blob: babe895538bbc5229958eee379acfbe9232aef3c [file] [log] [blame] [edit]
# Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Validators to verify if events conform to specified criteria."""
'''
How to add a new validator/gesture:
(1) Implement a new validator class inheriting BaseValidator,
(2) add proper method in mtb.Mtb class,
(3) add the new validator in test_conf, and
'from validators import the_new_validator'
in alphabetical order, and
(4) add the validator in relevant gestures; add a new gesture if necessary.
The validator template is as follows:
class XxxValidator(BaseValidator):
"""Validator to check ...
Example:
To check ...
XxxValidator('<= 0.05, ~ +0.05', fingers=2)
"""
def __init__(self, criteria_str, mf=None, fingers=1):
name = self.__class__.__name__
super(X..Validator, self).__init__(criteria_str, mf, name)
self.fingers = fingers
def check(self, packets, variation=None):
"""Check ..."""
self.init_check(packets)
xxx = self.packets.xxx()
self.print_msg(...)
return (self.fc.mf.grade(...), self.msg_list)
Note that it is also possible to instantiate a validator as
XxxValidator('<= 0.05, ~ +0.05', slot=0)
Difference between fingers and slot:
. When specifying 'fingers', e.g., fingers=2, the purpose is to pass
the information about how many fingers there are in the gesture. In
this case, the events in a specific slot is usually not important.
An example is to check how many fingers there are when making a click:
PhysicalClickValidator('== 0', fingers=2)
. When specifying 'slot', e.g., slot=0, the purpose is pass the slot
number to the validator to examine detailed events in that slot.
An example of such usage:
LinearityValidator('<= 0.03, ~ +0.07', slot=0)
'''
import copy
import numpy as np
import os
import re
import sys
import firmware_log
import fuzzy
import mtb
from collections import namedtuple
from inspect import isfunction
from common_util import print_and_exit, simple_system_output
from firmware_constants import AXIS, GV, MTB, UNIT, VAL
from geometry.elements import Point
from quickstep import latency_measurement
# Define the ratio of points taken at both ends of a line for edge tests.
END_PERCENTAGE = 0.1
# Define other constants below.
VALIDATOR = 'Validator'
def validate(packets, gesture, variation):
"""Validate a single gesture."""
if packets is None:
return (None, None)
msg_list = []
score_list = []
vlogs = []
for validator in gesture.validators:
vlog = validator.check(packets, variation)
if vlog is None:
continue
vlogs.append(copy.deepcopy(vlog))
score = vlog.score
if score is not None:
score_list.append(score)
# save the validator messages
msg_validator_name = '%s' % vlog.name
msg_criteria = ' criteria_str: %s' % vlog.criteria
msg_score = 'score: %f' % score
msg_list.append(os.linesep)
msg_list.append(msg_validator_name)
msg_list += vlog.details
msg_list.append(msg_criteria)
msg_list.append(msg_score)
return (score_list, msg_list, vlogs)
def get_parent_validators(validator_name):
"""Get the parents of a given validator."""
validator = getattr(sys.modules[__name__], validator_name, None)
return validator.__bases__ if validator else []
def get_short_name(validator_name):
"""Get the short name of the validator.
E.g, the short name of LinearityValidator is Linearity.
"""
return validator_name.split(VALIDATOR)[0]
def get_validator_name(short_name):
"""Convert the short_name to its corresponding validator name.
E.g, the validator_name of Linearity is LinearityValidator.
"""
return short_name + VALIDATOR
def get_base_name_and_segment(validator_name):
"""Get the base name and segment of a validator.
Examples:
Ex 1: Linearity(BothEnds)Validator
return ('Linearity', 'BothEnds')
Ex 2: NoGapValidator
return ('NoGap', None)
"""
if '(' in validator_name:
result = re.search('(.*)\((.*)\)%s' % VALIDATOR, validator_name)
return (result.group(1), result.group(2))
else:
return (get_short_name(validator_name), None)
def get_derived_name(validator_name, segment):
"""Get the derived name based on segment value.
Example:
validator_name: LinearityValidator
segment: Middle
derived_name: Linearity(Middle)Validator
"""
short_name = get_short_name(validator_name)
derived_name = '%s(%s)%s' % (short_name, segment, VALIDATOR)
return derived_name
def init_base_validator(device):
"""Initialize the device for all the Validators to use"""
BaseValidator._device = device
class BaseValidator(object):
"""Base class of validators."""
aggregator = 'fuzzy.average'
_device = None
def __init__(self, criteria, mf=None, device=None, name=None):
self.criteria_str = criteria() if isfunction(criteria) else criteria
self.fc = fuzzy.FuzzyCriteria(self.criteria_str, mf=mf)
self.device = device if device else BaseValidator._device
self.packets = None
self.vlog = firmware_log.ValidatorLog()
self.vlog.name = name
self.vlog.criteria = self.criteria_str
self.mnprops = firmware_log.MetricNameProps()
def init_check(self, packets=None):
"""Initialization before check() is called."""
self.packets = mtb.Mtb(device=self.device, packets=packets)
self.vlog.reset()
def _is_direction_in_variation(self, variation, directions):
"""Is any element of directions list found in variation?"""
for direction in directions:
if direction in variation:
return True
return False
def is_horizontal(self, variation):
"""Is the direction horizontal?"""
return self._is_direction_in_variation(variation,
GV.HORIZONTAL_DIRECTIONS)
def is_vertical(self, variation):
"""Is the direction vertical?"""
return self._is_direction_in_variation(variation,
GV.VERTICAL_DIRECTIONS)
def is_diagonal(self, variation):
"""Is the direction diagonal?"""
return self._is_direction_in_variation(variation,
GV.DIAGONAL_DIRECTIONS)
def get_direction(self, variation):
"""Get the direction."""
