blob: cf127a6570b215c273ef35924e7893d39d6983ef [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Samsung Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <stdlib.h>
#include <timer.h>
#include <arch/io.h>
#include <console/console.h>
#include "clk.h"
#include "periph.h"
/* input clock of PLL: SMDK5420 has 24MHz input clock */
#define CONFIG_SYS_CLK_FREQ 24000000
/* Epll Clock division values to achive different frequency output */
static struct st_epll_con_val epll_div[] = {
{ 192000000, 0, 48, 3, 1, 0 },
{ 180000000, 0, 45, 3, 1, 0 },
{ 73728000, 1, 73, 3, 3, 47710 },
{ 67737600, 1, 90, 4, 3, 20762 },
{ 49152000, 0, 49, 3, 3, 9961 },
{ 45158400, 0, 45, 3, 3, 10381 },
{ 180633600, 0, 45, 3, 1, 10381 }
};
/* exynos5: return pll clock frequency */
unsigned long get_pll_clk(int pllreg)
{
unsigned long r, m, p, s, k = 0, mask, fout;
unsigned int freq;
switch (pllreg) {
case APLL:
r = readl(&exynos_clock->apll_con0);
break;
case MPLL:
r = readl(&exynos_clock->mpll_con0);
break;
case EPLL:
r = readl(&exynos_clock->epll_con0);
k = readl(&exynos_clock->epll_con1);
break;
case VPLL:
r = readl(&exynos_clock->vpll_con0);
k = readl(&exynos_clock->vpll_con1);
break;
case BPLL:
r = readl(&exynos_clock->bpll_con0);
break;
case RPLL:
r = readl(&exynos_clock->rpll_con0);
k = readl(&exynos_clock->rpll_con1);
break;
case SPLL:
r = readl(&exynos_clock->spll_con0);
break;
case CPLL:
r = readl(&exynos_clock->cpll_con0);
break;
case DPLL:
r = readl(&exynos_clock->dpll_con0);
break;
default:
printk(BIOS_DEBUG, "Unsupported PLL (%d)\n", pllreg);
return 0;
}
/*
* APLL_CON: MIDV [25:16]
* MPLL_CON: MIDV [25:16]
* EPLL_CON: MIDV [24:16]
* VPLL_CON: MIDV [24:16]
*/
if (pllreg == APLL || pllreg == BPLL || pllreg == MPLL ||
pllreg == SPLL)
mask = 0x3ff;
else
mask = 0x1ff;
m = (r >> 16) & mask;
/* PDIV [13:8] */
p = (r >> 8) & 0x3f;
/* SDIV [2:0] */
s = r & 0x7;
freq = CONFIG_SYS_CLK_FREQ;
if (pllreg == EPLL || pllreg == RPLL) {
k = k & 0xffff;
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 65536) * (freq / (p * (1 << s)));
} else if (pllreg == VPLL) {
k = k & 0xfff;
/* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 1024) * (freq / (p * (1 << s)));
} else {
/* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
fout = m * (freq / (p * (1 << s)));
}
return fout;
}
enum peripheral_clock_select {
PERIPH_SRC_CPLL = 1,
PERIPH_SRC_DPLL = 2,
PERIPH_SRC_MPLL = 3,
PERIPH_SRC_SPLL = 4,
PERIPH_SRC_IPLL = 5,
PERIPH_SRC_EPLL = 6,
PERIPH_SRC_RPLL = 7,
};
static int clock_select_to_pll(enum peripheral_clock_select sel)
{
int pll;
switch (sel) {
case PERIPH_SRC_CPLL:
pll = CPLL;
break;
case PERIPH_SRC_DPLL:
pll = DPLL;
break;
case PERIPH_SRC_MPLL:
pll = MPLL;
break;
case PERIPH_SRC_SPLL:
pll = SPLL;
break;
case PERIPH_SRC_IPLL:
pll = IPLL;
break;
case PERIPH_SRC_EPLL:
pll = EPLL;
break;
case PERIPH_SRC_RPLL:
pll = RPLL;
break;
default:
pll = -1;
break;
}
return pll;
}
unsigned long clock_get_periph_rate(enum periph_id peripheral)
{
unsigned long sclk;
unsigned int src, div;
switch (peripheral) {
case PERIPH_ID_UART0:
src = (readl(&exynos_clock->clk_src_peric0) >> 4) & 0x7;
div = (readl(&exynos_clock->clk_div_peric0) >> 8) & 0xf;
break;
