blob: 226862802afcc4d0a650619ad6b4d699ccdc9d11 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* (C) Copyright 2002
* David Mueller, ELSOFT AG, d.mueller@elsoft.ch
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <delay.h>
#include <timer.h>
#include <arch/io.h>
#include <device/i2c.h>
#include "clk.h"
#include "i2c.h"
#include "pinmux.h"
#define I2C_WRITE 0
#define I2C_READ 1
#define I2C_OK 0
#define I2C_NOK 1
#define I2C_NACK 2
#define I2C_NOK_LA 3 /* Lost arbitration */
#define I2C_NOK_TOUT 4 /* time out */
/* HSI2C specific register description */
/* I2C_CTL Register bits */
/* FIXME(dhendrix): do we really need to cast these as unsigned? */
#define HSI2C_FUNC_MODE_I2C (1u << 0)
#define HSI2C_MASTER (1u << 3)
#define HSI2C_RXCHON (1u << 6) /* Write/Send */
#define HSI2C_TXCHON (1u << 7) /* Read/Receive */
#define HSI2C_SW_RST (1u << 31)
/* I2C_FIFO_STAT Register bits */
#define HSI2C_TX_FIFO_LEVEL (0x7f << 0)
#define HSI2C_TX_FIFO_FULL (1u << 7)
#define HSI2C_TX_FIFO_EMPTY (1u << 8)
#define HSI2C_RX_FIFO_LEVEL (0x7f << 16)
#define HSI2C_RX_FIFO_FULL (1u << 23)
#define HSI2C_RX_FIFO_EMPTY (1u << 24)
/* I2C_FIFO_CTL Register bits */
#define HSI2C_RXFIFO_EN (1u << 0)
#define HSI2C_TXFIFO_EN (1u << 1)
#define HSI2C_TXFIFO_TRIGGER_LEVEL (0x20 << 16)
#define HSI2C_RXFIFO_TRIGGER_LEVEL (0x20 << 4)
/* I2C_TRAILING_CTL Register bits */
#define HSI2C_TRAILING_COUNT (0xff)
/* I2C_INT_EN Register bits */
#define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
#define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
#define HSI2C_INT_TRAILING_EN (1u << 6)
#define HSI2C_INT_I2C_EN (1u << 9)
/* I2C_CONF Register bits */
#define HSI2C_AUTO_MODE (1u << 31)
#define HSI2C_10BIT_ADDR_MODE (1u << 30)
#define HSI2C_HS_MODE (1u << 29)
/* I2C_AUTO_CONF Register bits */
#define HSI2C_READ_WRITE (1u << 16)
#define HSI2C_STOP_AFTER_TRANS (1u << 17)
#define HSI2C_MASTER_RUN (1u << 31)
/* I2C_TIMEOUT Register bits */
#define HSI2C_TIMEOUT_EN (1u << 31)
/* I2C_TRANS_STATUS register bits */
#define HSI2C_MASTER_BUSY (1u << 17)
#define HSI2C_SLAVE_BUSY (1u << 16)
#define HSI2C_TIMEOUT_AUTO (1u << 4)
#define HSI2C_NO_DEV (1u << 3)
#define HSI2C_NO_DEV_ACK (1u << 2)
#define HSI2C_TRANS_ABORT (1u << 1)
#define HSI2C_TRANS_DONE (1u << 0)
#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
/* S3C I2C Controller bits */
#define I2CSTAT_BSY 0x20 /* Busy bit */
#define I2CSTAT_NACK 0x01 /* Nack bit */
#define I2CCON_ACKGEN 0x80 /* Acknowledge generation */
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
#define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
#define I2C_MODE_MR 0x80 /* Master Receive Mode */
#define I2C_START_STOP 0x20 /* START / STOP */
#define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
#define I2C_TIMEOUT_MS 1000 /* 1 second */
#define HSI2C_TIMEOUT 100
/* The timeouts we live by */
enum {
I2C_XFER_TIMEOUT_MS = 35, /* xfer to complete */
I2C_INIT_TIMEOUT_MS = 1000, /* bus free on init */
I2C_IDLE_TIMEOUT_MS = 100, /* waiting for bus idle */
I2C_STOP_TIMEOUT_US = 200, /* waiting for stop events */
};
static struct s3c24x0_i2c_bus i2c_buses[] = {
{
.bus_num = 0,
.regs = (struct s3c24x0_i2c *)0x12c60000,
.periph_id = PERIPH_ID_I2C0,
},
{
.bus_num = 1,
.regs = (struct s3c24x0_i2c *)0x12c70000,
