| /* |
| * This file is part of the libpayload project. |
| * |
| * It has originally been taken from the OpenBSD project. |
| */ |
| |
| /* $OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $ */ |
| |
| /* |
| * SHA-1 in C |
| * By Steve Reid <steve@edmweb.com> |
| * 100% Public Domain |
| * |
| * Test Vectors (from FIPS PUB 180-1) |
| * "abc" |
| * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D |
| * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" |
| * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 |
| * A million repetitions of "a" |
| * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F |
| */ |
| |
| #include <libpayload-config.h> |
| #include <libpayload.h> |
| |
| typedef u8 u_int8_t; |
| typedef u32 u_int32_t; |
| typedef u64 u_int64_t; |
| typedef unsigned int u_int; |
| |
| /* Moved from libpayload.h */ |
| |
| #ifdef CONFIG_LP_LITTLE_ENDIAN |
| #define BYTE_ORDER LITTLE_ENDIAN |
| #else |
| #define BYTE_ORDER BIG_ENDIAN |
| #endif |
| |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| |
| /* |
| * blk0() and blk() perform the initial expand. |
| * I got the idea of expanding during the round function from SSLeay |
| */ |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |
| |(rol(block->l[i],8)&0x00FF00FF)) |
| #else |
| # define blk0(i) block->l[i] |
| #endif |
| #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ |
| ^block->l[(i+2)&15]^block->l[i&15],1)) |
| |
| /* |
| * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
| */ |
| #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); |
| #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); |
| #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); |
| #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); |
| |
| /* |
| * Hash a single 512-bit block. This is the core of the algorithm. |
| */ |
| void |
| SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH]) |
| { |
| u_int32_t a, b, c, d, e; |
| u_int8_t workspace[SHA1_BLOCK_LENGTH]; |
| typedef union { |
| u_int8_t c[64]; |
| u_int32_t l[16]; |
| } CHAR64LONG16; |
| CHAR64LONG16 *block = (CHAR64LONG16 *)workspace; |
| |
| (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH); |
| |
| /* Copy context->state[] to working vars */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
| R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
| R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
| R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| |
| /* Wipe variables */ |
| a = b = c = d = e = 0; |
| } |
| |
| |
| /* |
| * SHA1Init - Initialize new context |
| */ |
| void |
| SHA1Init(SHA1_CTX *context) |
| { |
| |
| /* SHA1 initialization constants */ |
| context->count = 0; |
| context->state[0] = 0x67452301; |
| context->state[1] = 0xEFCDAB89; |
| context->state[2] = 0x98BADCFE; |
| context->state[3] = 0x10325476; |
| context->state[4] = 0xC3D2E1F0; |
| } |
| |
| |
| /* |
| * Run your data through this. |
| */ |
| void |
| SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len) |
| { |
| size_t i, j; |
| |
| j = (size_t)((context->count >> 3) & 63); |
| context->count += (len << 3); |
| if ((j + len) > 63) { |
| (void)memcpy(&context->buffer[j], data, (i = 64-j)); |
| SHA1Transform(context->state, context->buffer); |
| for ( ; i + 63 < len; i += 64) |
| SHA1Transform(context->state, (u_int8_t *)&data[i]); |
| j = 0; |
| } else { |
| i = 0; |
| } |
| (void)memcpy(&context->buffer[j], &data[i], len - i); |
| } |
| |
| |
| /* |
| * Add padding and return the message digest. |
| */ |
| void |
| SHA1Pad(SHA1_CTX *context) |
| { |
| u_int8_t finalcount[8]; |
| u_int i; |
| |
| for (i = 0; i < 8; i++) { |
| finalcount[i] = (u_int8_t)((context->count >> |
| ((7 - (i & 7)) * 8)) & 255); /* Endian independent */ |
| } |
| SHA1Update(context, (u_int8_t *)"\200", 1); |
| while ((context->count & 504) != 448) |
| SHA1Update(context, (u_int8_t *)"\0", 1); |
| SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ |
| } |
| |
| void |
| SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context) |
| { |
| u_int i; |
| |
| SHA1Pad(context); |
| if (digest) { |
| for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { |
| digest[i] = (u_int8_t) |
| ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
| } |
| memset(context, 0, sizeof(*context)); |
| } |
| } |
| |
| /** |
| * Compute the SHA-1 hash of the given data as specified by the 'data' and |
| * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the |
| * specified output buffer 'buf'. |
| * |
| * @param data Pointer to the input data that shall be hashed. |
| * @param len Length of the input data (in bytes). |
| * @param buf Buffer which will hold the resulting hash (must be at |
| * least 20 bytes in size). |
| * @return Pointer to the output buffer where the hash is stored. |
| */ |
| u8 *sha1(const u8 *data, size_t len, u8 *buf) |
| { |
| SHA1_CTX ctx; |
| |
| SHA1Init(&ctx); |
| SHA1Update(&ctx, data, len); |
| SHA1Final(buf, &ctx); |
| |
| return buf; |
| } |