blob: dcadd916546e530502392352b2ef3a5d068e6591 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stddef.h>
#include <arch/cpu.h>
#include <arch/io.h>
#include <arch/cbfs.h>
#include <arch/stages.h>
#include <console/console.h>
#include <cbmem.h>
#include <cpu/x86/mtrr.h>
#include <romstage_handoff.h>
#include <timestamp.h>
#include <baytrail/gpio.h>
#include <baytrail/iomap.h>
#include <baytrail/lpc.h>
#include <baytrail/pci_devs.h>
#include <baytrail/romstage.h>
/* The cache-as-ram assembly file calls romstage_main() after setting up
* cache-as-ram. romstage_main() will then call the mainboards's
* mainboard_romstage_entry() function. That function then calls
* romstage_common() below. The reason for the back and forth is to provide
* common entry point from cache-as-ram while still allowing for code sharing.
* Because we can't use global variables the stack is used for allocations --
* thus the need to call back and forth. */
static void *setup_stack_and_mttrs(void);
static void program_base_addresses(void)
{
uint32_t reg;
const uint32_t lpc_dev = PCI_DEV(0, LPC_DEV, LPC_FUNC);
/* Memory Mapped IO registers. */
reg = PMC_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, PBASE, reg);
reg = IO_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, IOBASE, reg);
reg = ILB_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, IBASE, reg);
reg = SPI_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, SBASE, reg);
reg = MPHY_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, MPBASE, reg);
reg = PUNIT_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, PUBASE, reg);
reg = RCBA_BASE_ADDRESS | 1;
pci_write_config32(lpc_dev, RCBA, reg);
/* IO Port Registers. */
reg = ACPI_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, ABASE, reg);
reg = GPIO_BASE_ADDRESS | 2;
pci_write_config32(lpc_dev, GBASE, reg);
}
static inline void mark_ts(struct romstage_params *rp, uint64_t ts)
{
struct romstage_timestamps *rt = &rp->ts;
rt->times[rt->count] = ts;
rt->count++;
}
/* Entry from cache-as-ram.inc. */
void * asmlinkage romstage_main(unsigned long bist,
uint32_t tsc_low, uint32_t tsc_hi)
{
struct romstage_params rp = {
.bist = bist,
.mrc_params = NULL,
};
/* Save initial timestamp from bootblock. */
mark_ts(&rp, (((uint64_t)tsc_hi) << 32) | (uint64_t)tsc_low);
/* Save romstage begin */
mark_ts(&rp, timestamp_get());
/* Call into mainboard. */
mainboard_romstage_entry(&rp);
return setup_stack_and_mttrs();
}
/* Entry from the mainboard. */
void romstage_common(struct romstage_params *params)
{
struct romstage_handoff *handoff;
program_base_addresses();
tco_disable();
byt_config_com1_and_enable();
console_init();
gfx_init();
mark_ts(params, timestamp_get());
/* Initialize RAM */
raminit(params->mrc_params, 5);
mark_ts(params, timestamp_get());
handoff = romstage_handoff_find_or_add();
if (handoff != NULL)
handoff->s3_resume = 0;
else
printk(BIOS_DEBUG, "Romstage handoff structure not added!\n");
/* Save timestamp information. */
timestamp_init(params->ts.times[0]);
timestamp_add(TS_START_ROMSTAGE, params->ts.times[1]);
timestamp_add(TS_BEFORE_INITRAM, params->ts.times[2]);
timestamp_add(TS_AFTER_INITRAM, params->ts.times[3]);
}
static void open_up_spi(void)
{
const uintptr_t sbase = SPI_BASE_ADDRESS;
/* Disable generating SMI when setting WPD bit. */
write32(sbase + 0xf8, read32(sbase + 0xf8) & ~(1 << 7));
/* Disable the SMM-only BIOS write and set WPD bit. */
write32(sbase + 0xfc, 1 | (read32(sbase + 0xfc) & ~(1 << 5)));
}
void asmlinkage romstage_after_car(void)
{