case PERIPH_ID_UART1:
src = (readl(&exynos_clock->clk_src_peric0) >> 8) & 0x7;
div = (readl(&exynos_clock->clk_div_peric0) >> 12) & 0xf;
break;
case PERIPH_ID_UART2:
src = (readl(&exynos_clock->clk_src_peric0) >> 12) & 0x7;
div = (readl(&exynos_clock->clk_div_peric0) >> 16) & 0xf;
break;
case PERIPH_ID_UART3:
src = (readl(&exynos_clock->clk_src_peric0) >> 16) & 0x7;
div = (readl(&exynos_clock->clk_div_peric0) >> 20) & 0xf;
break;
case PERIPH_ID_PWM0:
case PERIPH_ID_PWM1:
case PERIPH_ID_PWM2:
case PERIPH_ID_PWM3:
case PERIPH_ID_PWM4:
src = (readl(&exynos_clock->clk_src_peric0) >> 24) & 0x7;
div = (readl(&exynos_clock->clk_div_peric0) >> 28) & 0x7;
break;
case PERIPH_ID_SPI0:
src = (readl(&exynos_clock->clk_src_peric1) >> 20) & 0x7;
div = (readl(&exynos_clock->clk_div_peric1) >> 20) & 0xf;
break;
case PERIPH_ID_SPI1:
src = (readl(&exynos_clock->clk_src_peric1) >> 24) & 0x7;
div = (readl(&exynos_clock->clk_div_peric1) >> 24) & 0xf;
break;
case PERIPH_ID_SPI2:
src = (readl(&exynos_clock->clk_src_peric1) >> 28) & 0x7;
div = (readl(&exynos_clock->clk_div_peric1) >> 28) & 0xf;
break;
case PERIPH_ID_SPI3: /* aka SPI0_ISP */
src = (readl(&exynos_clock->clk_src_isp) >> 16) & 0x7;
div = (readl(&exynos_clock->clk_div_isp0) >> 0) & 0x7;
break;
case PERIPH_ID_SPI4: /* aka SPI1_ISP */
src = (readl(&exynos_clock->clk_src_isp) >> 12) & 0x7;
div = (readl(&exynos_clock->clk_div_isp1) >> 4) & 0x7;
break;
case PERIPH_ID_I2C0:
case PERIPH_ID_I2C1:
case PERIPH_ID_I2C2:
case PERIPH_ID_I2C3:
case PERIPH_ID_I2C4:
case PERIPH_ID_I2C5:
case PERIPH_ID_I2C6:
case PERIPH_ID_I2C7:
case PERIPH_ID_I2C8:
case PERIPH_ID_I2C9:
case PERIPH_ID_I2C10:
/*
* I2C block parent clock selection is different from other
* peripherals, so we handle it all here.
* TODO: Add a helper function like with the peripheral clock
* select fields?
*/
src = (readl(&exynos_clock->clk_src_top1) >> 8) & 0x3;
if (src == 0x0)
src = CPLL;
else if (src == 0x1)
src = DPLL;
else if (src == 0x2)
src = MPLL;
else
return -1;
sclk = get_pll_clk(src);
div = ((readl(&exynos_clock->clk_div_top1) >> 8) & 0x3f) + 1;
return sclk / div;
default:
printk(BIOS_DEBUG, "%s: invalid peripheral %d",
__func__, peripheral);
return -1;
};
src = clock_select_to_pll(src);
if (src < 0) {
printk(BIOS_DEBUG, "%s: cannot determine source PLL", __func__);
return -1;
}
sclk = get_pll_clk(src);
return sclk / (div + 1);
}
/* exynos5: return ARM clock frequency */
unsigned long get_arm_clk(void)
{
unsigned long div;
unsigned long armclk;
unsigned int arm_ratio;
unsigned int arm2_ratio;
div = readl(&exynos_clock->clk_div_cpu0);
/* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
arm_ratio = (div >> 0) & 0x7;
arm2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (arm_ratio + 1);
armclk /= (arm2_ratio + 1);
return armclk;
}
/* exynos5: get the mmc clock */
static unsigned long get_mmc_clk(int dev_index)
{
unsigned long uclk, sclk;
unsigned int sel, ratio;
int shift = 0;
sel = readl(&exynos_clock->clk_src_fsys);
sel = (sel >> ((dev_index * 4) + 8)) & 0x7;
if (sel == 0x3)
sclk = get_pll_clk(MPLL);
else if (sel == 0x6)
sclk = get_pll_clk(EPLL);
else
return 0;
ratio = readl(&exynos_clock->clk_div_fsys1);
shift = dev_index * 10;
