blob: ae02a7c3d063a645a931c154d4defc7786b7a1b6 [file] [log] [blame]
/* This was originally for the e7500, modified for e7501
* The primary differences are that 7501 apparently can
* support single channel RAM (i haven't tested),
* CAS1.5 is no longer supported, The ECC scrubber
* now supports a mode to zero RAM and init ECC in one step
* and the undocumented registers at 0x80 require new
* (undocumented) values determined by guesswork and
* comparison w/ OEM BIOS values.
* Steven James 02/06/2003
*/
/* converted to C 6/2004 yhlu */
#include <stdint.h>
#include <device/pci_def.h>
#include <arch/io.h>
#include <arch/cpu.h>
#include <stdlib.h>
#include <console/console.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/msr.h>
#include <assert.h>
#include <spd.h>
#include <sdram_mode.h>
#include "raminit.h"
#include "e7505.h"
#include "debug.h"
/*-----------------------------------------------------------------------------
Definitions:
-----------------------------------------------------------------------------*/
// Uncomment this to enable run-time checking of DIMM parameters
// for dual-channel operation
// Unfortunately the code seems to chew up several K of space.
//#define VALIDATE_DIMM_COMPATIBILITY
#if CONFIG_DEBUG_RAM_SETUP
#define RAM_DEBUG_MESSAGE(x) print_debug(x)
#define RAM_DEBUG_HEX32(x) print_debug_hex32(x)
#define RAM_DEBUG_HEX8(x) print_debug_hex8(x)
#define DUMPNORTH() dump_pci_device(MCHDEV)
#else
#define RAM_DEBUG_MESSAGE(x)
#define RAM_DEBUG_HEX32(x)
#define RAM_DEBUG_HEX8(x)
#define DUMPNORTH()
#endif
#define E7501_SDRAM_MODE (SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4)
#define SPD_ERROR "Error reading SPD info\n"
#define MCHDEV PCI_DEV(0,0,0)
#define RASDEV PCI_DEV(0,0,1)
#define D060DEV PCI_DEV(0,6,0)
// NOTE: This used to be 0x100000.
// That doesn't work on systems where A20M# is asserted, because
// attempts to access 0x1000NN end up accessing 0x0000NN.
#define RCOMP_MMIO 0x200000
struct dimm_size {
unsigned long side1;
unsigned long side2;
};
static const uint32_t refresh_frequency[] = {
/* Relative frequency (array value) of each E7501 Refresh Mode Select
* (RMS) value (array index)
* 0 == least frequent refresh (longest interval between refreshes)
* [0] disabled -> 0
* [1] 15.6 usec -> 2
* [2] 7.8 usec -> 3
* [3] 64 usec -> 1
* [4] reserved -> 0
* [5] reserved -> 0
* [6] reserved -> 0
* [7] 64 clocks -> 4
*/
0, 2, 3, 1, 0, 0, 0, 4
};
static const uint32_t refresh_rate_map[] = {
/* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode
* Select values (array value)
* These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
* The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and
* 64 clock (481 ns) (7) refresh.
* [0] == 15.625 us -> 15.6 us
* [1] == 3.9 us -> 481 ns
* [2] == 7.8 us -> 7.8 us
* [3] == 31.3 us -> 15.6 us
* [4] == 62.5 us -> 15.6 us
* [5] == 125 us -> 64 us
*/
1, 7, 2, 1, 1, 3
};
#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)
// SPD parameters that must match for dual-channel operation
static const uint8_t dual_channel_parameters[] = {
SPD_MEMORY_TYPE,
SPD_MODULE_VOLTAGE,
SPD_NUM_COLUMNS,
SPD_NUM_ROWS,
SPD_NUM_DIMM_BANKS,
SPD_PRIMARY_SDRAM_WIDTH,
SPD_NUM_BANKS_PER_SDRAM
};
/* Comments here are remains of e7501 or even 855PM.
* They might be partially (in)correct for e7505.
*/
/* (DRAM Read Timing Control, if similar to 855PM?)
* 0x80 - 0x81 documented differently for e7505
* This register has something to do with CAS latencies,
* possibily this is the real chipset control.
* At 0x00 CAS latency 1.5 works.
* At 0x06 CAS latency 2.5 works.
* At 0x01 CAS latency 2.0 works.
*
* This is still undocumented in e7501, but with different values
* CAS 2.0 values taken from Intel BIOS settings, others are a guess
* and may be terribly wrong. Old values preserved as comments until I
* figure this out for sure.
* e7501 docs claim that CAS1.5 is unsupported, so it may or may not
* work at all.
* Steven James 02/06/2003
*
* NOTE: values now configured in configure_e7501_cas_latency() based
* on SPD info and total number of DIMMs (per Intel)
*/
/* FDHC - Fixed DRAM Hole Control ???
* 0x58 undocumented for e7505, memory hole in southbridge configuration?
* [7:7] Hole_Enable
* 0 == No memory Hole
* 1 == Memory Hole from 15MB to 16MB
* [6:0] Reserved
*/
/* Another Intel undocumented register
* 0x88 - 0x8B
* [31:31] Purpose unknown
* [26:26] Master DLL Reset?
* 0 == Normal operation?
* 1 == Reset?
* [07:07] Periodic memory recalibration?
* 0 == Disabled?
* 1 == Enabled?
* [04:04] Receive FIFO RE-Sync?
* 0 == Normal operation?
* 1 == Reset?
*/
/* DDR RECOMP tables */
// Slew table for 2x drive?
static const uint32_t slew_2x[] = {
0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
};
// Pull Up / Pull Down offset table, if analogous to IXP2800?
static const uint32_t pull_updown_offset_table[] = {
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0x88888888, 0x88888888, 0x88888888, 0x88888888,
};
/*-----------------------------------------------------------------------------
Delay functions:
-----------------------------------------------------------------------------*/
/* Estimate that SLOW_DOWN_IO takes about 1 us */
#define SLOW_DOWN_IO inb(0x80)
static void local_udelay(int i)
{
while (i--) {
SLOW_DOWN_IO;
}
}
/* delay for 200us */
#define DO_DELAY local_udelay(200)
#define EXTRA_DELAY DO_DELAY
/*-----------------------------------------------------------------------------
Handle (undocumented) control bits MCHTST and PCI_DEV(0,6,0)
-----------------------------------------------------------------------------*/
typedef enum {
MCHTST_CMD_0,
D060_ENABLE,
D060_DISABLE,
RCOMP_BAR_ENABLE,
RCOMP_BAR_DISABLE,
} mchtst_cc;
typedef enum {
D060_CMD_0,
D060_CMD_1,
} d060_cc;
typedef enum {
RCOMP_HOLD,
RCOMP_RELEASE,
RCOMP_SMR_00,
RCOMP_SMR_01,
} rcomp_smr_cc;
/**
* MCHTST - 0xF4 - 0xF7 -- Based on similarity to 855PM
*
* [31:31] Purpose unknown
* [30:30] Purpose unknown
* [29:23] Unknown - not used?
* [22:22] System Memory MMR Enable
* 0 == Disable: mem space and BAR at 0x14 are not accessible
* 1 == Enable: mem space and BAR at 0x14 are accessible
* [21:20] Purpose unknown
* [19:02] Unknown - not used?