/* Allow BIOS to program SPI part. */
open_up_spi();
timestamp_add_now(TS_END_ROMSTAGE);
/* Load the ramstage. */
copy_and_run();
while (1);
}
static inline uint32_t *stack_push(u32 *stack, u32 value)
{
stack = &stack[-1];
*stack = value;
return stack;
}
/* Romstage needs quite a bit of stack for decompressing images since the lzma
* lib keeps its state on the stack during romstage. */
static unsigned long choose_top_of_stack(void)
{
unsigned long stack_top;
const unsigned long romstage_ram_stack_size = 0x5000;
/* cbmem_add() does a find() before add(). */
stack_top = (unsigned long)cbmem_add(CBMEM_ID_ROMSTAGE_RAM_STACK,
romstage_ram_stack_size);
stack_top += romstage_ram_stack_size;
return stack_top;
}
/* setup_stack_and_mttrs() determines the stack to use after
* cache-as-ram is torn down as well as the MTRR settings to use. */
static void *setup_stack_and_mttrs(void)
{
unsigned long top_of_stack;
int num_mtrrs;
uint32_t *slot;
uint32_t mtrr_mask_upper;
uint32_t top_of_ram;
/* Top of stack needs to be aligned to a 4-byte boundary. */
top_of_stack = choose_top_of_stack() & ~3;
slot = (void *)top_of_stack;
num_mtrrs = 0;
/* The upper bits of the MTRR mask need to set according to the number
* of physical address bits. */
mtrr_mask_upper = (1 << ((cpuid_eax(0x80000008) & 0xff) - 32)) - 1;
/* The order for each MTTR is value then base with upper 32-bits of
* each value coming before the lower 32-bits. The reasoning for
* this ordering is to create a stack layout like the following:
* +0: Number of MTRRs
* +4: MTTR base 0 31:0
* +8: MTTR base 0 63:32
* +12: MTTR mask 0 31:0
* +16: MTTR mask 0 63:32
* +20: MTTR base 1 31:0
* +24: MTTR base 1 63:32
* +28: MTTR mask 1 31:0
* +32: MTTR mask 1 63:32
*/
/* Cache the ROM as WP just below 4GiB. */
slot = stack_push(slot, mtrr_mask_upper); /* upper mask */
slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRRphysMaskValid);
slot = stack_push(slot, 0); /* upper base */
slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRR_TYPE_WRPROT);
num_mtrrs++;
/* Cache RAM as WB from 0 -> CONFIG_RAMTOP. */
slot = stack_push(slot, mtrr_mask_upper); /* upper mask */
slot = stack_push(slot, ~(CONFIG_RAMTOP - 1) | MTRRphysMaskValid);
slot = stack_push(slot, 0); /* upper base */
slot = stack_push(slot, 0 | MTRR_TYPE_WRBACK);
num_mtrrs++;
top_of_ram = (uint32_t)cbmem_top();
/* Cache 8MiB below the top of ram. The top of ram under 4GiB is the
* start of the TSEG region. It is required to be 8MiB aligned. Set
* this area as cacheable so it can be used later for ramstage before
* setting up the entire RAM as cacheable. */
slot = stack_push(slot, mtrr_mask_upper); /* upper mask */
slot = stack_push(slot, ~((8 << 20) - 1) | MTRRphysMaskValid);
slot = stack_push(slot, 0); /* upper base */
slot = stack_push(slot, (top_of_ram - (8 << 20)) | MTRR_TYPE_WRBACK);
num_mtrrs++;
/* Cache 8MiB at the top of ram. Top of ram is where the TSEG
* region resides. However, it is not restricted to SMM mode until
* SMM has been relocated. By setting the region to cacheable it
* provides faster access when relocating the SMM handler as well
* as using the TSEG region for other purposes. */
slot = stack_push(slot, mtrr_mask_upper); /* upper mask */
slot = stack_push(slot, ~((8 << 20) - 1) | MTRRphysMaskValid);
slot = stack_push(slot, 0); /* upper base */
slot = stack_push(slot, top_of_ram | MTRR_TYPE_WRBACK);
num_mtrrs++;
/* Save the number of MTTRs to setup. Return the stack location
* pointing to the number of MTRRs. */
slot = stack_push(slot, num_mtrrs);
return slot;
}