.periph_id = PERIPH_ID_I2C1,
},
{
.bus_num = 2,
.regs = (struct s3c24x0_i2c *)0x12c80000,
.periph_id = PERIPH_ID_I2C2,
},
{
.bus_num = 3,
.regs = (struct s3c24x0_i2c *)0x12c90000,
.periph_id = PERIPH_ID_I2C3,
},
/* I2C4-I2C10 are part of the USI block */
{
.bus_num = 4,
.hsregs = (struct exynos5_hsi2c *)0x12ca0000,
.periph_id = PERIPH_ID_I2C4,
.is_highspeed = 1,
},
{
.bus_num = 5,
.hsregs = (struct exynos5_hsi2c *)0x12cb0000,
.periph_id = PERIPH_ID_I2C5,
.is_highspeed = 1,
},
{
.bus_num = 6,
.hsregs = (struct exynos5_hsi2c *)0x12cc0000,
.periph_id = PERIPH_ID_I2C6,
.is_highspeed = 1,
},
{
.bus_num = 7,
.hsregs = (struct exynos5_hsi2c *)0x12cd0000,
.periph_id = PERIPH_ID_I2C7,
.is_highspeed = 1,
},
{
.bus_num = 8,
.hsregs = (struct exynos5_hsi2c *)0x12e00000,
.periph_id = PERIPH_ID_I2C8,
.is_highspeed = 1,
},
{
.bus_num = 9,
.hsregs = (struct exynos5_hsi2c *)0x12e10000,
.periph_id = PERIPH_ID_I2C9,
.is_highspeed = 1,
},
{
.bus_num = 10,
.hsregs = (struct exynos5_hsi2c *)0x12e20000,
.periph_id = PERIPH_ID_I2C10,
.is_highspeed = 1,
},
};
/*
* Wait til the byte transfer is completed.
*
* @param i2c- pointer to the appropriate i2c register bank.
* @return I2C_OK, if transmission was ACKED
* I2C_NACK, if transmission was NACKED
* I2C_NOK_TIMEOUT, if transaction did not complete in I2C_TIMEOUT_MS
*/
static int WaitForXfer(struct s3c24x0_i2c *i2c)
{
struct mono_time current, end;
timer_monotonic_get(&current);
end = current;
mono_time_add_usecs(&end, I2C_TIMEOUT_MS * 1000);
do {
if (read32(&i2c->iiccon) & I2CCON_IRPND)
return (read32(&i2c->iicstat) & I2CSTAT_NACK) ?
I2C_NACK : I2C_OK;
timer_monotonic_get(&current);
} while (mono_time_before(&current, &end));
printk(BIOS_ERR, "%s timed out\n", __func__);
return I2C_NOK_TOUT;
}
static void ReadWriteByte(struct s3c24x0_i2c *i2c)
{
writel(read32(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
}
static void i2c_ch_init(struct s3c24x0_i2c_bus *bus, int speed, int slaveadd)
{
unsigned long freq, pres = 16, div;
unsigned long val;
freq = clock_get_periph_rate(bus->periph_id);
/* calculate prescaler and divisor values */
if ((freq / pres / (16 + 1)) > speed)
/* set prescaler to 512 */
pres = 512;
div = 0;
while ((freq / pres / (div + 1)) > speed)
div++;
/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
val = (div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0);
write32(val, &bus->regs->iiccon);
/* init to SLAVE RECEIVE mode and clear I2CADDn */
write32(0, &bus->regs->iicstat);
write32(slaveadd, &bus->regs->iicadd);
/* program Master Transmit (and implicit STOP) */
write32(I2C_MODE_MT | I2C_TXRX_ENA, &bus->regs->iicstat);
}
static int hsi2c_get_clk_details(struct s3c24x0_i2c_bus *i2c_bus,
unsigned int bus_freq_hz)
{
struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
unsigned long clkin = clock_get_periph_rate(i2c_bus->periph_id);
unsigned int i = 0, utemp0 = 0, utemp1 = 0;
unsigned int t_ftl_cycle;
/* FPCLK / FI2C =
* (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
* uTemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
* uTemp1 = (TSCLK_L + TSCLK_H + 2)
* uTemp2 = TSCLK_L + TSCLK_H
*/
t_ftl_cycle = (read32(&hsregs->usi_conf) >> 16) & 0x7;
utemp0 = (clkin / bus_freq_hz) - 8 - 2 * t_ftl_cycle;
/* CLK_DIV max is 256 */