* [01:01] D6EN (Device #6 enable)
* 0 == Disable
* 1 == Enable
* [00:00] Unknown - not used?
*/
static void mchtest_control(mchtst_cc cmd)
{
uint32_t dword = pci_read_config32(MCHDEV, MCHTST);
switch (cmd) {
case MCHTST_CMD_0:
dword &= ~(3 << 30);
break;
case RCOMP_BAR_ENABLE:
dword |= (1 << 22);
break;
case RCOMP_BAR_DISABLE:
dword &= ~(1 << 22);
break;
case D060_ENABLE:
dword |= (1 << 1);
break;
case D060_DISABLE:
dword &= ~(1 << 1);
break;
};
pci_write_config32(MCHDEV, MCHTST, dword);
}
/**
*
*/
static void d060_control(d060_cc cmd)
{
mchtest_control(D060_ENABLE);
uint32_t dword = pci_read_config32(D060DEV, 0xf0);
switch (cmd) {
case D060_CMD_0:
dword |= (1 << 2);
break;
case D060_CMD_1:
dword |= (3 << 27);
break;
}
pci_write_config32(D060DEV, 0xf0, dword);
mchtest_control(D060_DISABLE);
}
/**
*
*/
static void rcomp_smr_control(rcomp_smr_cc cmd)
{
uint32_t dword = read32(RCOMP_MMIO + SMRCTL);
switch (cmd) {
case RCOMP_HOLD:
dword |= (1 << 9);
break;
case RCOMP_RELEASE:
dword &= ~((1 << 9) | (3 << 0));
dword |= (1 << 10) | (1 << 0);
break;
case RCOMP_SMR_00:
dword &= ~(1 << 8);
break;
case RCOMP_SMR_01:
dword |= (1 << 10) | (1 << 8);
break;
}
write32(RCOMP_MMIO + SMRCTL, dword);
}
/*-----------------------------------------------------------------------------
Serial presence detect (SPD) functions:
-----------------------------------------------------------------------------*/
static void die_on_spd_error(int spd_return_value)
{
if (spd_return_value < 0)
die("Error reading SPD info\n");
}
/**
* Calculate the page size for each physical bank of the DIMM:
* log2(page size) = (# columns) + log2(data width)
*
* NOTE: Page size is the total number of data bits in a row.
*
* @param dimm_socket_address SMBus address of DIMM socket to interrogate.
* @return log2(page size) for each side of the DIMM.
*/
static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address)
{
uint16_t module_data_width;
int value;
struct dimm_size pgsz;
pgsz.side1 = 0;
pgsz.side2 = 0;
// Side 1
value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
if (value < 0)
goto hw_err;
pgsz.side1 = value & 0xf; // # columns in bank 1
/* Get the module data width and convert it to a power of two */
value =
spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
if (value < 0)
goto hw_err;
module_data_width = (value & 0xff) << 8;
value =
spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
if (value < 0)
goto hw_err;
module_data_width |= (value & 0xff);
pgsz.side1 += log2(module_data_width);
/* side two */
value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
if (value < 0)
goto hw_err;
if (value > 2)
die("Bad SPD value\n");
if (value == 2) {
pgsz.side2 = pgsz.side1; // Assume symmetric banks until we know differently
value =
spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
if (value < 0)
goto hw_err;
if ((value & 0xf0) != 0) {
// Asymmetric banks
pgsz.side2 -= value & 0xf; /* Subtract out columns on side 1 */
pgsz.side2 += (value >> 4) & 0xf; /* Add in columns on side 2 */
}
}
return pgsz;
hw_err:
die(SPD_ERROR);
return pgsz; // Never reached
}
/**
* Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
*
* @param dimm_socket_address SMBus address of DIMM socket to interrogate.
* @return Width in bits of each DIMM side's DRAMs.
*/
static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address)
{
int value;
struct dimm_size width;
width.side1 = 0;
width.side2 = 0;
value =
spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
die_on_spd_error(value);
width.side1 = value & 0x7f; // Mask off bank 2 flag
if (value & 0x80) {
width.side2 = width.side1 << 1; // Bank 2 exists and is double-width
} else {
// If bank 2 exists, it's the same width as bank 1
value =
spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
die_on_spd_error(value);
#ifdef ROMCC_IF_BUG_FIXED
if (value == 2)
width.side2 = width.side1;
#else
switch (value) {
case 2:
width.side2 = width.side1;
break;
default:
break;
}
#endif
}
return width;
}
/**
* Calculate the log base 2 size in bits of both DIMM sides.
*
* log2(# bits) = (# columns) + log2(data width) +
* (# rows) + log2(banks per SDRAM)
*
* Note that it might be easier to use SPD byte 31 here, it has the DIMM size
* as a multiple of 4MB. The way we do it now we can size both sides of an
* asymmetric DIMM.
*
* @param dimm_socket_address SMBus address of DIMM socket to interrogate.
* @return log2(number of bits) for each side of the DIMM.
*/
static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address)
{
int value;
// Start with log2(page size)
struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address);
if (sz.side1 > 0) {
value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS);
die_on_spd_error(value);
sz.side1 += value & 0xf;
if (sz.side2 > 0) {
// Double-sided DIMM
if (value & 0xF0)
sz.side2 += value >> 4; // Asymmetric
else
sz.side2 += value; // Symmetric
}
value =
spd_read_byte(dimm_socket_address,
SPD_NUM_BANKS_PER_SDRAM);
die_on_spd_error(value);
value = log2(value);
sz.side1 += value;
if (sz.side2 > 0)
sz.side2 += value;
}
return sz;
}
#ifdef VALIDATE_DIMM_COMPATIBILITY
/**
* Determine whether two DIMMs have the same value for an SPD parameter.
*
* @param spd_byte_number The SPD byte number to compare in both DIMMs.
* @param dimm0_address SMBus address of the 1st DIMM socket to interrogate.
* @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate.
* @return 1 if both DIMM sockets report the same value for the specified
* SPD parameter, 0 if the values differed or an error occurred.
*/
static uint8_t are_spd_values_equal(uint8_t spd_byte_number,
uint16_t dimm0_address,
uint16_t dimm1_address)
{
uint8_t bEqual = 0;
int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number);
int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number);
if ((dimm0_value >= 0) && (dimm1_value >= 0)
&& (dimm0_value == dimm1_value))
bEqual = 1;
return bEqual;
}
#endif
/**
* Scan for compatible DIMMs.
*
* The code in this module only supports dual-channel operation, so we test
* that compatible DIMMs are paired.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @return A bitmask indicating which of the possible sockets for each channel
* was found to contain a compatible DIMM.
* Bit 0 corresponds to the closest socket for channel 0
* Bit 1 to the next socket for channel 0
* ...
* Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0
* Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1
* ...
* Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1
*/
static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl)
{
int i;
uint8_t dimm_mask = 0;
// Have to increase size of dimm_mask if this assertion is violated
ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4);
// Find DIMMs we can support on channel 0.