ratio = (ratio >> shift) & 0x3ff;
uclk = (sclk / (ratio + 1));
printk(BIOS_DEBUG, "%s(%d): %lu\n", __func__, dev_index, uclk);
return uclk;
}
/* exynos5: set the mmc clock */
void set_mmc_clk(int dev_index, unsigned int div)
{
void *addr;
unsigned int val, shift;
addr = &exynos_clock->clk_div_fsys1;
shift = dev_index * 10;
val = readl(addr);
val &= ~(0x3ff << shift);
val |= (div & 0x3ff) << shift;
writel(val, addr);
}
/* Set DW MMC Controller clock */
int clock_set_dwmci(enum periph_id peripheral)
{
/* Request MMC clock value to 52MHz. */
const unsigned long freq = 52000000;
unsigned long sdclkin, cclkin;
int device_index = (int)peripheral - (int)PERIPH_ID_SDMMC0;
ASSERT(device_index >= 0 && device_index < 4);
sdclkin = get_mmc_clk(device_index);
if (!sdclkin) {
return -1;
}
/* The SDCLKIN is divided insided controller by the DIVRATIO field in
* CLKSEL register, so we must calculate clock value as
* cclk_in = SDCLKIN / (DIVRATIO + 1)
* Currently the RIVRATIO must be 3 for MMC0 and MMC2 on Exynos5420
* (and must be configured in payload).
*/
if (device_index == 0 || device_index == 2){
int divratio = 3;
sdclkin /= (divratio + 1);
}
printk(BIOS_DEBUG, "%s(%d): sdclkin: %ld\n", __func__, device_index, sdclkin);
cclkin = div_round_up(sdclkin, freq);
set_mmc_clk(device_index, cclkin);
return 0;
}
void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor)
{
unsigned shift;
unsigned mask = 0xff;
u32 *reg;
/*
* For now we only handle a very small subset of peipherals here.
* Others will need to (and do) mangle the clock registers
* themselves, At some point it is hoped that this function can work
* from a table or calculated register offset / mask. For now this
* is at least better than spreading clock control code around
* U-Boot.
*/
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &exynos_clock->clk_div_peric4;
shift = 8;
break;
case PERIPH_ID_SPI1:
reg = &exynos_clock->clk_div_peric4;
shift = 16;
break;
case PERIPH_ID_SPI2:
reg = &exynos_clock->clk_div_peric4;
shift = 24;
break;
case PERIPH_ID_SPI3:
reg = &exynos_clock->clk_div_isp1;
shift = 0;
break;
case PERIPH_ID_SPI4:
reg = &exynos_clock->clk_div_isp1;
shift = 8;
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return;
}
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
}
void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor)
{
unsigned shift;
unsigned mask = 0xf;
u32 *reg;
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &exynos_clock->clk_div_peric1;
shift = 20;
break;
case PERIPH_ID_SPI1:
reg = &exynos_clock->clk_div_peric1;
shift = 24;
break;
case PERIPH_ID_SPI2:
reg = &exynos_clock->clk_div_peric1;
shift = 28;
break;
case PERIPH_ID_SPI3:
reg = &exynos_clock->clk_div_isp1;
shift = 16;
break;
case PERIPH_ID_SPI4:
reg = &exynos_clock->clk_div_isp1;
shift = 20;
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return;
}
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
}
/**
* Linearly searches for the most accurate main and fine stage clock scalars
* (divisors) for a specified target frequency and scalar bit sizes by checking
* all multiples of main_scalar_bits values. Will always return scalars up to or
* slower than target.
