blob: 5960a2f71fddd86da52bf9a57a8785c5bf5772b0 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <stdlib.h>
#include <device/device.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <delay.h>
#include <pc80/mc146818rtc.h>
#include <arch/acpi.h>
#include <arch/io.h>
#include <arch/interrupt.h>
#include <boot/coreboot_tables.h>
#include "hda_verb.h"
#include <smbios.h>
#include <device/pci.h>
#include <ec/google/chromeec/ec.h>
#include <cbfs_core.h>
#include <cpu/x86/tsc.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/msr.h>
#include <edid.h>
#include <drivers/intel/gma/i915.h>
#include "mainboard.h"
/*
* Here is the rough outline of how we bring up the display:
* 1. Upon power-on Sink generates a hot plug detection pulse thru HPD
* 2. Source determines video mode by reading DPCD receiver capability field
* (DPCD 00000h to 0000Dh) including eDP CP capability register (DPCD
* 0000Dh).
* 3. Sink replies DPCD receiver capability field.
* 4. Source starts EDID read thru I2C-over-AUX.
* 5. Sink replies EDID thru I2C-over-AUX.
* 6. Source determines link configuration, such as MAX_LINK_RATE and
* MAX_LANE_COUNT. Source also determines which type of eDP Authentication
* method to use and writes DPCD link configuration field (DPCD 00100h to
* 0010Ah) including eDP configuration set (DPCD 0010Ah).
* 7. Source starts link training. Sink does clock recovery and equalization.
* 8. Source reads DPCD link status field (DPCD 00200h to 0020Bh).
* 9. Sink replies DPCD link status field. If main link is not stable, Source
* repeats Step 7.
* 10. Source sends MSA (Main Stream Attribute) data. Sink extracts video
* parameters and recovers stream clock.
* 11. Source sends video data.
*/
/* how many bytes do we need for the framebuffer?
* Well, this gets messy. To get an exact answer, we have
* to ask the panel, but we'd rather zero the memory
* and set up the gtt while the panel powers up. So,
* we take a reasonable guess, secure in the knowledge that the
* MRC has to overestimate the number of bytes used.
* 8 MiB is a very safe guess. There may be a better way later, but
* fact is, the initial framebuffer is only very temporary. And taking
* a little long is ok; this is done much faster than the AUX
* channel is ready for IO.
*/
#define FRAME_BUFFER_BYTES (8*MiB)
/* how many 4096-byte pages do we need for the framebuffer?
* There are hard ways to get this, and easy ways:
* there are FRAME_BUFFER_BYTES/4096 pages, since pages are 4096
* on this chip (and in fact every Intel graphics chip we've seen).
*/
#define FRAME_BUFFER_PAGES (FRAME_BUFFER_BYTES/(4096))
static unsigned int *mmio;
static unsigned int graphics;
static unsigned int physbase;
extern int oprom_is_loaded;
void ug1(int);
void ug2(int);
void ug22(int);
void ug3(int);
/* GTT is the Global Translation Table for the graphics pipeline.
* It is used to translate graphics addresses to physical
* memory addresses. As in the CPU, GTTs map 4K pages.
* The setgtt function adds a further bit of flexibility:
* it allows you to set a range (the first two parameters) to point
* to a physical address (third parameter);the physical address is
* incremented by a count (fourth parameter) for each GTT in the
* range.
* Why do it this way? For ultrafast startup,
* we can point all the GTT entries to point to one page,
* and set that page to 0s:
* memset(physbase, 0, 4096);
* setgtt(0, 4250, physbase, 0);
* this takes about 2 ms, and is a win because zeroing
* the page takes a up to 200 ms.
* This call sets the GTT to point to a linear range of pages
* starting at physbase.
*/
#define GTT_PTE_BASE (2 << 20)
static void
setgtt(int start, int end, unsigned long base, int inc)
{
int i;
for(i = start; i < end; i++){
u32 word = base + i*inc;
/* note: we've confirmed by checking
* the values that mrc does no
* useful setup before we run this.