# TODO(josephsih): raise an exception if a proper direction is not found
if self.is_horizontal(variation):
return GV.HORIZONTAL
elif self.is_vertical(variation):
return GV.VERTICAL
elif self.is_diagonal(variation):
return GV.DIAGONAL
def get_direction_in_variation(self, variation):
"""Get the direction string from the variation list."""
if isinstance(variation, tuple):
for var in variation:
if var in GV.GESTURE_DIRECTIONS:
return var
elif variation in GV.GESTURE_DIRECTIONS:
return variation
return None
def log_details(self, msg):
"""Collect the detailed messages to be printed within this module."""
prefix_space = ' ' * 4
formatted_msg = '%s%s' % (prefix_space, msg)
self.vlog.insert_details(formatted_msg)
def get_threshold(self, criteria_str, op):
"""Search the criteria_str using regular expressions and get
the threshold value.
@param criteria_str: the criteria string to search
"""
# In the search pattern, '.*?' is non-greedy, which will match as
# few characters as possible.
# E.g., op = '>'
# criteria_str = '>= 200, ~ -100'
# pattern below would be '>.*?\s*(\d+)'
# result.group(1) below would be '200'
pattern = '{}.*?\s*(\d+)'.format(op)
result = re.search(pattern, criteria_str)
return int(result.group(1)) if result else None
def _get_axes_by_finger(self, finger):
"""Get list_x, list_y, and list_t for the specified finger.
@param finger: the finger contact
"""
points = self.packets.get_ordered_finger_path(self.finger, 'point')
list_x = [p.x for p in points]
list_y = [p.y for p in points]
list_t = self.packets.get_ordered_finger_path(self.finger, 'syn_time')
return (list_x, list_y, list_t)
class DragLatencyValidator(BaseValidator):
""" Validator to make check the touchpad's latency
This is used in conjunction with a Quickstep latency measuring device. To
compute the latencies, this validator imports the Quickstep software in the
touchbot project and pulls the data from the Quickstep device and the
packets collected by mtplot. If there is no device plugged in, the
validator will fail with an obviously erroneous value
"""
def __init__(self, criteria_str, mf=None):
name = self.__class__.__name__
super(DragLatencyValidator, self).__init__(criteria_str, mf=mf,
name=name)
def check(self, packets, variation=None):
self.init_check(packets)
# Reformat the touch events for latency measurement
points = self.packets.get_ordered_finger_path(0, 'point')
times = self.packets.get_ordered_finger_path(0, 'syn_time')
finger_positions = [latency_measurement.FingerPosition(t, pt.x, pt.y)
for t, pt in zip(times, points)]
# Find the sysfs entries for the Quickstep device and parse the logs
laser_files = simple_system_output('find / -name laser')
laser_crossings = []
for f in laser_files.splitlines():
laser_crossings = latency_measurement.get_laser_crossings(f)
if laser_crossings:
break
# Crunch the numbers using the Quickstep latency measurement module
latencies = latency_measurement.measure_latencies(finger_positions,
laser_crossings)
# If there is no Quickstep plugged in, there will be no readings, so
# to keep the test suite from crashing insert a dummy value
if not latencies:
latencies = [9.999]
avg = 1000.0 * sum(latencies) / len(latencies)
self.vlog.score = self.fc.mf.grade(avg)
self.log_details('Average drag latency (ms): %f' % avg)
self.log_details('Max drag latency (ms): %f' % (1000 * max(latencies)))
self.log_details('Min drag latency (ms): %f' % (1000 * min(latencies)))
self.vlog.metrics = [firmware_log.Metric(self.mnprops.AVG_LATENCY, avg)]
return self.vlog
class LinearityValidator1(BaseValidator):
"""Validator to verify linearity.
Example:
To check the linearity of the line drawn in finger 1:
LinearityValidator1('<= 0.03, ~ +0.07', finger=1)
"""
# Define the partial group size for calculating Mean Squared Error
MSE_PARTIAL_GROUP_SIZE = 1
def __init__(self, criteria_str, mf=None, device=None, finger=0,
segments=VAL.WHOLE):
self._segments = segments
self.finger = finger
name = get_derived_name(self.__class__.__name__, segments)
super(LinearityValidator1, self).__init__(criteria_str, mf, device,
name)
def _simple_linear_regression(self, ax, ay):
"""Calculate the simple linear regression and returns the
sum of squared residuals.
It calculates the simple linear regression line for the points
in the middle segment of the line. This exclude the points at
both ends of the line which sometimes have wobbles. Then it
calculates the fitting errors of the points at the specified segments
against the computed simple linear regression line.
"""
# Compute the simple linear regression line for the middle segment
# whose purpose is to avoid wobbles on both ends of the line.
mid_segment = self.packets.get_segments_x_and_y(ax, ay, VAL.MIDDLE,
END_PERCENTAGE)
if not self._calc_simple_linear_regression_line(*mid_segment):
return 0
# Compute the fitting errors of the specified segments.
if self._segments == VAL.BOTH_ENDS:
bgn_segment = self.packets.get_segments_x_and_y(ax, ay, VAL.BEGIN,
END_PERCENTAGE)
end_segment = self.packets.get_segments_x_and_y(ax, ay, VAL.END,
END_PERCENTAGE)
bgn_error = self._calc_simple_linear_regression_error(*bgn_segment)
end_error = self._calc_simple_linear_regression_error(*end_segment)
return max(bgn_error, end_error)
else:
target_segment = self.packets.get_segments_x_and_y(ax, ay,
self._segments, END_PERCENTAGE)
return self._calc_simple_linear_regression_error(*target_segment)
def _calc_simple_linear_regression_line(self, ax, ay):
"""Calculate the simple linear regression line.
ax: array x
ay: array y
This method tries to find alpha and beta in the formula
ay = alpha + beta . ax
such that it has the least sum of squared residuals.