// Then see if the corresponding channel 1 DIMM has the same parameters,
// since we only support dual-channel.
for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
uint16_t channel0_dimm = ctrl->channel0[i];
uint16_t channel1_dimm = ctrl->channel1[i];
uint8_t bDualChannel = 1;
#ifdef VALIDATE_DIMM_COMPATIBILITY
struct dimm_size page_size;
struct dimm_size sdram_width;
#endif
int spd_value;
if (channel0_dimm == 0)
continue; // No such socket on this mainboard
if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) !=
SPD_MEMORY_TYPE_SDRAM_DDR)
continue;
#ifdef VALIDATE_DIMM_COMPATIBILITY
if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) !=
SPD_VOLTAGE_SSTL2)
continue; // Unsupported voltage
// E7501 does not support unregistered DIMMs
spd_value =
spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES);
if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0))
continue;
// Must support burst = 4 for dual-channel operation on E7501
// NOTE: for single-channel, burst = 8 is required
spd_value =
spd_read_byte(channel0_dimm,
SPD_SUPPORTED_BURST_LENGTHS);
if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
continue;
page_size = sdram_spd_get_page_size(channel0_dimm);
sdram_width = sdram_spd_get_width(channel0_dimm);
// Validate DIMM page size
// The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel
// NOTE: 4 KB = 32 Kb = 2^15
// 32 KB = 262 Kb = 2^18
if ((page_size.side1 < 15) || (page_size.side1 > 18))
continue;
// If DIMM is double-sided, verify side2 page size
if (page_size.side2 != 0) {
if ((page_size.side2 < 15)
|| (page_size.side2 > 18))
continue;
}
// Validate SDRAM width
// The E7501 only supports x4 and x8 devices
if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8))
continue;
// If DIMM is double-sided, verify side2 width
if (sdram_width.side2 != 0) {
if ((sdram_width.side2 != 4)
&& (sdram_width.side2 != 8))
continue;
}
#endif
// Channel 0 DIMM looks compatible.
// Now see if it is paired with the proper DIMM on channel 1.
ASSERT(channel1_dimm != 0); // No such socket on this mainboard??
// NOTE: unpopulated DIMMs cause read to fail
spd_value =
spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES);
if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {
print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
continue;
}
#ifdef VALIDATE_DIMM_COMPATIBILITY
spd_value =
spd_read_byte(channel1_dimm,
SPD_SUPPORTED_BURST_LENGTHS);
if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
continue;
int j;
for (j = 0; j < sizeof(dual_channel_parameters); ++j) {
if (!are_spd_values_equal
(dual_channel_parameters[j], channel0_dimm,
channel1_dimm)) {
bDualChannel = 0;
break;
}
}
#endif
// Code around ROMCC bug in optimization of "if" statements
#ifdef ROMCC_IF_BUG_FIXED
if (bDualChannel) {
// Made it through all the checks, this DIMM pair is usable
dimm_mask |= ((1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i)));
} else
print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
#else
switch (bDualChannel) {
case 0:
print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
break;
default:
// Made it through all the checks, this DIMM pair is usable
dimm_mask |= (1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i));
break;
}
#endif
}
return dimm_mask;
}
/*-----------------------------------------------------------------------------
SDRAM configuration functions:
-----------------------------------------------------------------------------*/
/**
* Send the specified command to all DIMMs.
*
* @param command Specifies the command to be sent to the DIMMs.
* @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
* register value in JEDEC format.
*/
static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
{
uint8_t dimm_start_64M_multiple;
uint32_t dimm_start_address;
uint32_t dram_controller_mode;
uint8_t i;
// Configure the RAM command
dram_controller_mode = pci_read_config32(MCHDEV, DRC);
dram_controller_mode &= 0xFFFFFF8F;
dram_controller_mode |= command;
pci_write_config32(MCHDEV, DRC, dram_controller_mode);
// RAM_COMMAND_NORMAL is an exception.
// It affects only the memory controller and does not need to be "sent" to the DIMMs.
if (command == RAM_COMMAND_NORMAL) {
EXTRA_DELAY;
return;
}
// NOTE: for mode select commands, some of the location address bits are part of the command
// Map JEDEC mode bits to E7505
if (command == RAM_COMMAND_MRS) {
// Host address lines [25:18] map to DIMM address lines [7:0]
// Host address lines [17:16] map to DIMM address lines [9:8]
// Host address lines [15:4] map to DIMM address lines [11:0]
dimm_start_address = (jedec_mode_bits & 0x00ff) << 18;
dimm_start_address |= (jedec_mode_bits & 0x0300) << 8;
dimm_start_address |= (jedec_mode_bits & 0x0fff) << 4;
} else if (command == RAM_COMMAND_EMRS) {
// Host address lines [15:4] map to DIMM address lines [11:0]
dimm_start_address = (jedec_mode_bits << 4);
} else {
ASSERT(jedec_mode_bits == 0);
dimm_start_address = 0;
}
// Send the command to all DIMMs by accessing a memory location within each
dimm_start_64M_multiple = 0;
/* FIXME: Only address the number of rows present in the system?
* Seems like rows 4-7 overlap with 0-3.
*/
for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) {
uint8_t dimm_end_64M_multiple = pci_read_config8(MCHDEV, DRB_ROW_0 + i);
if (dimm_end_64M_multiple > dimm_start_64M_multiple) {
dimm_start_address &= 0x3ffffff;
dimm_start_address |= dimm_start_64M_multiple << 26;
read32(dimm_start_address);
// Set the start of the next DIMM
dimm_start_64M_multiple = dimm_end_64M_multiple;
}
}
EXTRA_DELAY;
}
/**
* Set the mode register of all DIMMs.
*
* The proper CAS# latency setting is added to the mode bits specified
* by the caller.
*
* @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
* register value in JEDEC format.
*/
static void set_ram_mode(uint16_t jedec_mode_bits)
{
ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK));
uint32_t dram_cas_latency =
pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;
switch (dram_cas_latency) {
case DRT_CAS_2_5:
jedec_mode_bits |= SDRAM_CAS_2_5;
break;
case DRT_CAS_2_0:
jedec_mode_bits |= SDRAM_CAS_2_0;
break;
default:
BUG();
break;
}
do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits);
}
/*-----------------------------------------------------------------------------
DIMM-independant configuration functions:
-----------------------------------------------------------------------------*/
/**
* Configure the E7501's DRAM Row Boundary (DRB) registers for the memory
* present in the specified DIMM.
*
* @param dimm_log2_num_bits Specifies log2(number of bits) for each side of
* the DIMM.
* @param total_dram_64M_multiple Total DRAM in the system (as a multiple of
* 64 MB) for DIMMs < dimm_index.
* @param dimm_index Which DIMM pair is being processed
* (0..MAX_DIMM_SOCKETS_PER_CHANNEL).
* @return New multiple of 64 MB total DRAM in the system.
*/
static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index)
{
int i;
ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL);
// DIMM sides must be at least 32 MB
ASSERT(dimm_log2_num_bits.side1 >= 28);
ASSERT((dimm_log2_num_bits.side2 == 0)
|| (dimm_log2_num_bits.side2 >= 28));
// In dual-channel mode, we are called only once for each pair of DIMMs.
// Each time we process twice the capacity of a single DIMM.