*/
gtt_write(GTT_PTE_BASE + i * 4, word|1);
gtt_read(GTT_PTE_BASE + i * 4);
}
}
static int i915_init_done = 0;
/* fill the palette. */
static void palette(void)
{
int i;
unsigned long color = 0;
for(i = 0; i < 256; i++, color += 0x010101){
gtt_write(_LGC_PALETTE_A + (i<<2),color);
}
}
void dp_init_dim_regs(struct intel_dp *dp);
void dp_init_dim_regs(struct intel_dp *dp)
{
struct edid *edid = &(dp->edid);
dp->bytes_per_pixel = edid->framebuffer_bits_per_pixel / 8;
dp->stride = edid->bytes_per_line;
dp->htotal = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);
dp->hblank = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);
dp->hsync = (edid->ha + edid->hso - 1) |
((edid->ha + edid->hso + edid->hspw - 1) << 16);
dp->vtotal = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);
dp->vblank = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);
dp->vsync = (edid->va + edid->vso - 1) |
((edid->va + edid->vso + edid->vspw - 1) << 16);
/* PIPEASRC is wid-1 x ht-1 */
dp->pipesrc = (edid->ha-1)<<16 | (edid->va-1);
dp->pfa_pos = 0;
dp->pfa_ctl = 0x80800000;
dp->pfa_sz = (edid->ha << 16) | (edid->va);
dp->flags = intel_ddi_calc_transcoder_flags(3 * 6, /* bits per color is 6 */
dp->port,
dp->pipe,
dp->type,
dp->lane_count,
dp->pfa_sz,
dp->edid.phsync == '+'?1:0,
dp->edid.pvsync == '+'?1:0);
dp->transcoder = intel_ddi_get_transcoder(dp->port,
dp->pipe);
intel_dp_compute_m_n(dp->pipe_bits_per_pixel,
dp->lane_count,
dp->edid.pixel_clock,
dp->edid.link_clock,
&dp->m_n);
printk(BIOS_SPEW, "dp->stride = 0x%08x\n",dp->stride);
printk(BIOS_SPEW, "dp->htotal = 0x%08x\n", dp->htotal);
printk(BIOS_SPEW, "dp->hblank = 0x%08x\n", dp->hblank);
printk(BIOS_SPEW, "dp->hsync = 0x%08x\n", dp->hsync);
printk(BIOS_SPEW, "dp->vtotal = 0x%08x\n", dp->vtotal);
printk(BIOS_SPEW, "dp->vblank = 0x%08x\n", dp->vblank);
printk(BIOS_SPEW, "dp->vsync = 0x%08x\n", dp->vsync);
printk(BIOS_SPEW, "dp->pipesrc = 0x%08x\n", dp->pipesrc);
printk(BIOS_SPEW, "dp->pfa_pos = 0x%08x\n", dp->pfa_pos);
printk(BIOS_SPEW, "dp->pfa_ctl = 0x%08x\n", dp->pfa_ctl);
printk(BIOS_SPEW, "dp->pfa_sz = 0x%08x\n", dp->pfa_sz);
printk(BIOS_SPEW, "dp->link_m = 0x%08x\n", dp->m_n.link_m);
printk(BIOS_SPEW, "dp->link_n = 0x%08x\n", dp->m_n.link_n);
printk(BIOS_SPEW, "0x6f030 = 0x%08x\n", TU_SIZE(dp->m_n.tu) | dp->m_n.gmch_m);
printk(BIOS_SPEW, "0x6f030 = 0x%08x\n", dp->m_n.gmch_m);
printk(BIOS_SPEW, "0x6f034 = 0x%08x\n", dp->m_n.gmch_n);
printk(BIOS_SPEW, "dp->flags = 0x%08x\n", dp->flags);
}
int intel_dp_bw_code_to_link_rate(u8 link_bw);
int intel_dp_bw_code_to_link_rate(u8 link_bw)
{
switch (link_bw) {
case DP_LINK_BW_1_62:
default:
return 162000;
case DP_LINK_BW_2_7:
return 270000;
case DP_LINK_BW_5_4:
return 540000;
}
}
void mainboard_train_link(struct intel_dp *intel_dp)
{
u8 read_val;
u8 link_status[DP_LINK_STATUS_SIZE];
gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE);
gtt_write(DP_A, DP_PORT_EN | DP_LINK_TRAIN_PAT_1 | DP_LINK_TRAIN_PAT_1_CPT | DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0 | DP_PORT_WIDTH_1 | DP_PLL_FREQ_270MHZ | DP_SYNC_VS_HIGH |0x80000011);
intel_dp_get_training_pattern(intel_dp, &read_val);
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_1 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
intel_dp_get_lane_count(intel_dp, &read_val);
intel_dp_set_training_lane0(intel_dp, DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0);
intel_dp_get_link_status(intel_dp, link_status);
gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT2);
intel_dp_get_training_pattern(intel_dp, &read_val);
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_2 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
intel_dp_get_link_status(intel_dp, link_status);
intel_dp_get_lane_align_status(intel_dp, &read_val);
