ((src_regcm & REGCM_GPR32) &&
(dst_regcm & REGCM_GPR16)) {
src_reg = (src_reg - REGC_GPR32_FIRST) + REGC_GPR16_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmovw %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
/* Move from 32bit gprs to 16bit gprs */
else if ((src_regcm & REGCM_GPR32) &&
(dst_regcm & REGCM_GPR16)) {
dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmov %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
/* Move 32bit to 8bit */
else if ((src_regcm & REGCM_GPR32_8) &&
(dst_regcm & REGCM_GPR8_LO))
{
src_reg = (src_reg - REGC_GPR32_8_FIRST) + REGC_GPR8_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmovb %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
/* Move 16bit to 8bit */
else if ((src_regcm & REGCM_GPR16_8) &&
(dst_regcm & REGCM_GPR8_LO))
{
src_reg = (src_reg - REGC_GPR16_8_FIRST) + REGC_GPR8_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmovb %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
/* Move 8/16bit to 16/32bit */
else if ((src_regcm & (REGCM_GPR8_LO | REGCM_GPR16)) &&
(dst_regcm & (REGCM_GPR16 | REGCM_GPR32))) {
const char *op;
op = is_signed(src->type)? "movsx": "movzx";
fprintf(fp, "\t%s %s, %s\n",
op,
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
/* Move between sse registers */
else if ((src_regcm & dst_regcm & REGCM_XMM)) {
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmovdqa %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
}
/* Move between mmx registers */
else if ((src_regcm & dst_regcm & REGCM_MMX)) {
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmovq %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
}
/* Move from sse to mmx registers */
else if ((src_regcm & REGCM_XMM) && (dst_regcm & REGCM_MMX)) {
fprintf(fp, "\tmovdq2q %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
/* Move from mmx to sse registers */
else if ((src_regcm & REGCM_MMX) && (dst_regcm & REGCM_XMM)) {
fprintf(fp, "\tmovq2dq %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
/* Move between 32bit gprs & mmx/sse registers */
else if ((src_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM)) &&
(dst_regcm & (REGCM_GPR32 | REGCM_MMX | REGCM_XMM))) {
fprintf(fp, "\tmovd %s, %s\n",
reg(state, src, src_regcm),
reg(state, dst, dst_regcm));
}
/* Move from 16bit gprs & mmx/sse registers */
else if ((src_regcm & REGCM_GPR16) &&
(dst_regcm & (REGCM_MMX | REGCM_XMM))) {
const char *op;
int mid_reg;
op = is_signed(src->type)? "movsx":"movzx";
mid_reg = (src_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
op,
arch_reg_str(src_reg),
arch_reg_str(mid_reg),
arch_reg_str(mid_reg),
arch_reg_str(dst_reg));
}
/* Move from mmx/sse registers to 16bit gprs */
else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
(dst_regcm & REGCM_GPR16)) {
dst_reg = (dst_reg - REGC_GPR16_FIRST) + REGC_GPR32_FIRST;
fprintf(fp, "\tmovd %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
/* Move from gpr to 64bit dividend */
else if ((src_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) &&
(dst_regcm & REGCM_DIVIDEND64)) {
const char *extend;
extend = is_signed(src->type)? "cltd":"movl $0, %edx";
fprintf(fp, "\tmov %s, %%eax\n\t%s\n",
arch_reg_str(src_reg),
extend);
}
/* Move from 64bit gpr to gpr */
else if ((src_regcm & REGCM_DIVIDEND64) &&
(dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO))) {
if (dst_regcm & REGCM_GPR32) {
src_reg = REG_EAX;
}
else if (dst_regcm & REGCM_GPR16) {
src_reg = REG_AX;
}
else if (dst_regcm & REGCM_GPR8_LO) {
src_reg = REG_AL;
}
fprintf(fp, "\tmov %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