Reference:
- Simple linear regression:
http://en.wikipedia.org/wiki/Simple_linear_regression
- Average absolute deviation (or mean absolute deviation) :
http://en.wikipedia.org/wiki/Average_absolute_deviation
"""
# Convert the int list to the float array
self._ax = 1.0 * np.array(ax)
self._ay = 1.0 * np.array(ay)
# If there are less than 2 data points, it is not a line at all.
asize = self._ax.size
if asize <= 2:
return False
Sx = self._ax.sum()
Sy = self._ay.sum()
Sxx = np.square(self._ax).sum()
Sxy = np.dot(self._ax, self._ay)
Syy = np.square(self._ay).sum()
Sx2 = Sx * Sx
Sy2 = Sy * Sy
# compute Mean of x and y
Mx = self._ax.mean()
My = self._ay.mean()
# Compute beta and alpha of the linear regression
self._beta = 1.0 * (asize * Sxy - Sx * Sy) / (asize * Sxx - Sx2)
self._alpha = My - self._beta * Mx
return True
def _calc_simple_linear_regression_error(self, ax, ay):
"""Calculate the fitting error based on the simple linear regression
line characterized by the equation parameters alpha and beta.
"""
# Convert the int list to the float array
ax = 1.0 * np.array(ax)
ay = 1.0 * np.array(ay)
asize = ax.size
partial = min(asize, max(1, self.MSE_PARTIAL_GROUP_SIZE))
# spmse: squared root of partial mean squared error
spmse = np.square(ay - self._alpha - self._beta * ax)
spmse.sort()
spmse = spmse[asize - partial : asize]
spmse = np.sqrt(np.average(spmse))
return spmse
def check(self, packets, variation=None):
"""Check if the packets conforms to specified criteria."""
self.init_check(packets)
resolution_x, resolution_y = self.device.get_resolutions()
(list_x, list_y) = self.packets.get_x_y(self.finger)
# Compute average distance (fitting error) in pixels, and
# average deviation on touch device in mm.
if self.is_vertical(variation):
ave_distance = self._simple_linear_regression(list_y, list_x)
deviation = ave_distance / resolution_x
else:
ave_distance = self._simple_linear_regression(list_x, list_y)
deviation = ave_distance / resolution_y
self.log_details('ave fitting error: %.2f px' % ave_distance)
msg_device = 'deviation finger%d: %.2f mm'
self.log_details(msg_device % (self.finger, deviation))
self.vlog.score = self.fc.mf.grade(deviation)
return self.vlog
class LinearityValidator(BaseValidator):
"""A validator to verify linearity based on x-t and y-t
Example:
To check the linearity of the line drawn in finger 1:
LinearityValidator('<= 0.03, ~ +0.07', finger=1)
Note: the finger number begins from 0
"""
# Define the partial group size for calculating Mean Squared Error
MSE_PARTIAL_GROUP_SIZE = 1
def __init__(self, criteria_str, mf=None, device=None, finger=0,
segments=VAL.WHOLE):
self._segments = segments
self.finger = finger
name = get_derived_name(self.__class__.__name__, segments)
super(LinearityValidator, self).__init__(criteria_str, mf, device,
name)
def _calc_residuals(self, line, list_t, list_y):
"""Calculate the residuals of the points in list_t, list_y against
the line.
@param line: the regression line of list_t and list_y
@param list_t: a list of time instants
@param list_y: a list of x/y coordinates
This method returns the list of residuals, where
residual[i] = line[t_i] - y_i
where t_i is an element in list_t and
y_i is a corresponding element in list_y.
We calculate the vertical distance (y distance) here because the
horizontal axis, list_t, always represent the time instants, and the
vertical axis, list_y, could be either the coordinates in x or y axis.
"""
return [float(line(t) - y) for t, y in zip(list_t, list_y)]
def _do_simple_linear_regression(self, list_t, list_y):
"""Calculate the simple linear regression line and returns the
sum of squared residuals.
@param list_t: the list of time instants
@param list_y: the list of x or y coordinates of touch contacts
It calculates the residuals (fitting errors) of the points at the
specified segments against the computed simple linear regression line.
Reference:
- Simple linear regression:
http://en.wikipedia.org/wiki/Simple_linear_regression
- numpy.polyfit(): used to calculate the simple linear regression line.
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
"""
# At least 2 points to determine a line.
if len(list_t) < 2 or len(list_y) < 2:
return []
mid_segment_t, mid_segment_y = self.packets.get_segments(
list_t, list_y, VAL.MIDDLE, END_PERCENTAGE)
# Check to make sure there are enough samples to continue
if len(mid_segment_t) <= 2 or len(mid_segment_y) <= 2:
return []
# Calculate the simple linear regression line.
degree = 1
regress_line = np.poly1d(np.polyfit(mid_segment_t, mid_segment_y,
degree))
# Compute the fitting errors of the specified segments.
if self._segments == VAL.BOTH_ENDS:
begin_segments = self.packets.get_segments(
list_t, list_y, VAL.BEGIN, END_PERCENTAGE)
end_segments = self.packets.get_segments(
list_t, list_y, VAL.END, END_PERCENTAGE)
begin_error = self._calc_residuals(regress_line, *begin_segments)
end_error = self._calc_residuals(regress_line, *end_segments)
return begin_error + end_error
else:
target_segments = self.packets.get_segments(
list_t, list_y, self._segments, END_PERCENTAGE)
return self._calc_residuals(regress_line, *target_segments)
def _calc_errors_single_axis(self, list_t, list_y):
"""Calculate various errors for axis-time.