for (i = 0; i < 256; i++) {
utemp1 = utemp0 / (i + 1);
if ((utemp1 < 512) && (utemp1 > 4)) {
i2c_bus->clk_cycle = utemp1 - 2;
i2c_bus->clk_div = i;
return 0;
}
}
printk(BIOS_ERR, "%s: failed?\n", __func__);
return -1;
}
static void hsi2c_ch_init(struct s3c24x0_i2c_bus *i2c_bus,
unsigned int bus_freq_hz)
{
struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
unsigned int t_sr_release;
unsigned int n_clkdiv;
unsigned int t_start_su, t_start_hd;
unsigned int t_stop_su;
unsigned int t_data_su, t_data_hd;
unsigned int t_scl_l, t_scl_h;
u32 i2c_timing_s1;
u32 i2c_timing_s2;
u32 i2c_timing_s3;
u32 i2c_timing_sla;
hsi2c_get_clk_details(i2c_bus, bus_freq_hz);
n_clkdiv = i2c_bus->clk_div;
t_scl_l = i2c_bus->clk_cycle / 2;
t_scl_h = i2c_bus->clk_cycle / 2;
t_start_su = t_scl_l;
t_start_hd = t_scl_l;
t_stop_su = t_scl_l;
t_data_su = t_scl_l / 2;
t_data_hd = t_scl_l / 2;
t_sr_release = i2c_bus->clk_cycle;
i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
i2c_timing_s3 = n_clkdiv << 16 | t_sr_release << 0;
i2c_timing_sla = t_data_hd << 0;
write32(HSI2C_TRAILING_COUNT, &hsregs->usi_trailing_ctl);
/* Clear to enable Timeout */
clrsetbits_le32(&hsregs->usi_timeout, HSI2C_TIMEOUT_EN, 0);
write32(read32(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
/* Currently operating in Fast speed mode. */
write32(i2c_timing_s1, &hsregs->usi_timing_fs1);
write32(i2c_timing_s2, &hsregs->usi_timing_fs2);
write32(i2c_timing_s3, &hsregs->usi_timing_fs3);
write32(i2c_timing_sla, &hsregs->usi_timing_sla);
/* Enable TXFIFO and RXFIFO */
write32(HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN, &hsregs->usi_fifo_ctl);
/* i2c_conf configure */
write32(readl(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
}
/* SW reset for the high speed bus */
static void i2c_reset(struct s3c24x0_i2c_bus *i2c_bus)
{
struct exynos5_hsi2c *i2c = i2c_bus->hsregs;
u32 i2c_ctl;
/* Set and clear the bit for reset */
i2c_ctl = read32(&i2c->usi_ctl);
i2c_ctl |= HSI2C_SW_RST;
write32(i2c_ctl, &i2c->usi_ctl);
i2c_ctl = read32(&i2c->usi_ctl);
i2c_ctl &= ~HSI2C_SW_RST;
write32(i2c_ctl, &i2c->usi_ctl);
/* Initialize the configure registers */
/* FIXME: This just assumes 100KHz as a default bus freq */
hsi2c_ch_init(i2c_bus, 100000);
}
void i2c_init(unsigned bus_num, int speed, int slaveadd)
{
struct s3c24x0_i2c_bus *i2c;
i2c = &i2c_buses[bus_num];
i2c_reset(i2c);
if (i2c->is_highspeed)
hsi2c_ch_init(i2c, speed);
else
i2c_ch_init(i2c, speed, slaveadd);
}
/*
* Check whether the transfer is complete.
* Return values:
* 0 - transfer not done
* 1 - transfer finished successfully
* -1 - transfer failed
*/
static int hsi2c_check_transfer(struct exynos5_hsi2c *i2c)
{
uint32_t status = read32(&i2c->usi_trans_status);
if (status & (HSI2C_TRANS_ABORT | HSI2C_NO_DEV_ACK |
HSI2C_NO_DEV | HSI2C_TIMEOUT_AUTO)) {
if (status & HSI2C_TRANS_ABORT)
printk(BIOS_ERR,
"%s: Transaction aborted.\n", __func__);
if (status & HSI2C_NO_DEV_ACK)
printk(BIOS_ERR,
"%s: No ack from device.\n", __func__);
if (status & HSI2C_NO_DEV)
printk(BIOS_ERR,
"%s: No response from device.\n", __func__);
if (status & HSI2C_TIMEOUT_AUTO)
printk(BIOS_ERR,
"%s: Transaction time out.\n", __func__);
return -1;
}
return !(status & HSI2C_MASTER_BUSY);
}
/*
* Wait for the transfer to finish.