/* Move from mmx/sse registers to 64bit gpr */
else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
(dst_regcm & REGCM_DIVIDEND64)) {
const char *extend;
extend = is_signed(src->type)? "cltd": "movl $0, %edx";
fprintf(fp, "\tmovd %s, %%eax\n\t%s\n",
arch_reg_str(src_reg),
extend);
}
/* Move from 64bit gpr to mmx/sse register */
else if ((src_regcm & REGCM_DIVIDEND64) &&
(dst_regcm & (REGCM_XMM | REGCM_MMX))) {
fprintf(fp, "\tmovd %%eax, %s\n",
arch_reg_str(dst_reg));
}
#if X86_4_8BIT_GPRS
/* Move from 8bit gprs to mmx/sse registers */
else if ((src_regcm & REGCM_GPR8_LO) && (src_reg <= REG_DL) &&
(dst_regcm & (REGCM_MMX | REGCM_XMM))) {
const char *op;
int mid_reg;
op = is_signed(src->type)? "movsx":"movzx";
mid_reg = (src_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
fprintf(fp, "\t%s %s, %s\n\tmovd %s, %s\n",
op,
reg(state, src, src_regcm),
arch_reg_str(mid_reg),
arch_reg_str(mid_reg),
reg(state, dst, dst_regcm));
}
/* Move from mmx/sse registers and 8bit gprs */
else if ((src_regcm & (REGCM_MMX | REGCM_XMM)) &&
(dst_regcm & REGCM_GPR8_LO) && (dst_reg <= REG_DL)) {
int mid_reg;
mid_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
fprintf(fp, "\tmovd %s, %s\n",
reg(state, src, src_regcm),
arch_reg_str(mid_reg));
}
/* Move from 32bit gprs to 8bit gprs */
else if ((src_regcm & REGCM_GPR32) &&
(dst_regcm & REGCM_GPR8_LO)) {
dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR32_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmov %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
/* Move from 16bit gprs to 8bit gprs */
else if ((src_regcm & REGCM_GPR16) &&
(dst_regcm & REGCM_GPR8_LO)) {
dst_reg = (dst_reg - REGC_GPR8_FIRST) + REGC_GPR16_FIRST;
if ((src_reg != dst_reg) || !omit_copy) {
fprintf(fp, "\tmov %s, %s\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
#endif /* X86_4_8BIT_GPRS */
/* Move from %eax:%edx to %eax:%edx */
else if ((src_regcm & REGCM_DIVIDEND64) &&
(dst_regcm & REGCM_DIVIDEND64) &&
(src_reg == dst_reg)) {
if (!omit_copy) {
fprintf(fp, "\t/*mov %s, %s*/\n",
arch_reg_str(src_reg),
arch_reg_str(dst_reg));
}
}
else {
if ((src_regcm & ~REGCM_FLAGS) == 0) {
internal_error(state, ins, "attempt to copy from %%eflags!");
}
internal_error(state, ins, "unknown copy type");
}
}
else {
size_t dst_size;
int dst_reg;
int dst_regcm;
dst_size = size_of(state, dst->type);
dst_reg = ID_REG(dst->id);
dst_regcm = arch_reg_regcm(state, dst_reg);
if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
fprintf(fp, "\tmov ");
print_const_val(state, src, fp);
fprintf(fp, ", %s\n",
reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
}
else if (dst_regcm & REGCM_DIVIDEND64) {
if (dst_size > SIZEOF_I32) {
internal_error(state, ins, "%dbit constant...", dst_size);
}
fprintf(fp, "\tmov $0, %%edx\n");
fprintf(fp, "\tmov ");
print_const_val(state, src, fp);
fprintf(fp, ", %%eax\n");
}
else if (dst_regcm & REGCM_DIVIDEND32) {
if (dst_size > SIZEOF_I16) {
internal_error(state, ins, "%dbit constant...", dst_size);
}
fprintf(fp, "\tmov $0, %%dx\n");
fprintf(fp, "\tmov ");
print_const_val(state, src, fp);
fprintf(fp, ", %%ax");
}
else if (dst_regcm & (REGCM_XMM | REGCM_MMX)) {
long ref;
if (dst_size > SIZEOF_I32) {
internal_error(state, ins, "%d bit constant...", dst_size);
}
ref = get_const_pool_ref(state, src, SIZEOF_I32, fp);
fprintf(fp, "\tmovd L%s%lu, %s\n",
state->compiler->label_prefix, ref,
reg(state, dst, (REGCM_XMM | REGCM_MMX)));
}
else {
internal_error(state, ins, "unknown copy immediate type");
}
}
/* Leave now if this is not a type conversion */
