blob: b8a15c4d87beeb7830c9fcc01f6e8ce1bad653e8 [file] [log] [blame]
// Copyright 2014 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "brillo/file_utils.h"
#include <fcntl.h>
#include <unistd.h>
#include <limits>
#include <utility>
#include <vector>
#include <base/files/file_enumerator.h>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/logging.h>
#include <base/posix/eintr_wrapper.h>
#include <base/rand_util.h>
#include <base/stl_util.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/stringprintf.h>
#include <base/time/time.h>
namespace brillo {
namespace {
// Log sync(), fsync(), etc. calls that take this many seconds or longer.
constexpr const base::TimeDelta kLongSync = base::TimeDelta::FromSeconds(10);
enum {
kPermissions600 = S_IRUSR | S_IWUSR,
kPermissions777 = S_IRWXU | S_IRWXG | S_IRWXO,
kPermissions755 = S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH
};
// Verify that base file permission enums are compatible with S_Ixxx. If these
// asserts ever fail, we'll need to ensure that users of these functions switch
// away from using base permission enums and add a note to the function comments
// indicating that base enums can not be used.
static_assert(base::FILE_PERMISSION_READ_BY_USER == S_IRUSR,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_WRITE_BY_USER == S_IWUSR,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_EXECUTE_BY_USER == S_IXUSR,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_READ_BY_GROUP == S_IRGRP,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_WRITE_BY_GROUP == S_IWGRP,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_EXECUTE_BY_GROUP == S_IXGRP,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_READ_BY_OTHERS == S_IROTH,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_WRITE_BY_OTHERS == S_IWOTH,
"base file permissions don't match unistd.h permissions");
static_assert(base::FILE_PERMISSION_EXECUTE_BY_OTHERS == S_IXOTH,
"base file permissions don't match unistd.h permissions");
enum RegularFileOrDeleteResult {
kFailure = 0, // Failed to delete whatever was at the path.
kRegularFile = 1, // Regular file existed and was unchanged.
kEmpty = 2 // Anything that was at the path has been deleted.
};
// Checks if a regular file owned by |uid| and |gid| exists at |path|, otherwise
// deletes anything that might be at |path|. Returns a RegularFileOrDeleteResult
// enum indicating what is at |path| after the function finishes.
RegularFileOrDeleteResult RegularFileOrDelete(const base::FilePath& path,
uid_t uid,
gid_t gid) {
// Check for symlinks by setting O_NOFOLLOW and checking for ELOOP. This lets
// us use the safer fstat() instead of having to use lstat().
base::ScopedFD scoped_fd(HANDLE_EINTR(openat(
AT_FDCWD, path.value().c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW)));
bool path_not_empty = (errno == ELOOP || scoped_fd != -1);
// If there is a file/directory at |path|, see if it matches our criteria.
if (scoped_fd != -1) {
struct stat file_stat;
if (fstat(scoped_fd.get(), &file_stat) != -1 &&
S_ISREG(file_stat.st_mode) && file_stat.st_uid == uid &&
file_stat.st_gid == gid) {
return kRegularFile;
}
}
// If we get here and anything was at |path|, try to delete it so we can put
// our file there.
if (path_not_empty) {
if (!base::DeletePathRecursively(path)) {
PLOG(WARNING) << "Failed to delete entity at \"" << path.value() << '"';
return kFailure;
}
}
return kEmpty;
}
// Handles common touch functionality but also provides an optional |fd_out|
// so that any further modifications to the file (e.g. permissions) can safely
// use the fd rather than the path. |fd_out| will only be set if a new file
// is created, otherwise it will be unchanged.