@param list_t: the list of time instants
@param list_y: the list of x or y coordinates of touch contacts
"""
# It is fine if axis-time is a horizontal line.
errors_px = self._do_simple_linear_regression(list_t, list_y)
if not errors_px:
return (0, 0)
# Calculate the max errors
max_err_px = max(map(abs, errors_px))
# Calculate the root mean square errors
e2 = [e * e for e in errors_px]
rms_err_px = (float(sum(e2)) / len(e2)) ** 0.5
return (max_err_px, rms_err_px)
def _calc_errors_all_axes(self, list_t, list_x, list_y):
"""Calculate various errors for all axes."""
# Calculate max error and average squared error
(max_err_x_px, rms_err_x_px) = self._calc_errors_single_axis(
list_t, list_x)
(max_err_y_px, rms_err_y_px) = self._calc_errors_single_axis(
list_t, list_y)
# Convert the unit from pixels to mms
self.max_err_x_mm, self.max_err_y_mm = self.device.pixel_to_mm(
(max_err_x_px, max_err_y_px))
self.rms_err_x_mm, self.rms_err_y_mm = self.device.pixel_to_mm(
(rms_err_x_px, rms_err_y_px))
def _log_details_and_metrics(self, variation):
"""Log the details and calculate the metrics.
@param variation: the gesture variation
"""
list_x, list_y, list_t = self._get_axes_by_finger(self.finger)
X, Y = AXIS.LIST
# For horizontal lines, only consider x axis
if self.is_horizontal(variation):
self.list_coords = {X: list_x}
# For vertical lines, only consider y axis
elif self.is_vertical(variation):
self.list_coords = {Y: list_y}
# For diagonal lines, consider both x and y axes
elif self.is_diagonal(variation):
self.list_coords = {X: list_x, Y: list_y}
self.max_err_mm = {}
self.rms_err_mm = {}
self.vlog.metrics = []
mnprops = self.mnprops
pixel_to_mm = self.device.pixel_to_mm_single_axis_by_name
for axis, list_c in self.list_coords.items():
max_err_px, rms_err_px = self._calc_errors_single_axis(
list_t, list_c)
max_err_mm = pixel_to_mm(max_err_px, axis)
rms_err_mm = pixel_to_mm(rms_err_px, axis)
self.log_details('max_err[%s]: %.2f mm' % (axis, max_err_mm))
self.log_details('rms_err[%s]: %.2f mm' % (axis, rms_err_mm))
self.vlog.metrics.extend([
firmware_log.Metric(mnprops.MAX_ERR.format(axis), max_err_mm),
firmware_log.Metric(mnprops.RMS_ERR.format(axis), rms_err_mm),
])
self.max_err_mm[axis] = max_err_mm
self.rms_err_mm[axis] = rms_err_mm
def check(self, packets, variation=None):
"""Check if the packets conforms to specified criteria."""
self.init_check(packets)
self._log_details_and_metrics(variation)
# Calculate the score based on the max error
max_err = max(self.max_err_mm.values())
self.vlog.score = self.fc.mf.grade(max_err)
return self.vlog
class LinearityNormalFingerValidator(LinearityValidator):
"""A dummy LinearityValidator to verify linearity for gestures performed
with normal fingers.
"""
pass
class LinearityFatFingerValidator(LinearityValidator):
"""A dummy LinearityValidator to verify linearity for gestures performed
with fat fingers or thumb edge.
"""
pass
class RangeValidator(BaseValidator):
"""Validator to check the observed (x, y) positions should be within
the range of reported min/max values.
Example:
To check the range of observed edge-to-edge positions:
RangeValidator('<= 0.05, ~ +0.05')
"""
def __init__(self, criteria_str, mf=None, device=None):
self.name = self.__class__.__name__
super(RangeValidator, self).__init__(criteria_str, mf, device,
self.name)
def check(self, packets, variation=None):
"""Check the left/right or top/bottom range based on the direction."""
self.init_check(packets)
valid_directions = [GV.CL, GV.CR, GV.CT, GV.CB]
Range = namedtuple('Range', valid_directions)
actual_range = Range(*self.packets.get_range())
spec_range = Range(self.device.axis_x.min, self.device.axis_x.max,
self.device.axis_y.min, self.device.axis_y.max)
direction = self.get_direction_in_variation(variation)
if direction in valid_directions:
actual_edge = getattr(actual_range, direction)
spec_edge = getattr(spec_range, direction)
short_of_range_px = abs(actual_edge - spec_edge)
else:
err_msg = 'Error: the gesture variation %s is not allowed in %s.'
print_and_exit(err_msg % (variation, self.name))
axis_spec = (self.device.axis_x if self.is_horizontal(variation)
else self.device.axis_y)
deviation_ratio = (float(short_of_range_px) /
(axis_spec.max - axis_spec.min))
# Convert the direction to edge name.
# E.g., direction: center_to_left
# edge name: left
edge_name = direction.split('_')[-1]
metric_name = self.mnprops.RANGE.format(edge_name)
short_of_range_mm = self.device.pixel_to_mm_single_axis(
short_of_range_px, axis_spec)
self.vlog.metrics = [
firmware_log.Metric(metric_name, short_of_range_mm)
]
self.log_details('actual: px %s' % str(actual_edge))
self.log_details('spec: px %s' % str(spec_edge))
self.log_details('short of range: %d px == %f mm' %
(short_of_range_px, short_of_range_mm))
self.vlog.score = self.fc.mf.grade(deviation_ratio)
return self.vlog
class CountTrackingIDValidator(BaseValidator):
"""Validator to check the count of tracking IDs.