if (ins->op != OP_CONVERT) {
return;
}
/* Now make certain I have not logically overflowed the destination */
if ((size_of(state, src->type) > size_of(state, dst->type)) &&
(size_of(state, dst->type) < reg_size(state, dst)))
{
unsigned long mask;
int dst_reg;
int dst_regcm;
if (size_of(state, dst->type) >= 32) {
fprintf(state->errout, "dst type: ");
name_of(state->errout, dst->type);
fprintf(state->errout, "\n");
internal_error(state, dst, "unhandled dst type size");
}
mask = 1;
mask <<= size_of(state, dst->type);
mask -= 1;
dst_reg = ID_REG(dst->id);
dst_regcm = arch_reg_regcm(state, dst_reg);
if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
fprintf(fp, "\tand $0x%lx, %s\n",
mask, reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
}
else if (dst_regcm & REGCM_MMX) {
long ref;
ref = get_mask_pool_ref(state, dst, mask, fp);
fprintf(fp, "\tpand L%s%lu, %s\n",
state->compiler->label_prefix, ref,
reg(state, dst, REGCM_MMX));
}
else if (dst_regcm & REGCM_XMM) {
long ref;
ref = get_mask_pool_ref(state, dst, mask, fp);
fprintf(fp, "\tpand L%s%lu, %s\n",
state->compiler->label_prefix, ref,
reg(state, dst, REGCM_XMM));
}
else {
fprintf(state->errout, "dst type: ");
name_of(state->errout, dst->type);
fprintf(state->errout, "\n");
fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
internal_error(state, dst, "failed to trunc value: mask %lx", mask);
}
}
/* Make certain I am properly sign extended */
if ((size_of(state, src->type) < size_of(state, dst->type)) &&
(is_signed(src->type)))
{
int reg_bits, shift_bits;
int dst_reg;
int dst_regcm;
reg_bits = reg_size(state, dst);
if (reg_bits > 32) {
reg_bits = 32;
}
shift_bits = reg_bits - size_of(state, src->type);
dst_reg = ID_REG(dst->id);
dst_regcm = arch_reg_regcm(state, dst_reg);
if (shift_bits < 0) {
internal_error(state, dst, "negative shift?");
}
if (dst_regcm & (REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO)) {
fprintf(fp, "\tshl $%d, %s\n",
shift_bits,
reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
fprintf(fp, "\tsar $%d, %s\n",
shift_bits,
reg(state, dst, REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO));
}
else if (dst_regcm & (REGCM_MMX | REGCM_XMM)) {
fprintf(fp, "\tpslld $%d, %s\n",
shift_bits,
reg(state, dst, REGCM_MMX | REGCM_XMM));
fprintf(fp, "\tpsrad $%d, %s\n",
shift_bits,
reg(state, dst, REGCM_MMX | REGCM_XMM));
}
else {
fprintf(state->errout, "dst type: ");
name_of(state->errout, dst->type);
fprintf(state->errout, "\n");
fprintf(state->errout, "dst: %s\n", reg(state, dst, REGCM_ALL));
internal_error(state, dst, "failed to signed extend value");
}
}
}
static void print_op_load(struct compile_state *state,
struct triple *ins, FILE *fp)
{
struct triple *dst, *src;
const char *op;
dst = ins;
src = RHS(ins, 0);
if (is_const(src) || is_const(dst)) {
internal_error(state, ins, "unknown load operation");
}
switch(ins->type->type & TYPE_MASK) {
case TYPE_CHAR: op = "movsbl"; break;
case TYPE_UCHAR: op = "movzbl"; break;
case TYPE_SHORT: op = "movswl"; break;
case TYPE_USHORT: op = "movzwl"; break;
case TYPE_INT: case TYPE_UINT:
case TYPE_LONG: case TYPE_ULONG:
case TYPE_POINTER:
op = "movl";
break;
default:
internal_error(state, ins, "unknown type in load");
op = "<invalid opcode>";
break;
}
fprintf(fp, "\t%s (%s), %s\n",
op,
reg(state, src, REGCM_GPR32),
reg(state, dst, REGCM_GPR32));
}
static void print_op_store(struct compile_state *state,
struct triple *ins, FILE *fp)
{
struct triple *dst, *src;
dst = RHS(ins, 0);
src = RHS(ins, 1);
if (is_const(src) && (src->op == OP_INTCONST)) {