// Convert single DIMM capacity to paired DIMM capacity
// (multiply by two ==> add 1 to log2)
dimm_log2_num_bits.side1++;
if (dimm_log2_num_bits.side2 > 0)
dimm_log2_num_bits.side2++;
// Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB)
// to the total capacity of the system
// NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29
total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29));
// Configure the boundary address for the row on side 1
pci_write_config8(MCHDEV, DRB_ROW_0 + (dimm_index << 1),
total_dram_64M_multiple);
// If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair
// (as a multiple of 64 MB) to the total capacity of the system
if (dimm_log2_num_bits.side2 >= 29)
total_dram_64M_multiple +=
(1 << (dimm_log2_num_bits.side2 - 29));
// Configure the boundary address for the row (if any) on side 2
pci_write_config8(MCHDEV, DRB_ROW_1 + (dimm_index << 1),
total_dram_64M_multiple);
// Update boundaries for rows subsequent to these.
// These settings will be overridden by a subsequent call if a populated physical slot exists
for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
pci_write_config8(MCHDEV, DRB_ROW_0 + (i << 1),
total_dram_64M_multiple);
pci_write_config8(MCHDEV, DRB_ROW_1 + (i << 1),
total_dram_64M_multiple);
}
return total_dram_64M_multiple;
}
/**
* Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM).
*
* If necessary, set up a remap window so we don't waste DRAM that ordinarily
* would lie behind addresses reserved for memory-mapped I/O.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
*/
static void configure_e7501_ram_addresses(const struct mem_controller
*ctrl, uint8_t dimm_mask)
{
int i;
uint8_t total_dram_64M_multiple = 0;
// Configure the E7501's DRAM row boundaries
// Start by zeroing out the temporary initial configuration
pci_write_config32(MCHDEV, DRB_ROW_0, 0);
pci_write_config32(MCHDEV, DRB_ROW_4, 0);
for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
uint16_t dimm_socket_address = ctrl->channel0[i];
struct dimm_size sz;
if (!(dimm_mask & (1 << i)))
continue; // This DIMM not present
sz = spd_get_dimm_size(dimm_socket_address);
RAM_DEBUG_MESSAGE("dimm size =");
RAM_DEBUG_HEX32((u32)sz.side1);
RAM_DEBUG_MESSAGE(" ");
RAM_DEBUG_HEX32((u32)sz.side2);
RAM_DEBUG_MESSAGE("\n");
if (sz.side1 == 0)
die("Bad SPD value\n");
total_dram_64M_multiple =
configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i);
}
// Configure the Top Of Low Memory (TOLM) in the E7501
// This address must be a multiple of 128 MB that is less than 4 GB.
// NOTE: 16-bit wide TOLM register stores only the highest 5 bits of a 32-bit address
// in the highest 5 bits.
// We set TOLM to the smaller of 0xC0000000 (3 GB) or the total DRAM in the system.
// This reserves addresses from 0xC0000000 - 0xFFFFFFFF for non-DRAM purposes
// such as flash and memory-mapped I/O.
// If there is more than 3 GB of DRAM, we define a remap window which
// makes the DRAM "behind" the reserved region available above the top of physical
// memory.
// NOTE: 0xC0000000 / (64 MB) == 0x30
if (total_dram_64M_multiple <= 0x30) {
// <= 3 GB total RAM
/* I should really adjust all of this in C after I have resources
* to all of the pci devices.
*/
// Round up to 128MB granularity
// SJM: Is "missing" 64 MB of memory a potential issue? Should this round down?
uint8_t total_dram_128M_multiple =
(total_dram_64M_multiple + 1) >> 1;
// Convert to high 16 bits of address
uint16_t top_of_low_memory =
total_dram_128M_multiple << 11;
pci_write_config16(MCHDEV, TOLM,
top_of_low_memory);
} else {
// > 3 GB total RAM
// Set defaults for > 4 GB DRAM, i.e. remap a 1 GB (= 0x10 * 64 MB) range of memory
uint16_t remap_base = total_dram_64M_multiple; // A[25:0] == 0
uint16_t remap_limit = total_dram_64M_multiple + 0x10 - 1; // A[25:0] == 0xF
// Put TOLM at 3 GB
pci_write_config16(MCHDEV, TOLM, 0xc000);
// Define a remap window to make the RAM that would appear from 3 GB - 4 GB
// visible just beyond 4 GB or the end of physical memory, whichever is larger
// NOTE: 16-bit wide REMAP registers store only the highest 10 bits of a 36-bit address,
// (i.e. a multiple of 64 MB) in the lowest 10 bits.
// NOTE: 0x100000000 / (64 MB) == 0x40
if (total_dram_64M_multiple < 0x40) {
remap_base = 0x40; // 0x100000000
remap_limit =
0x40 + (total_dram_64M_multiple - 0x30) - 1;
}
pci_write_config16(MCHDEV, REMAPBASE,
remap_base);
pci_write_config16(MCHDEV, REMAPLIMIT,
remap_limit);
}
}
/**
* Execute ECC full-speed scrub once and leave scrubber disabled.
*
* NOTE: All cache and stack is lost during ECC scrub loop.
*/
static inline void __attribute__((always_inline))
initialize_ecc(unsigned long ret_addr, unsigned long ret_addr2)
{
uint16_t scrubbed = pci_read_config16(MCHDEV, MCHCFGNS) & 0x08;
if (!scrubbed) {
RAM_DEBUG_MESSAGE("Initializing ECC state...\n");
/* ECC scrub flushes cache-lines and stack, need to
* store return address from romstage.c:main().
*/
asm volatile(
"movd %0, %%xmm0;"
"movd (%0), %%xmm1;"
"movd %1, %%xmm2;"
"movd (%1), %%xmm3;"
:: "r" (ret_addr), "r" (ret_addr2) :
);
/* NOTE: All cache is lost during this loop.
* Make sure PCI access does not use stack.
*/
pci_write_config16(MCHDEV, MCHCFGNS, 0x01);
do {
scrubbed = pci_read_config16(MCHDEV, MCHCFGNS);
} while (! (scrubbed & 0x08));
pci_write_config16(MCHDEV, MCHCFGNS, (scrubbed & ~0x07) | 0x04);
/* Some problem remains with XIP cache from ROM, so for
* now, I disable XIP and also invalidate cache (again)
* before the remaining small portion of romstage.
*
* Adding NOPs here has unexpected results, making
* the first do_printk()/vtxprintf() after ECC scrub
* fail midway. Sometimes vtxprintf() dumps strings
* completely but with every 4th (fourth) character as "/".
*
* An inlined dump to console of the same string,
* before vtxprintf() call, is successful. So the
* source string should be completely in cache already.
*
* I need to review this again with CPU microcode
* update applied pre-CAR.