Example:
To verify if there is exactly one finger observed:
CountTrackingIDValidator('== 1')
"""
def __init__(self, criteria_str, mf=None, device=None):
name = self.__class__.__name__
super(CountTrackingIDValidator, self).__init__(criteria_str, mf,
device, name)
def check(self, packets, variation=None):
"""Check the number of tracking IDs observed."""
self.init_check(packets)
# Get the actual count of tracking id and log the details.
actual_count_tid = self.packets.get_number_contacts()
self.log_details('count of trackid IDs: %d' % actual_count_tid)
# Only keep metrics with the criteria '== N'.
# Ignore those with '>= N' which are used to assert that users have
# performed correct gestures. As an example, we require that users
# tap more than a certain number of times in the drumroll test.
if '==' in self.criteria_str:
expected_count_tid = int(self.criteria_str.split('==')[-1].strip())
# E.g., expected_count_tid = 2
# actual_count_tid could be either smaller (e.g., 1) or
# larger (e.g., 3).
metric_value = (actual_count_tid, expected_count_tid)
metric_name = self.mnprops.TID
self.vlog.metrics = [firmware_log.Metric(metric_name, metric_value)]
self.vlog.score = self.fc.mf.grade(actual_count_tid)
return self.vlog
class CountTrackingIDNormalFingerValidator(CountTrackingIDValidator):
"""A dummy CountTrackingIDValidator to collect data for
normal finger gestures.
"""
pass
class CountTrackingIDFatFingerValidator(CountTrackingIDValidator):
"""A dummy CountTrackingIDValidator to collect data for fat finger gestures.
"""
pass
class StationaryValidator(BaseValidator):
"""Check to make sure a finger we expect to remain still doesn't move.
This class is inherited by both StationaryFingerValidator and
StationaryTapValidator, and is not used directly as a validator.
"""
def __init__(self, criteria, mf=None, device=None, slot=0):
name = self.__class__.__name__
super(StationaryValidator, self).__init__(criteria, mf, device, name)
self.slot = slot
def check(self, packets, variation=None):
"""Check the moving distance of the specified slot."""
self.init_check(packets)
max_distance = self.packets.get_max_distance(self.slot, UNIT.MM)
msg = 'Max distance slot%d: %.2f mm'
self.log_details(msg % (self.slot, max_distance))
self.vlog.metrics = [
firmware_log.Metric(self.mnprops.MAX_DISTANCE, max_distance)
]
self.vlog.score = self.fc.mf.grade(max_distance)
return self.vlog
class StationaryFingerValidator(StationaryValidator):
"""A dummy StationaryValidator to check pulling effect by another finger.
Example:
To verify if the stationary finger specified by the slot is not
pulled away more than 1.0 mm by another finger.
StationaryFingerValidator('<= 1.0')
"""
pass
class StationaryTapValidator(StationaryValidator):
"""A dummy StationaryValidator to check the wobble of tap/click.
Example:
To verify if the tapping finger specified by the slot does not
wobble larger than 1.0 mm.
StationaryTapValidator('<= 1.0')
"""
pass
class NoGapValidator(BaseValidator):
"""Validator to make sure that there are no significant gaps in a line.
Example:
To verify if there is exactly one finger observed:
NoGapValidator('<= 5, ~ +5', slot=1)
"""
def __init__(self, criteria_str, mf=None, device=None, slot=0):
name = self.__class__.__name__
super(NoGapValidator, self).__init__(criteria_str, mf, device, name)
self.slot = slot
def check(self, packets, variation=None):
"""There should be no significant gaps in a line."""
self.init_check(packets)
# Get the largest gap ratio
gap_ratio = self.packets.get_largest_gap_ratio(self.slot)
msg = 'Largest gap ratio slot%d: %f'
self.log_details(msg % (self.slot, gap_ratio))
self.vlog.score = self.fc.mf.grade(gap_ratio)
return self.vlog
class NoReversedMotionValidator(BaseValidator):
"""Validator to measure the reversed motions in the specified slots.
Example:
To measure the reversed motions in slot 0:
NoReversedMotionValidator('== 0, ~ +20', slots=0)
"""
def __init__(self, criteria_str, mf=None, device=None, slots=(0,),
segments=VAL.MIDDLE):
self._segments = segments
name = get_derived_name(self.__class__.__name__, segments)
self.slots = (slots,) if isinstance(slots, int) else slots
parent = super(NoReversedMotionValidator, self)
parent.__init__(criteria_str, mf, device, name)
def _get_reversed_motions(self, slot, direction):
"""Get the reversed motions opposed to the direction in the slot."""
return self.packets.get_reversed_motions(slot,
direction,
segment_flag=self._segments,
ratio=END_PERCENTAGE)
def check(self, packets, variation=None):
"""There should be no reversed motions in a slot."""
self.init_check(packets)
sum_reversed_motions = 0
direction = self.get_direction_in_variation(variation)
for slot in self.slots:
# Get the reversed motions.
reversed_motions = self._get_reversed_motions(slot, direction)
msg = 'Reversed motions slot%d: %s px'
self.log_details(msg % (slot, reversed_motions))
sum_reversed_motions += sum(map(abs, reversed_motions.values()))
self.vlog.score = self.fc.mf.grade(sum_reversed_motions)
return self.vlog
class CountPacketsValidator(BaseValidator):
"""Validator to check the number of packets.
Example:
To verify if there are enough packets received about the first finger:
CountPacketsValidator('>= 3, ~ -3', slot=0)
"""
def __init__(self, criteria_str, mf=None, device=None, slot=0):
self.name = self.__class__.__name__
super(CountPacketsValidator, self).__init__(criteria_str, mf, device,
self.name)
self.slot = slot
def check(self, packets, variation=None):
"""Check the number of packets in the specified slot."""
self.init_check(packets)
# Get the number of packets in that slot
actual_count_packets = self.packets.get_num_packets(self.slot)
msg = 'Number of packets slot%d: %s'
self.log_details(msg % (self.slot, actual_count_packets))
# Add the metric for the count of packets
expected_count_packets = self.get_threshold(self.criteria_str, '>')
assert expected_count_packets, 'Check the criteria of %s' % self.name
metric_value = (actual_count_packets, expected_count_packets)
metric_name = self.mnprops.COUNT_PACKETS
self.vlog.metrics = [firmware_log.Metric(metric_name, metric_value)]
self.vlog.score = self.fc.mf.grade(actual_count_packets)
return self.vlog
class PinchValidator(BaseValidator):
"""Validator to check the pinch to zoom in/out.