long_t value;
value = (long_t)(src->u.cval);
fprintf(fp, "\tmov%s $%ld, (%s)\n",
type_suffix(state, src->type),
(long)(value),
reg(state, dst, REGCM_GPR32));
}
else if (is_const(dst) && (dst->op == OP_INTCONST)) {
fprintf(fp, "\tmov%s %s, 0x%08lx\n",
type_suffix(state, src->type),
reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
(unsigned long)(dst->u.cval));
}
else {
if (is_const(src) || is_const(dst)) {
internal_error(state, ins, "unknown store operation");
}
fprintf(fp, "\tmov%s %s, (%s)\n",
type_suffix(state, src->type),
reg(state, src, REGCM_GPR8_LO | REGCM_GPR16 | REGCM_GPR32),
reg(state, dst, REGCM_GPR32));
}
}
static void print_op_smul(struct compile_state *state,
struct triple *ins, FILE *fp)
{
if (!is_const(RHS(ins, 1))) {
fprintf(fp, "\timul %s, %s\n",
reg(state, RHS(ins, 1), REGCM_GPR32),
reg(state, RHS(ins, 0), REGCM_GPR32));
}
else {
fprintf(fp, "\timul ");
print_const_val(state, RHS(ins, 1), fp);
fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), REGCM_GPR32));
}
}
static void print_op_cmp(struct compile_state *state,
struct triple *ins, FILE *fp)
{
unsigned mask;
int dreg;
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
dreg = check_reg(state, ins, REGCM_FLAGS);
if (!reg_is_reg(state, dreg, REG_EFLAGS)) {
internal_error(state, ins, "bad dest register for cmp");
}
if (is_const(RHS(ins, 1))) {
fprintf(fp, "\tcmp ");
print_const_val(state, RHS(ins, 1), fp);
fprintf(fp, ", %s\n", reg(state, RHS(ins, 0), mask));
}
else {
unsigned lmask, rmask;
int lreg, rreg;
lreg = check_reg(state, RHS(ins, 0), mask);
rreg = check_reg(state, RHS(ins, 1), mask);
lmask = arch_reg_regcm(state, lreg);
rmask = arch_reg_regcm(state, rreg);
mask = lmask & rmask;
fprintf(fp, "\tcmp %s, %s\n",
reg(state, RHS(ins, 1), mask),
reg(state, RHS(ins, 0), mask));
}
}
static void print_op_test(struct compile_state *state,
struct triple *ins, FILE *fp)
{
unsigned mask;
mask = REGCM_GPR32 | REGCM_GPR16 | REGCM_GPR8_LO;
fprintf(fp, "\ttest %s, %s\n",
reg(state, RHS(ins, 0), mask),
reg(state, RHS(ins, 0), mask));
}
static void print_op_branch(struct compile_state *state,
struct triple *branch, FILE *fp)
{
const char *bop = "j";
if ((branch->op == OP_JMP) || (branch->op == OP_CALL)) {
if (branch->rhs != 0) {
internal_error(state, branch, "jmp with condition?");
}
bop = "jmp";
}
else {
struct triple *ptr;
if (branch->rhs != 1) {
internal_error(state, branch, "jmpcc without condition?");
}
check_reg(state, RHS(branch, 0), REGCM_FLAGS);
if ((RHS(branch, 0)->op != OP_CMP) &&
(RHS(branch, 0)->op != OP_TEST)) {
internal_error(state, branch, "bad branch test");
}
#if DEBUG_ROMCC_WARNINGS
#warning "FIXME I have observed instructions between the test and branch instructions"
#endif
ptr = RHS(branch, 0);
for(ptr = RHS(branch, 0)->next; ptr != branch; ptr = ptr->next) {
if (ptr->op != OP_COPY) {
internal_error(state, branch, "branch does not follow test");
}
}
switch(branch->op) {
case OP_JMP_EQ: bop = "jz"; break;
case OP_JMP_NOTEQ: bop = "jnz"; break;
case OP_JMP_SLESS: bop = "jl"; break;
case OP_JMP_ULESS: bop = "jb"; break;
case OP_JMP_SMORE: bop = "jg"; break;
case OP_JMP_UMORE: bop = "ja"; break;
case OP_JMP_SLESSEQ: bop = "jle"; break;
case OP_JMP_ULESSEQ: bop = "jbe"; break;
case OP_JMP_SMOREEQ: bop = "jge"; break;
case OP_JMP_UMOREEQ: bop = "jae"; break;
default:
internal_error(state, branch, "Invalid branch op");
break;
}
}
#if 1
if (branch->op == OP_CALL) {
fprintf(fp, "\t/* call */\n");
}
#endif
fprintf(fp, "\t%s L%s%lu\n",
bop,
state->compiler->label_prefix,
(unsigned long)(TARG(branch, 0)->u.cval));