* Return values:
* 0 - transfer not done
* 1 - transfer finished successfully
* -1 - transfer failed
*/
static int hsi2c_wait_for_transfer(struct exynos5_hsi2c *i2c)
{
struct mono_time current, end;
timer_monotonic_get(&current);
end = current;
mono_time_add_usecs(&end, HSI2C_TIMEOUT * 1000);
while (mono_time_before(&current, &end)) {
int ret = hsi2c_check_transfer(i2c);
if (ret)
return ret;
udelay(5);
timer_monotonic_get(&current);
}
return 0;
}
static int hsi2c_senddata(struct exynos5_hsi2c *i2c, const uint8_t *data,
int len)
{
while (!hsi2c_check_transfer(i2c) && len) {
if (!(read32(&i2c->usi_fifo_stat) & HSI2C_TX_FIFO_FULL)) {
write32(*data++, &i2c->usi_txdata);
len--;
}
}
return len ? -1 : 0;
}
static int hsi2c_recvdata(struct exynos5_hsi2c *i2c, uint8_t *data, int len)
{
while (!hsi2c_check_transfer(i2c) && len) {
if (!(read32(&i2c->usi_fifo_stat) & HSI2C_RX_FIFO_EMPTY)) {
*data++ = read32(&i2c->usi_rxdata);
len--;
}
}
return len ? -1 : 0;
}
static int hsi2c_write(struct exynos5_hsi2c *i2c,
unsigned char chip,
unsigned char addr[],
unsigned char alen,
const uint8_t data[],
unsigned short len)
{
uint32_t i2c_auto_conf;
if (hsi2c_wait_for_transfer(i2c) != 1)
return -1;
/* chip address */
write32(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
/* usi_ctl enable i2c func, master write configure */
write32((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
&i2c->usi_ctl);
/* auto_conf for write length and stop configure */
i2c_auto_conf = ((len + alen) | HSI2C_STOP_AFTER_TRANS);
i2c_auto_conf &= ~HSI2C_READ_WRITE;
/* Master run, start xfer */
i2c_auto_conf |= HSI2C_MASTER_RUN;
write32(i2c_auto_conf, &i2c->usi_auto_conf);
if (hsi2c_senddata(i2c, addr, alen) ||
hsi2c_senddata(i2c, data, len) ||
hsi2c_wait_for_transfer(i2c) != 1) {
return -1;
}
write32(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl);
return 0;
}
static int hsi2c_read(struct exynos5_hsi2c *i2c,
unsigned char chip,
unsigned char addr[],
unsigned char alen,
uint8_t data[],
unsigned short len,
int check)
{
uint32_t i2c_auto_conf;
/* start read */
if (hsi2c_wait_for_transfer(i2c) != 1)
return -1;
/* chip address */
write32(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
/* usi_ctl enable i2c func, master write configure */
write32((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
&i2c->usi_ctl);
/* auto_conf */
write32(alen | HSI2C_MASTER_RUN | HSI2C_STOP_AFTER_TRANS,
&i2c->usi_auto_conf);
if (hsi2c_senddata(i2c, addr, alen) ||
hsi2c_wait_for_transfer(i2c) != 1) {
return -1;
}
/* usi_ctl enable i2c func, master WRITE configure */
write32((HSI2C_RXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
&i2c->usi_ctl);
/* auto_conf, length and stop configure */
i2c_auto_conf = (len | HSI2C_STOP_AFTER_TRANS | HSI2C_READ_WRITE);
i2c_auto_conf |= HSI2C_MASTER_RUN;
/* Master run, start xfer */
write32(i2c_auto_conf, &i2c->usi_auto_conf);
if (hsi2c_recvdata(i2c, data, len) ||
hsi2c_wait_for_transfer(i2c) != 1) {
return -1;
}
write32(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl);
return 0;
}
/*
* cmd_type is 0 for write, 1 for read.
*
* addr_len can take any value from 0-255, it is only limited
* by the char, we could make it larger if needed. If it is
* 0 we skip the address write cycle.