Example:
To verify that the two fingers are drawing closer:
PinchValidator('>= 200, ~ -100')
"""
def __init__(self, criteria_str, mf=None, device=None):
self.name = self.__class__.__name__
super(PinchValidator, self).__init__(criteria_str, mf, device,
self.name)
def check(self, packets, variation):
"""Check the number of packets in the specified slot."""
self.init_check(packets)
# Get the relative motion of the two fingers
slots = (0, 1)
actual_relative_motion = self.packets.get_relative_motion(slots)
if variation == GV.ZOOM_OUT:
actual_relative_motion = -actual_relative_motion
msg = 'Relative motions of the two fingers: %.2f px'
self.log_details(msg % actual_relative_motion)
# Add the metric for relative motion distance.
expected_relative_motion = self.get_threshold(self.criteria_str, '>')
assert expected_relative_motion, 'Check the criteria of %s' % self.name
metric_value = (actual_relative_motion, expected_relative_motion)
metric_name = self.mnprops.PINCH
self.vlog.metrics = [firmware_log.Metric(metric_name, metric_value)]
self.vlog.score = self.fc.mf.grade(actual_relative_motion)
return self.vlog
class PhysicalClickValidator(BaseValidator):
"""Validator to check the events generated by physical clicks
Example:
To verify the events generated by a one-finger physical click
PhysicalClickValidator('== 1', fingers=1)
"""
def __init__(self, criteria_str, fingers, mf=None, device=None):
self.criteria_str = criteria_str
self.name = self.__class__.__name__
super(PhysicalClickValidator, self).__init__(criteria_str, mf, device,
self.name)
self.fingers = fingers
def _get_expected_number(self):
"""Get the expected number of counts from the criteria string.
E.g., criteria_str: '== 1'
"""
try:
expected_count = int(self.criteria_str.split('==')[-1].strip())
except Exception, e:
print 'Error: %s in the criteria string of %s' % (e, self.name)
exit(1)
return expected_count
def _add_metrics(self):
"""Add metrics"""
fingers = self.fingers
raw_click_count = self.packets.get_raw_physical_clicks()
# This is for the metric:
# "of the n clicks, the % of clicks with the correct finger IDs"
correct_click_count = self.packets.get_correct_physical_clicks(fingers)
value_with_TIDs = (correct_click_count, raw_click_count)
name_with_TIDs = self.mnprops.CLICK_CHECK_TIDS.format(self.fingers)
# This is for the metric: "% of finger IDs with a click"
expected_click_count = self._get_expected_number()
value_clicks = (raw_click_count, expected_click_count)
name_clicks = self.mnprops.CLICK_CHECK_CLICK.format(self.fingers)
self.vlog.metrics = [
firmware_log.Metric(name_with_TIDs, value_with_TIDs),
firmware_log.Metric(name_clicks, value_clicks),
]
return value_with_TIDs
def check(self, packets, variation=None):
"""Check the number of packets in the specified slot."""
self.init_check(packets)
correct_click_count, raw_click_count = self._add_metrics()
# Get the number of physical clicks made with the specified number
# of fingers.
msg = 'Count of %d-finger physical clicks: %s'
self.log_details(msg % (self.fingers, correct_click_count))
self.log_details('Count of physical clicks: %d' % raw_click_count)
self.vlog.score = self.fc.mf.grade(correct_click_count)
return self.vlog
class DrumrollValidator(BaseValidator):
"""Validator to check the drumroll problem.
All points from the same finger should be within 2 circles of radius X mm
(e.g. 2 mm)
Example:
To verify that the max radius of all minimal enclosing circles generated
by alternately tapping the index and middle fingers is within 2.0 mm.
DrumrollValidator('<= 2.0')
"""
def __init__(self, criteria_str, mf=None, device=None):
name = self.__class__.__name__
super(DrumrollValidator, self).__init__(criteria_str, mf, device, name)
def check(self, packets, variation=None):
"""The moving distance of the points in any tracking ID should be
within the specified value.
"""
self.init_check(packets)
# For each tracking ID, compute the minimal enclosing circles,
# rocs = (radius_of_circle1, radius_of_circle2)
# Return a list of such minimal enclosing circles of all tracking IDs.
rocs = self.packets.get_list_of_rocs_of_all_tracking_ids()
max_radius = max(rocs)
self.log_details('Max radius: %.2f mm' % max_radius)
metric_name = self.mnprops.CIRCLE_RADIUS
self.vlog.metrics = [firmware_log.Metric(metric_name, roc)
for roc in rocs]
self.vlog.score = self.fc.mf.grade(max_radius)
return self.vlog
class NoLevelJumpValidator(BaseValidator):
"""Validator to check if there are level jumps
When a user draws a horizontal line with thumb edge or a fat finger,
the line could comprise a horizontal line segment followed by another
horizontal line segment (or just dots) one level up or down, and then
another horizontal line segment again at different horizontal level, etc.
This validator is implemented to detect such level jumps.
Such level jumps could also occur when drawing vertical or diagonal lines.
Example:
To verify the level jumps in a one-finger tracking gesture:
NoLevelJumpValidator('<= 10, ~ +30', slots[0,])
where slots[0,] represent the slots with numbers larger than slot 0.
This kind of representation is required because when the thumb edge or
a fat finger is used, due to the difficulty in handling it correctly
in the touch device firmware, the tracking IDs and slot IDs may keep
changing. We would like to analyze all such slots.