}
static void print_op_ret(struct compile_state *state,
struct triple *branch, FILE *fp)
{
fprintf(fp, "\tjmp *%s\n",
reg(state, RHS(branch, 0), REGCM_GPR32));
}
static void print_op_set(struct compile_state *state,
struct triple *set, FILE *fp)
{
const char *sop = "set";
if (set->rhs != 1) {
internal_error(state, set, "setcc without condition?");
}
check_reg(state, RHS(set, 0), REGCM_FLAGS);
if ((RHS(set, 0)->op != OP_CMP) &&
(RHS(set, 0)->op != OP_TEST)) {
internal_error(state, set, "bad set test");
}
if (RHS(set, 0)->next != set) {
internal_error(state, set, "set does not follow test");
}
switch(set->op) {
case OP_SET_EQ: sop = "setz"; break;
case OP_SET_NOTEQ: sop = "setnz"; break;
case OP_SET_SLESS: sop = "setl"; break;
case OP_SET_ULESS: sop = "setb"; break;
case OP_SET_SMORE: sop = "setg"; break;
case OP_SET_UMORE: sop = "seta"; break;
case OP_SET_SLESSEQ: sop = "setle"; break;
case OP_SET_ULESSEQ: sop = "setbe"; break;
case OP_SET_SMOREEQ: sop = "setge"; break;
case OP_SET_UMOREEQ: sop = "setae"; break;
default:
internal_error(state, set, "Invalid set op");
break;
}
fprintf(fp, "\t%s %s\n",
sop, reg(state, set, REGCM_GPR8_LO));
}
static void print_op_bit_scan(struct compile_state *state,
struct triple *ins, FILE *fp)
{
const char *op;
switch(ins->op) {
case OP_BSF: op = "bsf"; break;
case OP_BSR: op = "bsr"; break;
default:
internal_error(state, ins, "unknown bit scan");
op = 0;
break;
}
fprintf(fp,
"\t%s %s, %s\n"
"\tjnz 1f\n"
"\tmovl $-1, %s\n"
"1:\n",
op,
reg(state, RHS(ins, 0), REGCM_GPR32),
reg(state, ins, REGCM_GPR32),
reg(state, ins, REGCM_GPR32));
}
static void print_sdecl(struct compile_state *state,
struct triple *ins, FILE *fp)
{
fprintf(fp, ".section \"" DATA_SECTION "\"\n");
fprintf(fp, ".balign %ld\n", (long int)align_of_in_bytes(state, ins->type));
fprintf(fp, "L%s%lu:\n",
state->compiler->label_prefix, (unsigned long)(ins->u.cval));
print_const(state, MISC(ins, 0), fp);
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
}
static void print_instruction(struct compile_state *state,
struct triple *ins, FILE *fp)
{
/* Assumption: after I have exted the register allocator
* everything is in a valid register.
*/
switch(ins->op) {
case OP_ASM:
print_op_asm(state, ins, fp);
break;
case OP_ADD: print_binary_op(state, "add", ins, fp); break;
case OP_SUB: print_binary_op(state, "sub", ins, fp); break;
case OP_AND: print_binary_op(state, "and", ins, fp); break;
case OP_XOR: print_binary_op(state, "xor", ins, fp); break;
case OP_OR: print_binary_op(state, "or", ins, fp); break;
case OP_SL: print_op_shift(state, "shl", ins, fp); break;
case OP_USR: print_op_shift(state, "shr", ins, fp); break;
case OP_SSR: print_op_shift(state, "sar", ins, fp); break;
case OP_POS: break;
case OP_NEG: print_unary_op(state, "neg", ins, fp); break;
case OP_INVERT: print_unary_op(state, "not", ins, fp); break;
case OP_NOOP:
case OP_INTCONST:
case OP_ADDRCONST:
case OP_BLOBCONST:
/* Don't generate anything here for constants */
case OP_PHI:
/* Don't generate anything for variable declarations. */
break;
case OP_UNKNOWNVAL:
fprintf(fp, " /* unknown %s */\n",
reg(state, ins, REGCM_ALL));
break;
case OP_SDECL:
print_sdecl(state, ins, fp);
break;
case OP_COPY:
case OP_CONVERT:
print_op_move(state, ins, fp);
break;
case OP_LOAD:
print_op_load(state, ins, fp);
break;
case OP_STORE:
print_op_store(state, ins, fp);
break;
case OP_SMUL:
print_op_smul(state, ins, fp);
break;
case OP_CMP: print_op_cmp(state, ins, fp); break;
case OP_TEST: print_op_test(state, ins, fp); break;
case OP_JMP:
case OP_JMP_EQ: case OP_JMP_NOTEQ:
case OP_JMP_SLESS: case OP_JMP_ULESS:
case OP_JMP_SMORE: case OP_JMP_UMORE:
case OP_JMP_SLESSEQ: case OP_JMP_ULESSEQ:
case OP_JMP_SMOREEQ: case OP_JMP_UMOREEQ:
case OP_CALL:
print_op_branch(state, ins, fp);
break;
case OP_RET:
print_op_ret(state, ins, fp);
break;
case OP_SET_EQ: case OP_SET_NOTEQ:
case OP_SET_SLESS: case OP_SET_ULESS:
case OP_SET_SMORE: case OP_SET_UMORE:
case OP_SET_SLESSEQ: case OP_SET_ULESSEQ:
case OP_SET_SMOREEQ: case OP_SET_UMOREEQ:
print_op_set(state, ins, fp);
break;
case OP_INB: case OP_INW: case OP_INL:
print_op_in(state, ins, fp);
break;
case OP_OUTB: case OP_OUTW: case OP_OUTL:
print_op_out(state, ins, fp);
break;
case OP_BSF:
case OP_BSR:
print_op_bit_scan(state, ins, fp);
break;
case OP_RDMSR:
after_lhs(state, ins);
fprintf(fp, "\trdmsr\n");
break;
case OP_WRMSR:
fprintf(fp, "\twrmsr\n");
break;
case OP_HLT:
fprintf(fp, "\thlt\n");
break;
case OP_SDIVT:
fprintf(fp, "\tidiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
break;
case OP_UDIVT:
fprintf(fp, "\tdiv %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
break;
case OP_UMUL:
fprintf(fp, "\tmul %s\n", reg(state, RHS(ins, 1), REGCM_GPR32));
break;
case OP_LABEL:
if (!ins->use) {
return;
}
fprintf(fp, "L%s%lu:\n",
state->compiler->label_prefix, (unsigned long)(ins->u.cval));
break;
case OP_ADECL:
/* Ignore adecls with no registers error otherwise */
if (!noop_adecl(ins)) {
internal_error(state, ins, "adecl remains?");
}
break;
/* Ignore OP_PIECE */
case OP_PIECE:
break;
/* Operations that should never get here */
case OP_SDIV: case OP_UDIV:
case OP_SMOD: case OP_UMOD:
case OP_LTRUE: case OP_LFALSE: case OP_EQ: case OP_NOTEQ:
case OP_SLESS: case OP_ULESS: case OP_SMORE: case OP_UMORE:
case OP_SLESSEQ: case OP_ULESSEQ: case OP_SMOREEQ: case OP_UMOREEQ:
default:
internal_error(state, ins, "unknown op: %d %s",
ins->op, tops(ins->op));
break;
}
}
static void print_instructions(struct compile_state *state)
{
struct triple *first, *ins;
int print_location;
struct occurance *last_occurance;
FILE *fp;
int max_inline_depth;
max_inline_depth = 0;
print_location = 1;
last_occurance = 0;
fp = state->output;
/* Masks for common sizes */
fprintf(fp, ".section \"" DATA_SECTION "\"\n");
fprintf(fp, ".balign 16\n");
fprintf(fp, "L%s1:\n", state->compiler->label_prefix);
fprintf(fp, ".int 0xff, 0, 0, 0\n");
fprintf(fp, "L%s2:\n", state->compiler->label_prefix);
fprintf(fp, ".int 0xffff, 0, 0, 0\n");
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
first = state->first;
ins = first;
do {
if (print_location &&
last_occurance != ins->occurance) {
if (!ins->occurance->parent) {
fprintf(fp, "\t/* %s,%s:%d.%d */\n",
ins->occurance->function?ins->occurance->function:"(null)",
ins->occurance->filename?ins->occurance->filename:"(null)",
ins->occurance->line,
ins->occurance->col);
}
else {
struct occurance *ptr;
int inline_depth;
fprintf(fp, "\t/*\n");
inline_depth = 0;
for(ptr = ins->occurance; ptr; ptr = ptr->parent) {
inline_depth++;
fprintf(fp, "\t * %s,%s:%d.%d\n",
ptr->function,
ptr->filename,
ptr->line,
ptr->col);
}
fprintf(fp, "\t */\n");
if (inline_depth > max_inline_depth) {
max_inline_depth = inline_depth;
}
}
if (last_occurance) {
put_occurance(last_occurance);
}
get_occurance(ins->occurance);
last_occurance = ins->occurance;
}
print_instruction(state, ins, fp);
ins = ins->next;
} while(ins != first);
if (print_location) {
fprintf(fp, "/* max inline depth %d */\n",
max_inline_depth);
}
}
static void generate_code(struct compile_state *state)
{
generate_local_labels(state);
print_instructions(state);