*/
/* Disable and invalidate all cache. */
msr_t xip_mtrr = rdmsr(MTRRphysMask_MSR(1));
xip_mtrr.lo &= ~MTRRphysMaskValid;
invd();
wrmsr(MTRRphysMask_MSR(1), xip_mtrr);
invd();
RAM_DEBUG_MESSAGE("ECC state initialized.\n");
/* Recover IP for return from main. */
asm volatile(
"movd %%xmm0, %%edi;"
"movd %%xmm1, (%%edi);"
"movd %%xmm2, %%edi;"
"movd %%xmm3, (%%edi);"
::: "edi"
);
#if CONFIG_DEBUG_RAM_SETUP
unsigned int a1, a2;
asm volatile("movd %%xmm2, %%eax;" : "=a" (a1) ::);
asm volatile("movd %%xmm3, %%eax;" : "=a" (a2) ::);
printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
asm volatile("movd %%xmm0, %%eax;" : "=a" (a1) ::);
asm volatile("movd %%xmm1, %%eax;" : "=a" (a2) ::);
printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2);
#endif
}
/* Clear the ECC error bits. */
pci_write_config8(RASDEV, DRAM_FERR, 0x03);
pci_write_config8(RASDEV, DRAM_NERR, 0x03);
/* Clear DRAM Interface error bits. */
pci_write_config32(RASDEV, FERR_GLOBAL, 1 << 18);
pci_write_config32(RASDEV, NERR_GLOBAL, 1 << 18);
}
/**
* Program the DRAM Timing register (DRT) of the E7501 (except for CAS#
* latency, which is assumed to have been programmed already), based on the
* parameters of the various installed DIMMs.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
*/
static void configure_e7501_dram_timing(const struct mem_controller *ctrl,
uint8_t dimm_mask)
{
int i;
uint32_t dram_timing;
int value;
uint8_t slowest_row_precharge = 0;
uint8_t slowest_ras_cas_delay = 0;
uint8_t slowest_active_to_precharge_delay = 0;
uint32_t current_cas_latency =
pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK;
// CAS# latency must be programmed beforehand
ASSERT((current_cas_latency == DRT_CAS_2_0)
|| (current_cas_latency == DRT_CAS_2_5));
// Each timing parameter is determined by the slowest DIMM
for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
uint16_t dimm_socket_address;
if (!(dimm_mask & (1 << i)))
continue; // This DIMM not present
if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
dimm_socket_address = ctrl->channel0[i];
else
dimm_socket_address =
ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
value =
spd_read_byte(dimm_socket_address,
SPD_MIN_ROW_PRECHARGE_TIME);
if (value < 0)
goto hw_err;
if (value > slowest_row_precharge)
slowest_row_precharge = value;
value =
spd_read_byte(dimm_socket_address,
SPD_MIN_RAS_TO_CAS_DELAY);
if (value < 0)
goto hw_err;
if (value > slowest_ras_cas_delay)
slowest_ras_cas_delay = value;
value =
spd_read_byte(dimm_socket_address,
SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
if (value < 0)
goto hw_err;
if (value > slowest_active_to_precharge_delay)
slowest_active_to_precharge_delay = value;
}
// NOTE for timing parameters:
// At 133 MHz, 1 clock == 7.52 ns
/* Read the initial state */
dram_timing = pci_read_config32(MCHDEV, DRT);
/* Trp */
// E7501 supports only 2 or 3 clocks for tRP
if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
die("unsupported DIMM tRP"); // > 22.5 ns: 4 or more clocks
else if (slowest_row_precharge > (15 << 2))
dram_timing &= ~(1 << 0); // > 15.0 ns: 3 clocks
else
dram_timing |= (1 << 0); // <= 15.0 ns: 2 clocks
/* Trcd */
// E7501 supports only 2 or 3 clocks for tRCD
// Use the same value for both read & write
dram_timing &= ~((1 << 3) | (3 << 1));
if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
die("unsupported DIMM tRCD"); // > 22.5 ns: 4 or more clocks
else if (slowest_ras_cas_delay > (15 << 2))
dram_timing |= (2 << 1); // > 15.0 ns: 3 clocks
else
dram_timing |= ((1 << 3) | (3 << 1)); // <= 15.0 ns: 2 clocks
/* Tras */
// E7501 supports only 5, 6, or 7 clocks for tRAS
// 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns
dram_timing &= ~(3 << 9);
if (slowest_active_to_precharge_delay > 52)
die("unsupported DIMM tRAS"); // > 52 ns: 8 or more clocks
else if (slowest_active_to_precharge_delay > 45)
dram_timing |= (0 << 9); // 46-52 ns: 7 clocks
else if (slowest_active_to_precharge_delay > 37)
dram_timing |= (1 << 9); // 38-45 ns: 6 clocks
else
dram_timing |= (2 << 9); // < 38 ns: 5 clocks
/* Trd */
/* Set to a 7 clock read delay. This is for 133Mhz
* with a CAS latency of 2.5 if 2.0 a 6 clock
* delay is good */
dram_timing &= ~(7 << 24); // 7 clocks
if (current_cas_latency == DRT_CAS_2_0)
dram_timing |= (1 << 24); // 6 clocks
/*
* Back to Back Read-Write Turn Around
*/
/* Set to a 5 clock back to back read to write turn around.
* 4 is a good delay if the CAS latency is 2.0 */
dram_timing &= ~(1 << 28); // 5 clocks
if (current_cas_latency == DRT_CAS_2_0)
dram_timing |= (1 << 28); // 4 clocks
pci_write_config32(MCHDEV, DRT, dram_timing);
return;
hw_err:
die(SPD_ERROR);
}
/**
* Determine the shortest CAS# latency that the E7501 and all DIMMs have in
* common, and program the E7501 to use it.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
*/
static void configure_e7501_cas_latency(const struct mem_controller *ctrl,
uint8_t dimm_mask)
{
int i;
int value;
uint32_t dram_timing;
uint16_t dram_read_timing;
uint32_t dword;
// CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
// NOTE: E7501 supports only 2.0 and 2.5
uint32_t system_compatible_cas_latencies =
SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
uint32_t current_cas_latency;
uint32_t dimm_compatible_cas_latencies;
for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
uint16_t dimm_socket_address;
if (!(dimm_mask & (1 << i)))
continue; // This DIMM not usable
if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
dimm_socket_address = ctrl->channel0[i];
else
dimm_socket_address =
ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
value =
spd_read_byte(dimm_socket_address,
SPD_ACCEPTABLE_CAS_LATENCIES);
if (value < 0)
goto hw_err;
dimm_compatible_cas_latencies = value & 0x7f; // Start with all supported by DIMM
current_cas_latency = 1 << log2(dimm_compatible_cas_latencies); // Max supported by DIMM
// Can we support the highest CAS# latency?
value =
spd_read_byte(dimm_socket_address,
SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
if (value < 0)
goto hw_err;
// NOTE: At 133 MHz, 1 clock == 7.52 ns
if (value > 0x75) {
// Our bus is too fast for this CAS# latency
// Remove it from the bitmask of those supported by the DIMM that are compatible
dimm_compatible_cas_latencies &= ~current_cas_latency;
}
// Can we support the next-highest CAS# latency (max - 0.5)?
current_cas_latency >>= 1;
if (current_cas_latency != 0) {
value =
spd_read_byte(dimm_socket_address,
SPD_SDRAM_CYCLE_TIME_2ND);
if (value < 0)
goto hw_err;
if (value > 0x75)
dimm_compatible_cas_latencies &=
~current_cas_latency;
}
// Can we support the next-highest CAS# latency (max - 1.0)?
current_cas_latency >>= 1;
if (current_cas_latency != 0) {
value =
spd_read_byte(dimm_socket_address,
SPD_SDRAM_CYCLE_TIME_3RD);
if (value < 0)
goto hw_err;
if (value > 0x75)
dimm_compatible_cas_latencies &=
~current_cas_latency;
}
// Restrict the system to CAS# latencies compatible with this DIMM
system_compatible_cas_latencies &=
dimm_compatible_cas_latencies;
/* go to the next DIMM */
}
/* After all of the arduous calculation setup with the fastest
* cas latency I can use.