intel_dp_get_training_pattern(intel_dp, &read_val);
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_DISABLE | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
}
#define TEST_GFX 0
#if TEST_GFX
static void test_gfx(struct intel_dp *dp)
{
int i;
/* This is a sanity test code which fills the screen with two bands --
green and blue. It is very useful to ensure all the initializations
are made right. Thus, to be used only for testing, not otherwise
*/
for (i = 0; i < (dp->edid.va - 4); i++) {
u32 *l;
int j;
u32 tcolor = 0x0ff;
for (j = 0; j < (dp->edid.ha-4); j++) {
if (j == (dp->edid.ha/2)) {
tcolor = 0xff00;
}
l = (u32*)(graphics + i * dp->stride + j * sizeof(tcolor));
memcpy(l,&tcolor,sizeof(tcolor));
}
}
}
#else
static void test_gfx(struct intel_dp *dp) {}
#endif
void mainboard_set_port_clk_dp(struct intel_dp *intel_dp)
{
u32 ddi_pll_sel = 0;
switch (intel_dp->link_bw) {
case DP_LINK_BW_1_62:
ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
break;
case DP_LINK_BW_2_7:
ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
break;
case DP_LINK_BW_5_4:
ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
break;
default:
printk(BIOS_ERR, "invalid link bw %d\n", intel_dp->link_bw);
return;
}
gtt_write(PORT_CLK_SEL(intel_dp->port), ddi_pll_sel);
}
int i915lightup(unsigned int pphysbase, unsigned int pmmio,
unsigned int pgfx, unsigned int init_fb)
{
int must_cycle_power = 0;
struct intel_dp adp, *dp = &adp;
int i;
int edid_ok;
int pixels = FRAME_BUFFER_BYTES/64;
mmio = (void *)pmmio;
physbase = pphysbase;
graphics = pgfx;
printk(BIOS_SPEW,
"i915lightup: graphics %p mmio %p"
"physbase %08x\n",
(void *)graphics, mmio, physbase);
void runio(struct intel_dp *dp);
void runlinux(struct intel_dp *dp);
dp->gen = 8; // This is gen 8 which we believe is Haswell
dp->is_haswell = 1;
dp->DP = 0x2;
/* These values are used for training the link */
dp->lane_count = 2;
dp->link_bw = DP_LINK_BW_2_7;
dp->panel_power_down_delay = 600;
dp->panel_power_up_delay = 200;
dp->panel_power_cycle_delay = 600;
dp->pipe = PIPE_A;
dp->port = PORT_A;
dp->plane = PLANE_A;
dp->clock = 160000;
dp->pipe_bits_per_pixel = 32;
dp->type = INTEL_OUTPUT_EDP;
dp->output_reg = DP_A;
/* observed from YABEL. */
dp->aux_clock_divider = 0xe1;
dp->precharge = 3;
/* 1. Normal mode: Set the first page to zero and make
all GTT entries point to the same page
2. Developer/Recovery mode: We do not zero out all
the pages pointed to by GTT in order to avoid wasting time */
if (init_fb)
setgtt(0, FRAME_BUFFER_PAGES, physbase, 4096);
else {
setgtt(0, FRAME_BUFFER_PAGES, physbase, 0);
memset((void*)graphics, 0, 4096);
}
dp->address = 0x50;
if ( !intel_dp_get_dpcd(dp) )
goto fail;
intel_dp_i2c_aux_ch(dp, MODE_I2C_WRITE, 0, NULL);
for(dp->edidlen = i = 0; i < sizeof(dp->rawedid); i++){
if (intel_dp_i2c_aux_ch(dp, MODE_I2C_READ,
0x50, &dp->rawedid[i]) < 0)
break;
dp->edidlen++;
}
edid_ok = decode_edid(dp->rawedid, dp->edidlen, &dp->edid);
printk(BIOS_SPEW, "decode edid returns %d\n", edid_ok);
dp->edid.link_clock = intel_dp_bw_code_to_link_rate(dp->link_bw);
printk(BIOS_SPEW, "pixel_clock is %i, link_clock is %i\n",dp->edid.pixel_clock, dp->edid.link_clock);
dp_init_dim_regs(dp);
intel_ddi_set_pipe_settings(dp);
runio(dp);
palette();
pixels = dp->edid.ha * (dp->edid.va-4) * 4;
printk(BIOS_SPEW, "ha=%d, va=%d\n",dp->edid.ha, dp->edid.va);
test_gfx(dp);
set_vbe_mode_info_valid(&dp->edid, graphics);
i915_init_done = 1;
oprom_is_loaded = 1;
return 1;
fail:
printk(BIOS_SPEW, "Graphics could not be started;");
if (0 && must_cycle_power){
printk(BIOS_SPEW, "Turn off power and wait ...");
gtt_write(PCH_PP_CONTROL,0xabcd0000);
udelay(600000);
gtt_write(PCH_PP_CONTROL,0xabcd000f);
}
printk(BIOS_SPEW, "Returning.\n");
return 0;
}