"""
def __init__(self, criteria_str, mf=None, device=None, slots=0):
name = self.__class__.__name__
super(NoLevelJumpValidator, self).__init__(criteria_str, mf, device,
name)
self.slots = slots
def check(self, packets, variation=None):
"""Check if there are level jumps."""
self.init_check(packets)
# Get the displacements of the slots.
slots = self.slots[0]
displacements = self.packets.get_displacements_for_slots(slots)
# Iterate through the collected tracking IDs
jumps = []
for tid in displacements:
slot = displacements[tid][MTB.SLOT]
for axis in AXIS.LIST:
disp = displacements[tid][axis]
jump = self.packets.get_largest_accumulated_level_jumps(disp)
jumps.append(jump)
msg = ' accu jump (%d %s): %d px'
self.log_details(msg % (slot, axis, jump))
# Get the largest accumulated level jump
max_jump = max(jumps) if jumps else 0
msg = 'Max accu jump: %d px'
self.log_details(msg % (max_jump))
self.vlog.score = self.fc.mf.grade(max_jump)
return self.vlog
class ReportRateValidator(BaseValidator):
"""Validator to check the report rate.
Example:
To verify that the report rate is around 80 Hz. It gets 0 points
if the report rate drops below 60 Hz.
ReportRateValidator('== 80 ~ -20')
"""
def __init__(self, criteria_str, finger=None, mf=None, device=None,
chop_off_pauses=True):
"""Initialize ReportRateValidator
@param criteria_str: the criteria string
@param finger: the ith contact if not None. When set to None, it means
to examine all packets.
@param mf: the fuzzy member function to use
@param device: the touch device
"""
self.name = self.__class__.__name__
self.criteria_str = criteria_str
self.finger = finger
if finger is not None:
msg = '%s: finger = %d (It is required that finger >= 0.)'
assert finger >= 0, msg % (self.name, finger)
self.chop_off_pauses = chop_off_pauses
super(ReportRateValidator, self).__init__(criteria_str, mf, device,
self.name)
def _chop_off_both_ends(self, points, distance):
"""Chop off both ends of segments such that the points in the remaining
middle segment are distant from both ends by more than the specified
distance.
When performing a gesture such as finger tracking, it is possible
that the finger will stay stationary for a while before it actually
starts moving. Likewise, it is also possible that the finger may stay
stationary before the finger leaves the touch surface. We would like
to chop off the stationary segments.
Note: if distance is 0, the effect is equivalent to keep all points.
@param points: a list of Points
@param distance: the distance within which the points are chopped off
"""
def _find_index(points, distance, reversed_flag=False):
"""Find the first index of the point whose distance with the
first point is larger than the specified distance.
@param points: a list of Points
@param distance: the distance
@param reversed_flag: indicates if the points needs to be reversed
"""
points_len = len(points)
if reversed_flag:
points = reversed(points)
ref_point = None
for i, p in enumerate(points):
if ref_point is None:
ref_point = p
if ref_point.distance(p) >= distance:
return (points_len - i - 1) if reversed_flag else i
return None
# There must be extra points in addition to the first and the last point
if len(points) <= 2:
return None
begin_moving_index = _find_index(points, distance, reversed_flag=False)
end_moving_index = _find_index(points, distance, reversed_flag=True)
if (begin_moving_index is None or end_moving_index is None or
begin_moving_index > end_moving_index):
return None
return [begin_moving_index, end_moving_index]
def _add_report_rate_metrics2(self):
"""Calculate and add the metrics about report rate.
Three metrics are required.
- % of time intervals that are > (1/60) second
- average time interval
- max time interval
"""
import test_conf as conf
if self.finger:
finger_list = [self.finger]
else:
ordered_finger_paths_dict = self.packets.get_ordered_finger_paths()
finger_list = range(len(ordered_finger_paths_dict))
# distance: the minimal moving distance within which the points
# at both ends will be chopped off
distance = conf.MIN_MOVING_DISTANCE if self.chop_off_pauses else 0
# Derive the middle moving segment in which the finger(s)
# moves significantly.
begin_time = float('infinity')
end_time = float('-infinity')
for finger in finger_list:
list_t = self.packets.get_ordered_finger_path(finger, 'syn_time')
points = self.packets.get_ordered_finger_path(finger, 'point')
middle = self._chop_off_both_ends(points, distance)
if middle:
this_begin_index, this_end_index = middle
this_begin_time = list_t[this_begin_index]
this_end_time = list_t[this_end_index]
begin_time = min(begin_time, this_begin_time)
end_time = max(end_time, this_end_time)
if (begin_time == float('infinity') or end_time == float('-infinity')
or end_time <= begin_time):
print 'Warning: %s: cannot derive a moving segment.' % self.name
print 'begin_time: ', begin_time
print 'end_time: ', end_time
return
# Get the list of SYN_REPORT time in the middle moving segment.
list_syn_time = filter(lambda t: t >= begin_time and t <= end_time,
self.packets.get_list_syn_time(self.finger))
# Each packet consists of a list of events of which The last one is
# the sync event. The unit of sync_intervals is ms.
sync_intervals = [1000.0 * (list_syn_time[i + 1] - list_syn_time[i])
for i in range(len(list_syn_time) - 1)]
max_report_interval = conf.max_report_interval
# Calculate the metrics and add them to vlog.
long_intervals = [s for s in sync_intervals if s > max_report_interval]
metric_long_intervals = (len(long_intervals), len(sync_intervals))
ave_interval = sum(sync_intervals) / len(sync_intervals)
max_interval = max(sync_intervals)
name_long_intervals_pct = self.mnprops.LONG_INTERVALS.format(
'%.2f' % max_report_interval)
name_ave_time_interval = self.mnprops.AVE_TIME_INTERVAL
name_max_time_interval = self.mnprops.MAX_TIME_INTERVAL
self.vlog.metrics = [
firmware_log.Metric(name_long_intervals_pct, metric_long_intervals),
firmware_log.Metric(self.mnprops.AVE_TIME_INTERVAL, ave_interval),
firmware_log.Metric(self.mnprops.MAX_TIME_INTERVAL, max_interval),
]
self.log_details('%s: %f' % (self.mnprops.AVE_TIME_INTERVAL,
ave_interval))
self.log_details('%s: %f' % (self.mnprops.MAX_TIME_INTERVAL,
max_interval))
self.log_details('# long intervals > %s ms: %d' %
(self.mnprops.max_report_interval_str,
len(long_intervals)))
self.log_details('# total intervals: %d' % len(sync_intervals))
def _get_report_rate(self, list_syn_time):
"""Get the report rate in Hz from the list of syn_time.