*/
dram_timing = pci_read_config32(MCHDEV, DRT);
dram_timing &= ~(DRT_CAS_MASK);
dram_read_timing =
pci_read_config16(MCHDEV, DRDCTL);
dram_read_timing &= 0xF000;
if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
dram_timing |= DRT_CAS_2_0;
dram_read_timing |= 0x0222;
} else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {
uint32_t dram_row_attributes =
pci_read_config32(MCHDEV, DRA);
dram_timing |= DRT_CAS_2_5;
// At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly
// different value if all DIMM slots are populated
if ((dram_row_attributes & 0xff)
&& (dram_row_attributes & 0xff00)
&& (dram_row_attributes & 0xff0000)
&& (dram_row_attributes & 0xff000000)) {
// All slots populated
dram_read_timing |= 0x0882;
} else {
// Some unpopulated slots
dram_read_timing |= 0x0662;
}
} else
die("No CAS# latencies compatible with all DIMMs!!\n");
pci_write_config32(MCHDEV, DRT, dram_timing);
/* set master DLL reset */
dword = pci_read_config32(MCHDEV, 0x88);
dword |= (1 << 26);
pci_write_config32(MCHDEV, 0x88, dword);
/* patch try register 88 is undocumented tnz */
dword &= 0x0ca17fff;
dword |= 0xd14a5000;
pci_write_config32(MCHDEV, 0x88, dword);
pci_write_config16(MCHDEV, DRDCTL,
dram_read_timing);
/* clear master DLL reset */
dword = pci_read_config32(MCHDEV, 0x88);
dword &= ~(1 << 26);
pci_write_config32(MCHDEV, 0x88, dword);
return;
hw_err:
die(SPD_ERROR);
}
/**
* Configure the refresh interval so that we refresh no more often than
* required by the "most needy" DIMM. Also disable ECC if any of the DIMMs
* don't support it.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
*/
static void configure_e7501_dram_controller_mode(const struct
mem_controller *ctrl,
uint8_t dimm_mask)
{
int i;
// Initial settings
uint32_t controller_mode =
pci_read_config32(MCHDEV, DRC);
uint32_t system_refresh_mode = (controller_mode >> 8) & 7;
// Code below assumes that most aggressive settings are in
// force when we are called, either via E7501 reset defaults
// or by sdram_set_registers():
// - ECC enabled
// - No refresh
ASSERT((controller_mode & (3 << 20)) == (2 << 20)); // ECC
ASSERT(!(controller_mode & (7 << 8))); // Refresh
/* Walk through _all_ dimms and find the least-common denominator for:
* - ECC support
* - refresh rates
*/
for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
uint32_t dimm_refresh_mode;
int value;
uint16_t dimm_socket_address;
if (!(dimm_mask & (1 << i))) {
continue; // This DIMM not usable
}
if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
dimm_socket_address = ctrl->channel0[i];
else
dimm_socket_address =
ctrl->channel1[i -
MAX_DIMM_SOCKETS_PER_CHANNEL];
// Disable ECC mode if any one of the DIMMs does not support ECC
// SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported.
value =
spd_read_byte(dimm_socket_address,
SPD_DIMM_CONFIG_TYPE);
die_on_spd_error(value);
if (value != ERROR_SCHEME_ECC) {
controller_mode &= ~(3 << 20);
}
value = spd_read_byte(dimm_socket_address, SPD_REFRESH);
die_on_spd_error(value);
value &= 0x7f; // Mask off self-refresh bit
if (value > MAX_SPD_REFRESH_RATE) {
print_err("unsupported refresh rate\n");
continue;
}
// Get the appropriate E7501 refresh mode for this DIMM
dimm_refresh_mode = refresh_rate_map[value];
if (dimm_refresh_mode > 7) {
print_err("unsupported refresh rate\n");
continue;
}
// If this DIMM requires more frequent refresh than others,
// update the system setting
if (refresh_frequency[dimm_refresh_mode] >
refresh_frequency[system_refresh_mode])
system_refresh_mode = dimm_refresh_mode;
#ifdef SUSPICIOUS_LOOKING_CODE
// SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller
// than the clock period of the memory controller. Also, no other northbridge
// looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME.
// Switch to 2 clocks for address/command if required by any one of the DIMMs
// NOTE: At 133 MHz, 1 clock == 7.52 ns
value =
spd_read_byte(dimm_socket_address,
SPD_CMD_SIGNAL_INPUT_HOLD_TIME);
die_on_spd_error(value);
if (value >= 0xa0) { /* At 133MHz this constant should be 0x75 */
controller_mode &= ~(1 << 16); /* Use two clock cyles instead of one */
}
#endif
/* go to the next DIMM */
}
controller_mode |= (system_refresh_mode << 8);
// Configure the E7501
pci_write_config32(MCHDEV, DRC, controller_mode);
}
/**
* Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM
* parameters read via SPD. This tells the controller the width of the SDRAM
* chips on each DIMM side (x4 or x8) and the page size of each DIMM side
* (4, 8, 16, or 32 KB).
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
* @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
*/
static void configure_e7501_row_attributes(const struct mem_controller
*ctrl, uint8_t dimm_mask)
{
int i;
uint32_t row_attributes = 0;
for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
uint16_t dimm_socket_address = ctrl->channel0[i];
struct dimm_size page_size;
struct dimm_size sdram_width;
if (!(dimm_mask & (1 << i)))
continue; // This DIMM not usable
// Get the relevant parameters via SPD
page_size = sdram_spd_get_page_size(dimm_socket_address);
sdram_width = sdram_spd_get_width(dimm_socket_address);
// Update the DRAM Row Attributes.
// Page size is encoded as log2(page size in bits) - log2(8 Kb)
// NOTE: 8 Kb = 2^13
row_attributes |= (page_size.side1 - 13) << (i << 3); // Side 1 of each DIMM is an EVEN row
if (sdram_width.side2 > 0)
row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4); // Side 2 is ODD
// Set x4 flags if appropriate
if (sdram_width.side1 == 4) {
row_attributes |= 0x08 << (i << 3);
}
if (sdram_width.side2 == 4) {
row_attributes |= 0x08 << ((i << 3) + 4);
}
/* go to the next DIMM */
}
/* Write the new row attributes register */
pci_write_config32(MCHDEV, DRA, row_attributes);
}
/*
* Enable clock signals for populated DIMM sockets and disable them for
* unpopulated sockets (to reduce EMI).
*
* @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
*/
static void enable_e7501_clocks(uint8_t dimm_mask)
{
int i;
uint8_t clock_disable = pci_read_config8(MCHDEV, CKDIS);
pci_write_config8(MCHDEV, 0x8e, 0xb0);
for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
uint8_t socket_mask = 1 << i;
if (dimm_mask & socket_mask)
clock_disable &= ~socket_mask; // DIMM present, enable clock
else
clock_disable |= socket_mask; // DIMM absent, disable clock
}
pci_write_config8(MCHDEV, CKDIS, clock_disable);
}
/* DIMM-dedependent configuration functions */
/**
* DDR Receive FIFO RE-Sync (?)