}
static void print_preprocessed_tokens(struct compile_state *state)
{
int tok;
FILE *fp;
int line;
const char *filename;
fp = state->output;
filename = 0;
line = 0;
for(;;) {
struct file_state *file;
struct token *tk;
const char *token_str;
tok = peek(state);
if (tok == TOK_EOF) {
break;
}
tk = eat(state, tok);
token_str =
tk->ident ? tk->ident->name :
tk->str_len ? tk->val.str :
tokens[tk->tok];
file = state->file;
while(file->macro && file->prev) {
file = file->prev;
}
if (!file->macro &&
((file->line != line) || (file->basename != filename)))
{
int i, col;
if ((file->basename == filename) &&
(line < file->line)) {
while(line < file->line) {
fprintf(fp, "\n");
line++;
}
}
else {
fprintf(fp, "\n#line %d \"%s\"\n",
file->line, file->basename);
}
line = file->line;
filename = file->basename;
col = get_col(file) - strlen(token_str);
for(i = 0; i < col; i++) {
fprintf(fp, " ");
}
}
fprintf(fp, "%s ", token_str);
if (state->compiler->debug & DEBUG_TOKENS) {
loc(state->dbgout, state, 0);
fprintf(state->dbgout, "%s <- `%s'\n",
tokens[tok], token_str);
}
}
}
static void compile(const char *filename,
struct compiler_state *compiler, struct arch_state *arch)
{
int i;
struct compile_state state;
struct triple *ptr;
struct filelist *includes = include_filelist;
memset(&state, 0, sizeof(state));
state.compiler = compiler;
state.arch = arch;
state.file = 0;
for(i = 0; i < sizeof(state.token)/sizeof(state.token[0]); i++) {
memset(&state.token[i], 0, sizeof(state.token[i]));
state.token[i].tok = -1;
}
/* Remember the output descriptors */
state.errout = stderr;
state.dbgout = stdout;
/* Remember the output filename */
if ((state.compiler->flags & COMPILER_PP_ONLY) && (strcmp("auto.inc",state.compiler->ofilename) == 0)) {
state.output = stdout;
} else {
state.output = fopen(state.compiler->ofilename, "w");
if (!state.output) {
error(&state, 0, "Cannot open output file %s\n",
state.compiler->ofilename);
}
}
/* Make certain a good cleanup happens */
exit_state = &state;
atexit(exit_cleanup);
/* Prep the preprocessor */
state.if_depth = 0;
memset(state.if_bytes, 0, sizeof(state.if_bytes));
/* register the C keywords */
register_keywords(&state);
/* register the keywords the macro preprocessor knows */
register_macro_keywords(&state);
/* generate some builtin macros */
register_builtin_macros(&state);
/* Memorize where some special keywords are. */
state.i_switch = lookup(&state, "switch", 6);
state.i_case = lookup(&state, "case", 4);
state.i_continue = lookup(&state, "continue", 8);
state.i_break = lookup(&state, "break", 5);
state.i_default = lookup(&state, "default", 7);
state.i_return = lookup(&state, "return", 6);
/* Memorize where predefined macros are. */
state.i___VA_ARGS__ = lookup(&state, "__VA_ARGS__", 11);
state.i___FILE__ = lookup(&state, "__FILE__", 8);
state.i___LINE__ = lookup(&state, "__LINE__", 8);
/* Memorize where predefined identifiers are. */
state.i___func__ = lookup(&state, "__func__", 8);
/* Memorize where some attribute keywords are. */
state.i_noinline = lookup(&state, "noinline", 8);
state.i_always_inline = lookup(&state, "always_inline", 13);
state.i_noreturn = lookup(&state, "noreturn", 8);
state.i_unused = lookup(&state, "unused", 6);
/* Process the command line macros */
process_cmdline_macros(&state);
/* Allocate beginning bounding labels for the function list */
state.first = label(&state);
state.first->id |= TRIPLE_FLAG_VOLATILE;
use_triple(state.first, state.first);
ptr = label(&state);
ptr->id |= TRIPLE_FLAG_VOLATILE;
use_triple(ptr, ptr);
flatten(&state, state.first, ptr);