*
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
* @param input_freq Clock frequency to be scaled in Hz
* @param target_freq Desired clock frequency in Hz
* @param best_fine_scalar Pointer to store the fine stage divisor
*
* @return best_main_scalar Main scalar for desired frequency or -1 if none
* found
*/
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
unsigned int fine_scalar_bits, unsigned int input_rate,
unsigned int target_rate, unsigned int *best_fine_scalar)
{
int i;
int best_main_scalar = -1;
unsigned int best_error = target_rate;
const unsigned int cap = (1 << fine_scalar_bits) - 1;
const unsigned int loops = 1 << main_scaler_bits;
printk(BIOS_DEBUG, "Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
target_rate, cap);
ASSERT(best_fine_scalar != NULL);
ASSERT(main_scaler_bits <= fine_scalar_bits);
*best_fine_scalar = 1;
if (input_rate == 0 || target_rate == 0)
return -1;
if (target_rate >= input_rate)
return 1;
for (i = 1; i <= loops; i++) {
const unsigned int effective_div = MAX(MIN(input_rate / i /
target_rate, cap), 1);
const unsigned int effective_rate = input_rate / i /
effective_div;
const int error = target_rate - effective_rate;
printk(BIOS_DEBUG, "%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
effective_rate, error);
if (error >= 0 && error <= best_error) {
best_error = error;
best_main_scalar = i;
*best_fine_scalar = effective_div;
}
}
return best_main_scalar;
}
int clock_set_rate(enum periph_id periph_id, unsigned int rate)
{
int main;
unsigned int fine;
switch (periph_id) {
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
case PERIPH_ID_SPI2:
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
if (main < 0) {
printk(BIOS_DEBUG, "%s: Cannot set clock rate for periph %d",
__func__, periph_id);
return -1;
}
clock_ll_set_ratio(periph_id, main - 1);
clock_ll_set_pre_ratio(periph_id, fine - 1);
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return -1;
}
return 0;
}
int clock_set_mshci(enum periph_id peripheral)
{
u32 *addr;
unsigned int clock;
unsigned int tmp;
unsigned int i;
/* get mpll clock */
clock = get_pll_clk(MPLL) / 1000000;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC0_RATIO [3:0]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC2_RATIO [3:0]
*/
switch (peripheral) {
case PERIPH_ID_SDMMC0:
addr = &exynos_clock->clk_div_fsys1;
break;
case PERIPH_ID_SDMMC2:
addr = &exynos_clock->clk_div_fsys2;
break;
default:
printk(BIOS_DEBUG, "invalid peripheral\n");
return -1;
}
tmp = readl(addr) & ~0xff0f;
for (i = 0; i <= 0xf; i++) {
if ((clock / (i + 1)) <= 400) {
writel(tmp | i << 0, addr);
break;
}
}
return 0;
}
int clock_epll_set_rate(unsigned long rate)
{
unsigned int epll_con, epll_con_k;
unsigned int i;
unsigned int lockcnt;
struct mono_time current, end;
epll_con = readl(&exynos_clock->epll_con0);
epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
EPLL_CON0_LOCK_DET_EN_SHIFT) |
EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
for (i = 0; i < ARRAY_SIZE(epll_div); i++) {
if (epll_div[i].freq_out == rate)
break;
}
if (i == ARRAY_SIZE(epll_div))
return -1;
epll_con_k = epll_div[i].k_dsm << 0;
epll_con |= epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT;
epll_con |= epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
epll_con |= epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
epll_con |= epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
/*
* Required period ( in cycles) to genarate a stable clock output.
* The maximum clock time can be up to 3000 * PDIV cycles of PLLs
* frequency input (as per spec)
*/
lockcnt = 3000 * epll_div[i].p_div;
writel(lockcnt, &exynos_clock->epll_lock);
writel(epll_con, &exynos_clock->epll_con0);
writel(epll_con_k, &exynos_clock->epll_con1);
timer_monotonic_get(&current);
end = current;
mono_time_add_msecs(&end, TIMEOUT_EPLL_LOCK);
while (!(readl(&exynos_clock->epll_con0) &
(0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
if (mono_time_after(&current, &end)) {
printk(BIOS_DEBUG, "%s: Timeout waiting for EPLL lock\n", __func__);
return -1;
}
timer_monotonic_get(&current);
}
return 0;
}
void clock_select_i2s_clk_source(void)
{
clrsetbits_le32(&exynos_clock->clk_src_peric1, AUDIO1_SEL_MASK,
(CLK_SRC_SCLK_EPLL));
}
int clock_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
{
unsigned int div ;
if ((dst_frq == 0) || (src_frq == 0)) {
printk(BIOS_DEBUG, "%s: Invalid requency input for prescaler\n", __func__);
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
div = (src_frq / dst_frq);
if (div > AUDIO_1_RATIO_MASK) {
printk(BIOS_DEBUG, "%s: Frequency ratio is out of range\n", __func__);
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
clrsetbits_le32(&exynos_clock->clk_div_peric4, AUDIO_1_RATIO_MASK,
(div & AUDIO_1_RATIO_MASK));
return 0;
}