blob: 2fd9e289df2a7ece31c3ce2ef018177ffb312f6a [file] [log] [blame]
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "patchpanel/net_util.h"
#include <net/if.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include <random>
#include <utility>
#include <vector>
#include <base/logging.h>
#include <base/strings/stringprintf.h>
namespace patchpanel {
namespace {
using flags_info_t = std::vector<std::pair<uint32_t, std::string>>;
// Helper for pretty printing flags
void AddFlags(std::ostream& stream,
uint32_t flags,
const flags_info_t& flags_info) {
if (flags == 0) {
stream << '0';
return;
}
std::string sep = "";
for (const auto& flag_descr : flags_info) {
if ((flags & flag_descr.first) == 0)
continue;
stream << sep << flag_descr.second;
sep = " | ";
}
}
const flags_info_t kRtentryRTF = {
{RTF_UP, "RTF_UP"}, {RTF_GATEWAY, "RTF_GATEWAY"},
{RTF_HOST, "RTF_HOST"}, {RTF_REINSTATE, "RTF_REINSTATE"},
{RTF_DYNAMIC, "RTF_DYNAMIC"}, {RTF_MODIFIED, "RTF_MODIFIED"},
{RTF_MTU, "RTF_MTU"}, {RTF_MSS, "RTF_MSS"},
{RTF_WINDOW, "RTF_WINDOW"}, {RTF_IRTT, "RTF_IRTT"},
{RTF_REJECT, "RTF_REJECT"},
};
} // namespace
uint32_t Ipv4Netmask(uint32_t prefix_len) {
return htonl((0xffffffffull << (32 - prefix_len)) & 0xffffffff);
}
uint32_t Ipv4BroadcastAddr(uint32_t base, uint32_t prefix_len) {
return (base | ~Ipv4Netmask(prefix_len));
}
std::string IPv4AddressToString(uint32_t addr) {
char buf[INET_ADDRSTRLEN] = {0};
struct in_addr ia;
ia.s_addr = addr;
return !inet_ntop(AF_INET, &ia, buf, sizeof(buf)) ? "" : buf;
}
std::string IPv4AddressToCidrString(uint32_t addr, uint32_t prefix_length) {
return IPv4AddressToString(addr) + "/" + std::to_string(prefix_length);
}
std::string MacAddressToString(const MacAddress& addr) {
return base::StringPrintf("%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1],
addr[2], addr[3], addr[4], addr[5]);
}
bool FindFirstIPv6Address(const std::string& ifname, struct in6_addr* address) {
struct ifaddrs* ifap;
struct ifaddrs* p;
bool found = false;
// Iterate through the linked list of all interface addresses to find
// the first IPv6 address for |ifname|.
if (getifaddrs(&ifap) < 0)
return false;
for (p = ifap; p; p = p->ifa_next) {
if (p->ifa_name != ifname || p->ifa_addr->sa_family != AF_INET6) {
continue;
}
if (address) {
struct sockaddr_in6* sa =
reinterpret_cast<struct sockaddr_in6*>(p->ifa_addr);
memcpy(address, &sa->sin6_addr, sizeof(*address));
}
found = true;
break;
}
freeifaddrs(ifap);
return found;
}
bool GenerateRandomIPv6Prefix(struct in6_addr* prefix, int len) {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> randbyte(0, 255);
// TODO(cernekee): handle different prefix lengths
if (len != 64) {
LOG(DFATAL) << "Unexpected prefix length";
return false;
}
for (int i = 8; i < 16; i++)
prefix->s6_addr[i] = randbyte(rng);
// Set the universal/local flag, similar to a RFC 4941 address.