*/
static void RAM_RESET_DDR_PTR(void)
{
uint8_t byte;
byte = pci_read_config8(MCHDEV, 0x88);
byte |= (1 << 4);
pci_write_config8(MCHDEV, 0x88, byte);
byte = pci_read_config8(MCHDEV, 0x88);
byte &= ~(1 << 4);
pci_write_config8(MCHDEV, 0x88, byte);
}
/**
* Copy 64 bytes from one location to another.
*
* @param src_addr TODO
* @param dst_addr TODO
*/
static void write_8dwords(const uint32_t *src_addr, uint32_t dst_addr)
{
int i;
for (i = 0; i < 8; i++) {
write32(dst_addr, *src_addr);
src_addr++;
dst_addr += sizeof(uint32_t);
}
}
/**
* Set the E7501's (undocumented) RCOMP registers.
*
* Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual,
* RCOMP registers appear to affect drive strength, pullup/pulldown offset,
* and slew rate of various signal groups.
*
* Comments below are conjecture based on apparent similarity between the
* E7501 and these two chips.
*/
static void rcomp_copy_registers(void)
{
uint32_t dword;
uint8_t strength_control;
RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n");
/* Begin to write the RCOMP registers */
write8(RCOMP_MMIO + 0x2c, 0x0);
// Set CMD and DQ/DQS strength to 2x (?)
strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0x88;
strength_control |= 0x40;
write8(RCOMP_MMIO + DQCMDSTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0x80);
write16(RCOMP_MMIO + 0x42, 0);
// Set CMD and DQ/DQS strength to 2x (?)
strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0xF8;
strength_control |= 0x04;
write8(RCOMP_MMIO + DQCMDSTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0x60);
write16(RCOMP_MMIO + 0x40, 0);
// Set RCVEnOut# strength to 2x (?)
strength_control = read8(RCOMP_MMIO + RCVENSTR) & 0xF8;
strength_control |= 0x04;
write8(RCOMP_MMIO + RCVENSTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0x1c0);
write16(RCOMP_MMIO + 0x50, 0);
// Set CS# strength for x4 SDRAM to 2x (?)
strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x88;
strength_control |= 0x04;
write8(RCOMP_MMIO + CSBSTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0x140);
write16(RCOMP_MMIO + 0x48, 0);
// Set CS# strength for x4 SDRAM to 2x (?)
strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x8F;
strength_control |= 0x40;
write8(RCOMP_MMIO + CSBSTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0x160);
write16(RCOMP_MMIO + 0x4a, 0);
// Set CKE strength for x4 SDRAM to 2x (?)
strength_control = read8(RCOMP_MMIO + CKESTR) & 0x88;
strength_control |= 0x04;
write8(RCOMP_MMIO + CKESTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0xa0);
write16(RCOMP_MMIO + 0x44, 0);
// Set CKE strength for x4 SDRAM to 2x (?)
strength_control = read8(RCOMP_MMIO + CKESTR) & 0x8F;
strength_control |= 0x40;
write8(RCOMP_MMIO + CKESTR, strength_control);
write_8dwords(slew_2x, RCOMP_MMIO + 0xc0);
write16(RCOMP_MMIO + 0x46, 0);
// Set CK strength for x4 SDRAM to 1x (?)
strength_control = read8(RCOMP_MMIO + CKSTR) & 0x88;
strength_control |= 0x01;
write8(RCOMP_MMIO + CKSTR, strength_control);
write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x180);
write16(RCOMP_MMIO + 0x4c, 0);
// Set CK strength for x4 SDRAM to 1x (?)
strength_control = read8(RCOMP_MMIO + CKSTR) & 0x8F;
strength_control |= 0x10;
write8(RCOMP_MMIO + CKSTR, strength_control);
write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x1a0);
write16(RCOMP_MMIO + 0x4e, 0);
dword = read32(RCOMP_MMIO + 0x400);
dword &= 0x7f7fffff;
write32(RCOMP_MMIO + 0x400, dword);
dword = read32(RCOMP_MMIO + 0x408);
dword &= 0x7f7fffff;
write32(RCOMP_MMIO + 0x408, dword);
}
static void ram_set_rcomp_regs(void)
{
/* Set the RCOMP MMIO base address */
mchtest_control(RCOMP_BAR_ENABLE);
pci_write_config32(MCHDEV, SMRBASE, RCOMP_MMIO);
/* Block RCOMP updates while we configure the registers */
rcomp_smr_control(RCOMP_HOLD);
rcomp_copy_registers();
d060_control(D060_CMD_0);
mchtest_control(MCHTST_CMD_0);
uint8_t revision = pci_read_config8(MCHDEV, 0x08);
if (revision >= 3) {
rcomp_smr_control(RCOMP_SMR_00);
rcomp_smr_control(RCOMP_SMR_01);
}
rcomp_smr_control(RCOMP_RELEASE);
/* Wait 40 usec */
SLOW_DOWN_IO;
/* Clear the RCOMP MMIO base address */
pci_write_config32(MCHDEV, SMRBASE, 0);
mchtest_control(RCOMP_BAR_DISABLE);
}
/*-----------------------------------------------------------------------------
Public interface:
-----------------------------------------------------------------------------*/
/**
* Go through the JEDEC initialization sequence for all DIMMs, then enable
* refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up
* and running.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
*/
static void sdram_enable(const struct mem_controller *ctrl)
{
uint8_t dimm_mask = pci_read_config16(MCHDEV, SKPD);
uint32_t dram_controller_mode;
if (dimm_mask == 0)
return;
/* 1 & 2 Power up and start clocks */
RAM_DEBUG_MESSAGE("Ram Enable 1\n");
RAM_DEBUG_MESSAGE("Ram Enable 2\n");
/* A 200us delay is needed */
DO_DELAY; EXTRA_DELAY;
/* 3. Apply NOP */
RAM_DEBUG_MESSAGE("Ram Enable 3\n");
do_ram_command(RAM_COMMAND_NOP, 0);
/* 4 Precharge all */
RAM_DEBUG_MESSAGE("Ram Enable 4\n");
do_ram_command(RAM_COMMAND_PRECHARGE, 0);
/* wait until the all banks idle state... */
/* 5. Issue EMRS to enable DLL */
RAM_DEBUG_MESSAGE("Ram Enable 5\n");
do_ram_command(RAM_COMMAND_EMRS,
SDRAM_EXTMODE_DLL_ENABLE |
SDRAM_EXTMODE_DRIVE_NORMAL);
/* 6. Reset DLL */
RAM_DEBUG_MESSAGE("Ram Enable 6\n");
set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET);
EXTRA_DELAY;
/* Ensure a 200us delay between the DLL reset in step 6 and the final
* mode register set in step 9.
* Infineon needs this before any other command is sent to the ram.