*/
static int i2c_transfer(struct s3c24x0_i2c *i2c,
unsigned char cmd_type,
unsigned char chip,
unsigned char addr[],
unsigned char addr_len,
unsigned char data[],
unsigned short data_len)
{
int i = 0, result;
struct mono_time current, end;
if (data == 0 || data_len == 0) {
printk(BIOS_ERR, "i2c_transfer: bad call\n");
return I2C_NOK;
}
timer_monotonic_get(&current);
end = current;
mono_time_add_usecs(&end, I2C_TIMEOUT_MS * 1000);
while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
if (!mono_time_before(&current, &end)){
printk(BIOS_ERR, "%s timed out\n", __func__);
return I2C_NOK_TOUT;
}
timer_monotonic_get(&current);
}
write32(read32(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
/* Get the slave chip address going */
write32(chip, &i2c->iicds);
if ((cmd_type == I2C_WRITE) || (addr && addr_len))
write32(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
&i2c->iicstat);
else
write32(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
&i2c->iicstat);
/* Wait for chip address to transmit. */
result = WaitForXfer(i2c);
if (result != I2C_OK)
goto bailout;
/* If register address needs to be transmitted - do it now. */
if (addr && addr_len) {
while ((i < addr_len) && (result == I2C_OK)) {
write32(addr[i++], &i2c->iicds);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
}
i = 0;
if (result != I2C_OK)
goto bailout;
}
switch (cmd_type) {
case I2C_WRITE:
while ((i < data_len) && (result == I2C_OK)) {
write32(data[i++], &i2c->iicds);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
}
break;
case I2C_READ:
if (addr && addr_len) {
/*
* Register address has been sent, now send slave chip
* address again to start the actual read transaction.
*/
write32(chip, &i2c->iicds);
/* Generate a re-START. */
write32(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
&i2c->iicstat);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
if (result != I2C_OK)
goto bailout;
}
while ((i < data_len) && (result == I2C_OK)) {
/* disable ACK for final READ */
if (i == data_len - 1)
write32(readl(&i2c->iiccon)
& ~I2CCON_ACKGEN,
&i2c->iiccon);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
data[i++] = read32(&i2c->iicds);
}
if (result == I2C_NACK)
result = I2C_OK; /* Normal terminated read. */
break;
default:
printk(BIOS_ERR, "i2c_transfer: bad call\n");
result = I2C_NOK;
break;
}
bailout:
/* Send STOP. */
write32(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
ReadWriteByte(i2c);
return result;
}
int i2c_read(unsigned bus, unsigned chip, unsigned addr,
unsigned alen, uint8_t *buf, unsigned len)
{
struct s3c24x0_i2c_bus *i2c;
unsigned char xaddr[4];
int ret;
if (alen > 4) {
printk(BIOS_ERR, "I2C read: addr len %d not supported\n", alen);
return 1;
}
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
i2c = &i2c_buses[bus];
if (i2c->is_highspeed)
ret = hsi2c_read(i2c->hsregs, chip, &xaddr[4 - alen],
alen, buf, len, 0);
else
ret = i2c_transfer(i2c->regs, I2C_READ, chip << 1,
&xaddr[4 - alen], alen, buf, len);
if (ret) {
i2c_reset(i2c);
printk(BIOS_ERR, "I2C read (bus %02x, chip addr %02x) failed: "
"%d\n", bus, chip, ret);
return 1;
}
return 0;
}
int i2c_write(unsigned bus, unsigned chip, unsigned addr,
unsigned alen, const uint8_t *buf, unsigned len)
{
struct s3c24x0_i2c_bus *i2c;
unsigned char xaddr[4];
int ret;
if (alen > 4) {
printk(BIOS_ERR, "I2C write: addr len %d not supported\n",
alen);
return 1;
}
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
i2c = &i2c_buses[bus];
if (i2c->is_highspeed)
ret = hsi2c_write(i2c->hsregs, chip, &xaddr[4 - alen],
alen, buf, len);
else
ret = i2c_transfer(i2c->regs, I2C_WRITE, chip << 1,
&xaddr[4 - alen], alen, (void *)buf, len);
if (ret != 0) {
i2c_reset(i2c);
printk(BIOS_ERR, "I2C write (bus %02x, chip addr %02x) failed: "
"%d\n", bus, chip, ret);
return 1;
}
return 0;
}