/* Allocate a label for the pool of global variables */
state.global_pool = label(&state);
state.global_pool->id |= TRIPLE_FLAG_VOLATILE;
flatten(&state, state.first, state.global_pool);
/* Enter the globl definition scope */
start_scope(&state);
register_builtins(&state);
compile_file(&state, filename, 1);
while (includes) {
compile_file(&state, includes->filename, 1);
includes=includes->next;
}
/* Stop if all we want is preprocessor output */
if (state.compiler->flags & COMPILER_PP_ONLY) {
print_preprocessed_tokens(&state);
return;
}
decls(&state);
/* Exit the global definition scope */
end_scope(&state);
/* Now that basic compilation has happened
* optimize the intermediate code
*/
optimize(&state);
generate_code(&state);
if (state.compiler->debug) {
fprintf(state.errout, "done\n");
}
exit_state = 0;
}
static void version(FILE *fp)
{
fprintf(fp, "romcc " VERSION " released " RELEASE_DATE "\n");
}
static void usage(void)
{
FILE *fp = stdout;
version(fp);
fprintf(fp,
"\nUsage: romcc [options] <source>.c\n"
"Compile a C source file generating a binary that does not implicilty use RAM\n"
"Options: \n"
"-o <output file name>\n"
"-f<option> Specify a generic compiler option\n"
"-m<option> Specify a arch dependent option\n"
"-- Specify this is the last option\n"
"\nGeneric compiler options:\n"
);
compiler_usage(fp);
fprintf(fp,
"\nArchitecture compiler options:\n"
);
arch_usage(fp);
fprintf(fp,
"\n"
);
}
static void arg_error(char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
usage();
exit(1);
}
int main(int argc, char **argv)
{
const char *filename;
struct compiler_state compiler;
struct arch_state arch;
int all_opts;
/* I don't want any surprises */
setlocale(LC_ALL, "C");
init_compiler_state(&compiler);
init_arch_state(&arch);
filename = 0;
all_opts = 0;
while(argc > 1) {
if (!all_opts && (strcmp(argv[1], "-o") == 0) && (argc > 2)) {
compiler.ofilename = argv[2];
argv += 2;
argc -= 2;
}
else if (!all_opts && argv[1][0] == '-') {
int result;
result = -1;
if (strcmp(argv[1], "--") == 0) {
result = 0;
all_opts = 1;
}
else if (strncmp(argv[1], "-E", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]);
}
else if (strncmp(argv[1], "-O", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]);
}
else if (strncmp(argv[1], "-I", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]);
}
else if (strncmp(argv[1], "-D", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]);
}
else if (strncmp(argv[1], "-U", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]);
}
else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
result = compiler_encode_flag(&compiler, argv[1]+2);
}
else if (strncmp(argv[1], "-f", 2) == 0) {
result = compiler_encode_flag(&compiler, argv[1]+2);
}
else if (strncmp(argv[1], "-m", 2) == 0) {
result = arch_encode_flag(&arch, argv[1]+2);
}
else if (strncmp(argv[1], "-c", 2) == 0) {
result = 0;
}
else if (strncmp(argv[1], "-S", 2) == 0) {
result = 0;
}
else if (strncmp(argv[1], "-include", 10) == 0) {
struct filelist *old_head = include_filelist;
include_filelist = malloc(sizeof(struct filelist));
if (!include_filelist) {
die("Out of memory.\n");
}
argv++;
argc--;
include_filelist->filename = strdup(argv[1]);
include_filelist->next = old_head;
result = 0;
}
if (result < 0) {
arg_error("Invalid option specified: %s\n",
argv[1]);
}
argv++;
argc--;
}
else {
if (filename) {
arg_error("Only one filename may be specified\n");
}
filename = argv[1];
argv++;
argc--;
}
}
if (!filename) {
arg_error("No filename specified\n");
}
compile(filename, &compiler, &arch);
return 0;
}