@param list_syn_time: a list of SYN_REPORT time instants
"""
if len(list_syn_time) <= 1:
return 0
duration = list_syn_time[-1] - list_syn_time[0]
num_packets = len(list_syn_time) - 1
report_rate = float(num_packets) / duration
return report_rate
def check(self, packets, variation=None):
"""The Report rate should be within the specified range."""
self.init_check(packets)
# Get the list of syn_time based on the specified finger.
list_syn_time = self.packets.get_list_syn_time(self.finger)
# Get the report rate
self.report_rate = self._get_report_rate(list_syn_time)
self._add_report_rate_metrics2()
self.vlog.score = self.fc.mf.grade(self.report_rate)
return self.vlog
class HysteresisValidator(BaseValidator):
"""Validator to check if there exists a cursor jump initially
The movement hysteresis, if existing, set in the touchpad firmware
should not lead to an obvious cursor jump when a finger starts moving.
Example:
To verify if there exists a cursor jump with distance ratio larger
than 2.0; i.e.,
distance(point0, point1) / distance(point1, point2) should be <= 2.0
HysteresisValidator('> 2.0')
Raw data of tests/data/center_to_right_slow_link.dat:
[block0]
Event: type 3 (EV_ABS), code 57 (ABS_MT_TRACKING_ID), value 508
Event: type 3 (EV_ABS), code 53 (ABS_MT_POSITION_X), value 906
Event: type 3 (EV_ABS), code 54 (ABS_MT_POSITION_Y), value 720
Event: type 3 (EV_ABS), code 58 (ABS_MT_PRESSURE), value 24
Event: -------------- SYN_REPORT ------------
[block1]
Event: type 3 (EV_ABS), code 58 (ABS_MT_PRESSURE), value 25
Event: -------------- SYN_REPORT ------------
... more SYN_REPORT with ABS_MT_PRESSURE only ...
[block2]
Event: type 3 (EV_ABS), code 53 (ABS_MT_POSITION_X), value 939
Event: type 3 (EV_ABS), code 54 (ABS_MT_POSITION_Y), value 727
Event: type 3 (EV_ABS), code 58 (ABS_MT_PRESSURE), value 34
Event: -------------- SYN_REPORT ------------
[block3]
Event: type 3 (EV_ABS), code 53 (ABS_MT_POSITION_X), value 941
Event: type 3 (EV_ABS), code 54 (ABS_MT_POSITION_Y), value 727
Event: type 3 (EV_ABS), code 58 (ABS_MT_PRESSURE), value 37
Event: -------------- SYN_REPORT ------------
... more data ...
Let point0 represents the coordinates in block0.
Let point1 represents the coordinates in block2.
Let point2 represents the coordinates in block3.
Note that the data in block1 only contain a number of pressure values
without any X/Y updates even when the finger is tracking to the right.
This is the undesirable hysteresis effect.
Compute ratio = distance(point0, point1) / distance(point1, point2).
When ratio is high, it indicates the hysteresis effect.
"""
def __init__(self, criteria_str, finger=0, mf=None, device=None):
self.criteria_str = criteria_str
self.finger = finger
name = self.__class__.__name__
super(HysteresisValidator, self).__init__(criteria_str, mf, device,
name)
def _point_px_to_mm(self, point_px):
"""Convert a point in px to a point in mm."""
return Point(*self.device.pixel_to_mm(point_px.value()))
def _find_index_of_first_distinct_value(self, points):
"""Find first index, idx, such that points[idx] != points[0]."""
for idx, point in enumerate(points):
if points[0].distance(points[idx]) > 0:
return idx
return None
def check(self, packets, variation=None):
"""There is no jump larger than a threshold at the beginning."""
self.init_check(packets)
points_px = self.packets.get_ordered_finger_path(self.finger, 'point')
point1_idx = point2_idx = None
distance1 = distance2 = None
if len(points_px) > 0:
point0_mm = self._point_px_to_mm(points_px[0])
point1_idx = self._find_index_of_first_distinct_value(points_px)
if point1_idx is not None:
point1_mm = self._point_px_to_mm(points_px[point1_idx])
distance1 = point0_mm.distance(point1_mm)
if point1_idx + 1 <= len(points_px):
point2_idx = self._find_index_of_first_distinct_value(
points_px[point1_idx:]) + point1_idx
if point2_idx is not None:
point2_mm = self._point_px_to_mm(points_px[point2_idx])
distance2 = point1_mm.distance(point2_mm)
ratio = (float('infinity') if distance1 == 0 else
distance1 / distance2)
else:
ratio = float('infinity')
self.log_details('init gap ratio: %.2f' % ratio)
self.log_details('dist(p0,p1): ' +
('None' if distance1 is None else '%.2f' % distance1))
self.log_details('dist(p1,p2): ' +
('None' if distance2 is None else '%.2f' % distance2))
self.vlog.metrics = [
firmware_log.Metric(self.mnprops.MAX_INIT_GAP_RATIO, ratio),
firmware_log.Metric(self.mnprops.AVE_INIT_GAP_RATIO, ratio),
]
self.vlog.score = self.fc.mf.grade(ratio)
return self.vlog