*/
DO_DELAY; EXTRA_DELAY;
/* 7 Precharge all */
RAM_DEBUG_MESSAGE("Ram Enable 7\n");
do_ram_command(RAM_COMMAND_PRECHARGE, 0);
/* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
/* And for good luck 6 more CBRs */
RAM_DEBUG_MESSAGE("Ram Enable 8\n");
int i;
for(i=0; i<8; i++)
do_ram_command(RAM_COMMAND_CBR, 0);
/* 9 mode register set */
RAM_DEBUG_MESSAGE("Ram Enable 9\n");
set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL);
/* 10 DDR Receive FIFO RE-Sync */
RAM_DEBUG_MESSAGE("Ram Enable 10\n");
RAM_RESET_DDR_PTR();
EXTRA_DELAY;
/* 11 normal operation */
RAM_DEBUG_MESSAGE("Ram Enable 11\n");
do_ram_command(RAM_COMMAND_NORMAL, 0);
// Reconfigure the row boundaries and Top of Low Memory
// to match the true size of the DIMMs
configure_e7501_ram_addresses(ctrl, dimm_mask);
/* Finally enable refresh */
dram_controller_mode = pci_read_config32(MCHDEV, DRC);
dram_controller_mode |= (1 << 29);
pci_write_config32(MCHDEV, DRC, dram_controller_mode);
EXTRA_DELAY;
}
/**
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
*/
static void sdram_post_ecc(const struct mem_controller *ctrl)
{
/* Fast CS# Enable. */
uint32_t dram_controller_mode = pci_read_config32(MCHDEV, DRC);
dram_controller_mode = pci_read_config32(MCHDEV, DRC);
dram_controller_mode |= (1 << 17);
pci_write_config32(MCHDEV, DRC, dram_controller_mode);
}
/**
* Configure SDRAM controller parameters that depend on characteristics of the
* DIMMs installed in the system. These characteristics are read from the
* DIMMs via the standard Serial Presence Detect (SPD) interface.
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
*/
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
uint8_t dimm_mask;
RAM_DEBUG_MESSAGE("Reading SPD data...\n");
dimm_mask = spd_get_supported_dimms(ctrl);
if (dimm_mask == 0) {
print_debug("No usable memory for this controller\n");
} else {
enable_e7501_clocks(dimm_mask);
RAM_DEBUG_MESSAGE("setting based on SPD data...\n");
configure_e7501_row_attributes(ctrl, dimm_mask);
configure_e7501_dram_controller_mode(ctrl, dimm_mask);
configure_e7501_cas_latency(ctrl, dimm_mask);
RAM_RESET_DDR_PTR();
configure_e7501_dram_timing(ctrl, dimm_mask);
DO_DELAY;
RAM_DEBUG_MESSAGE("done\n");
}
/* NOTE: configure_e7501_ram_addresses() is NOT called here.
* We want to keep the default 64 MB/row mapping until sdram_enable() is called,
* even though the default mapping is almost certainly incorrect.
* The default mapping makes it easy to initialize all of the DIMMs
* even if the total system memory is > 4 GB.
*
* Save the dimm_mask for when sdram_enable is called, so it can call
* configure_e7501_ram_addresses() without having to regenerate the bitmask
* of usable DIMMs.
*/
pci_write_config16(MCHDEV, SKPD, dimm_mask);
}
/**
* Do basic RAM setup that does NOT depend on serial presence detect
* information (i.e. independent of DIMM specifics).
*
* @param ctrl PCI addresses of memory controller functions, and SMBus
* addresses of DIMM slots on the mainboard.
*/
static void sdram_set_registers(const struct mem_controller *ctrl)
{
uint32_t dword;
uint16_t word;
uint8_t byte;
ram_set_rcomp_regs();
/* Enable 0:0.1, 0:2.1 */
word = pci_read_config16(MCHDEV, DVNP);
word &= ~0x05;
pci_write_config16(MCHDEV, DVNP, word);
/* Disable high-memory remap (power-on defaults, really) */
pci_write_config16(MCHDEV, REMAPBASE, 0x03ff);
pci_write_config16(MCHDEV, REMAPLIMIT, 0x0);
/* Disable legacy MMIO (0xC0000-0xEFFFF is DRAM) */
int i;
pci_write_config8(MCHDEV, PAM_0, 0x30);
for (i=1; i<=6; i++)
pci_write_config8(MCHDEV, PAM_0 + i, 0x33);
/* Conservatively say each row has 64MB of ram, we will fix this up later
* Initial TOLM 8 rows 64MB each (1<<3 * 1<<26) >> 16 = 1<<13
*
* FIXME: Hard-coded limit to first four rows to prevent overlap!
*/
pci_write_config32(MCHDEV, DRB_ROW_0, 0x04030201);
pci_write_config32(MCHDEV, DRB_ROW_4, 0x04040404);
//pci_write_config32(MCHDEV, DRB_ROW_4, 0x08070605);
pci_write_config16(MCHDEV, TOLM, (1<<13));
/* DIMM clocks off */
pci_write_config8(MCHDEV, CKDIS, 0xff);
/* reset row attributes */
pci_write_config32(MCHDEV, DRA, 0x0);
// The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and
// Back-to-Back Write-Read Turnaround. All others are configured based on SPD.
dword = pci_read_config32(MCHDEV, DRT);
dword &= 0xC7F8FFFF;
dword |= (0x28<<24)|(0x03<<16);
pci_write_config32(MCHDEV, DRT, dword);
dword = pci_read_config32(MCHDEV, DRC);
dword &= 0xffcef8f7;
dword |= 0x00210008;
pci_write_config32(MCHDEV, DRC, dword);
/* Undocumented */
pci_write_config8(MCHDEV, 0x88, 0x80);
/* Undocumented. Set much later in vendor BIOS. */
byte = pci_read_config8(MCHDEV, 0xd9);
byte &= ~0x60;
pci_write_config8(MCHDEV, 0xd9, byte);
#ifdef SUSPICIOUS_LOOKING_CODE
/* This will access D2:F0:0x50, is this correct??
* Vendor BIOS reads Device ID before this is set.
* Undocumented in the p64h2 PCI-X bridge datasheet.
*/
byte = pci_read_config8(PCI_DEV(0,2,0), 0x50);
byte &= 0xcf;
byte |= 0x30
pci_write_config8(PCI_DEV(0,2,0), 0x50, byte);
#endif
uint8_t revision = pci_read_config8(MCHDEV, 0x08);
if (revision >= 3)
d060_control(D060_CMD_1);
}
/**
*
*
*/
void e7505_mch_init(const struct mem_controller *memctrl)
{
RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n");
DUMPNORTH();
sdram_set_registers(memctrl);
sdram_set_spd_registers(memctrl);
sdram_enable(memctrl);
}
unsigned long get_top_of_ram(void)
{
u32 tolm = (pci_read_config16(MCHDEV, TOLM) & ~0x7ff) << 16;
return (unsigned long) tolm;
}
/**
* Scrub and reset error counts for ECC dimms.
*
* NOTE: this will invalidate cache and disable XIP cache for the
* short remaining part of romstage.
*/
void e7505_mch_scrub_ecc(unsigned long ret_addr)
{
unsigned long ret_addr2 = (unsigned long)((unsigned long*)&ret_addr-1);
if ((pci_read_config32(MCHDEV, DRC)>>20 & 3) == 2)
initialize_ecc(ret_addr, ret_addr2);
}
void e7505_mch_done(const struct mem_controller *memctrl)
{
sdram_post_ecc(memctrl);
RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n");
DUMPNORTH();
}
int e7505_mch_is_ready(void)
{
uint32_t dword = pci_read_config32(MCHDEV, DRC);
return !!(dword & DRC_DONE);
}