prefix->s6_addr[8] |= 0x40;
return true;
}
bool GenerateEUI64Address(in6_addr* address,
const in6_addr& prefix,
const MacAddress& mac) {
// RFC 4291, Appendix A: Insert 0xFF and 0xFE to form EUI-64, then flip
// universal/local bit
memcpy(address, &prefix, sizeof(in6_addr));
memcpy(&(address->s6_addr[8]), &(mac[0]), 3);
memcpy(&(address->s6_addr[13]), &(mac[3]), 3);
address->s6_addr[11] = 0xff;
address->s6_addr[12] = 0xfe;
address->s6_addr[8] ^= 0x2;
return true;
}
void SetSockaddrIn(struct sockaddr* sockaddr, uint32_t addr) {
struct sockaddr_in* sockaddr_in =
reinterpret_cast<struct sockaddr_in*>(sockaddr);
sockaddr_in->sin_family = AF_INET;
sockaddr_in->sin_addr.s_addr = static_cast<in_addr_t>(addr);
}
std::ostream& operator<<(std::ostream& stream, const struct in_addr& addr) {
char buf[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &addr, buf, sizeof(buf));
stream << buf;
return stream;
}
std::ostream& operator<<(std::ostream& stream, const struct in6_addr& addr) {
char buf[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &addr, buf, sizeof(buf));
stream << buf;
return stream;
}
std::ostream& operator<<(std::ostream& stream, const struct sockaddr& addr) {
switch (addr.sa_family) {
case 0:
return stream << "{unset}";
case AF_INET:
return stream << (const struct sockaddr_in&)addr;
case AF_INET6:
return stream << (const struct sockaddr_in6&)addr;
case AF_UNIX:
return stream << (const struct sockaddr_un&)addr;
case AF_VSOCK:
return stream << (const struct sockaddr_vm&)addr;
default:
return stream << "{family: " << addr.sa_family << ", (unknown)}";
}
}
std::ostream& operator<<(std::ostream& stream,
const struct sockaddr_storage& addr) {
return stream << (const struct sockaddr&)addr;
}
std::ostream& operator<<(std::ostream& stream, const struct sockaddr_in& addr) {
char buf[INET_ADDRSTRLEN] = {0};
inet_ntop(AF_INET, &addr.sin_addr, buf, sizeof(buf));
return stream << "{family: AF_INET, port: " << ntohs(addr.sin_port)
<< ", addr: " << buf << "}";
}
std::ostream& operator<<(std::ostream& stream,
const struct sockaddr_in6& addr) {
char buf[INET6_ADDRSTRLEN] = {0};
inet_ntop(AF_INET6, &addr.sin6_addr, buf, sizeof(buf));
return stream << "{family: AF_INET6, port: " << ntohs(addr.sin6_port)
<< ", addr: " << buf << "}";
}
std::ostream& operator<<(std::ostream& stream, const struct sockaddr_un& addr) {
const size_t sun_path_length = sizeof(addr) - sizeof(sa_family_t);
// Add room for one extra char to ensure |buf| is a null terminated string
char buf[sun_path_length + 1] = {0};
memcpy(buf, addr.sun_path, sun_path_length);
if (buf[0] == '\0') {
buf[0] = '@';
}
return stream << "{family: AF_UNIX, path: " << buf << "}";
}
std::ostream& operator<<(std::ostream& stream, const struct sockaddr_vm& addr) {
return stream << "{family: AF_VSOCK, port: " << addr.svm_port
<< ", cid: " << addr.svm_cid << "}";
}
std::ostream& operator<<(std::ostream& stream, const struct rtentry& route) {
std::string rt_dev =
route.rt_dev ? std::string(route.rt_dev, strnlen(route.rt_dev, IFNAMSIZ))
: "null";
stream << "{rt_dst: " << route.rt_dst << ", rt_genmask: " << route.rt_genmask
<< ", rt_gateway: " << route.rt_gateway << ", rt_dev: " << rt_dev
<< ", rt_flags: ";
AddFlags(stream, route.rt_flags, kRtentryRTF);
return stream << "}";
}
uint16_t FoldChecksum(uint32_t sum) {
while (sum >> 16)
sum = (sum & 0xffff) + (sum >> 16);
return ~sum;
}
uint32_t NetChecksum(const void* data, ssize_t len) {
uint32_t sum = 0;
const uint16_t* word = reinterpret_cast<const uint16_t*>(data);
for (; len > 1; len -= 2)
sum += *word++;
if (len)
sum += *word & htons(0x0000ffff);
return sum;
}
uint16_t Ipv4Checksum(const iphdr* ip) {
uint32_t sum = NetChecksum(ip, sizeof(iphdr));
return FoldChecksum(sum);
}
uint16_t Udpv4Checksum(const iphdr* ip, const udphdr* udp) {
uint8_t pseudo_header[12];
memset(pseudo_header, 0, sizeof(pseudo_header));
// Fill in the pseudo-header.
memcpy(pseudo_header, &ip->saddr, sizeof(in_addr));
memcpy(pseudo_header + 4, &ip->daddr, sizeof(in_addr));
memcpy(pseudo_header + 9, &ip->protocol, sizeof(uint8_t));
memcpy(pseudo_header + 10, &udp->len, sizeof(uint16_t));
// Compute pseudo-header checksum
uint32_t sum = NetChecksum(pseudo_header, sizeof(pseudo_header));
// UDP
sum += NetChecksum(udp, ntohs(udp->len));
return FoldChecksum(sum);
}
uint16_t Icmpv6Checksum(const ip6_hdr* ip6, const icmp6_hdr* icmp6) {
uint32_t sum = 0;
// Src and Dst IP
for (size_t i = 0; i < (sizeof(struct in6_addr) >> 1); ++i)
sum += ip6->ip6_src.s6_addr16[i];
for (size_t i = 0; i < (sizeof(struct in6_addr) >> 1); ++i)
sum += ip6->ip6_dst.s6_addr16[i];
// Upper-Layer Packet Length
sum += ip6->ip6_plen;
// Next Header
sum += IPPROTO_ICMPV6 << 8;
// ICMP
sum += NetChecksum(icmp6, ntohs(ip6->ip6_plen));
return FoldChecksum(sum);
}
} // namespace patchpanel