// If |fd_out| is null, this function will close the file, otherwise it's
// expected that |fd_out| will close the file when it goes out of scope.
bool TouchFileInternal(const base::FilePath& path,
uid_t uid,
gid_t gid,
base::ScopedFD* fd_out) {
RegularFileOrDeleteResult result = RegularFileOrDelete(path, uid, gid);
switch (result) {
case kFailure:
return false;
case kRegularFile:
return true;
case kEmpty:
break;
}
// base::CreateDirectory() returns true if the directory already existed.
if (!base::CreateDirectory(path.DirName())) {
PLOG(WARNING) << "Failed to create directory for \"" << path.value() << '"';
return false;
}
// Create the file as owner-only initially.
base::ScopedFD scoped_fd(HANDLE_EINTR(openat(
AT_FDCWD, path.value().c_str(),
O_RDONLY | O_NOFOLLOW | O_CREAT | O_EXCL | O_CLOEXEC, kPermissions600)));
if (scoped_fd == -1) {
PLOG(WARNING) << "Failed to create file \"" << path.value() << '"';
return false;
}
if (fd_out) {
fd_out->swap(scoped_fd);
}
return true;
}
std::string GetRandomSuffix() {
const int kBufferSize = 6;
unsigned char buffer[kBufferSize];
base::RandBytes(buffer, base::size(buffer));
std::string suffix;
for (int i = 0; i < kBufferSize; ++i) {
int random_value = buffer[i] % (2 * 26 + 10);
if (random_value < 26) {
suffix.push_back('a' + random_value);
} else if (random_value < 2 * 26) {
suffix.push_back('A' + random_value - 26);
} else {
suffix.push_back('0' + random_value - 2 * 26);
}
}
return suffix;
}
base::ScopedFD OpenPathComponentInternal(int parent_fd,
const std::string& file,
int flags,
mode_t mode) {
DCHECK(file == "/" || file.find("/") == std::string::npos);
base::ScopedFD fd;
// O_NONBLOCK is used to avoid hanging on edge cases (e.g. a serial port with
// flow control, or a FIFO without a writer).
if (parent_fd >= 0 || parent_fd == AT_FDCWD) {
fd.reset(HANDLE_EINTR(openat(parent_fd, file.c_str(),
flags | O_NONBLOCK | O_NOFOLLOW | O_CLOEXEC,
mode)));
} else if (file == "/") {
fd.reset(HANDLE_EINTR(open(
file.c_str(),
flags | O_RDONLY | O_DIRECTORY | O_NONBLOCK | O_NOFOLLOW | O_CLOEXEC,
mode)));
}
if (!fd.is_valid()) {
// open(2) fails with ELOOP when the last component of the |path| is a
// symlink. It fails with ENXIO when |path| is a FIFO and |flags| is for
// writing because of the O_NONBLOCK flag added above.
if (errno == ELOOP || errno == ENXIO) {
PLOG(WARNING) << "Failed to open " << file << " safely.";
} else {
PLOG(WARNING) << "Failed to open " << file << ".";
}
return base::ScopedFD();
}
// Remove the O_NONBLOCK flag unless the original |flags| have it.
if ((flags & O_NONBLOCK) == 0) {
flags = fcntl(fd.get(), F_GETFL);
if (flags == -1) {
PLOG(ERROR) << "Failed to get fd flags for " << file;
return base::ScopedFD();
}
if (fcntl(fd.get(), F_SETFL, flags & ~O_NONBLOCK)) {
PLOG(ERROR) << "Failed to set fd flags for " << file;
return base::ScopedFD();
}
}
return fd;
}
base::ScopedFD OpenSafelyInternal(int parent_fd,
const base::FilePath& path,
int flags,
mode_t mode) {
std::vector<std::string> components;
path.GetComponents(&components);
auto itr = components.begin();
if (itr == components.end()) {
LOG(ERROR) << "A path is required.";
return base::ScopedFD(); // This is an invalid fd.
}
base::ScopedFD child_fd;
int parent_flags = flags | O_NONBLOCK | O_RDONLY | O_DIRECTORY | O_PATH;
for (; itr + 1 != components.end(); ++itr) {
child_fd = OpenPathComponentInternal(parent_fd, *itr, parent_flags, 0);
if (!child_fd.is_valid()) {
return base::ScopedFD();
}
parent_fd = child_fd.get();
}
return OpenPathComponentInternal(parent_fd, *itr, flags, mode);
}
} // namespace
bool TouchFile(const base::FilePath& path,
int new_file_permissions,
uid_t uid,
gid_t gid) {
// Make sure |permissions| doesn't have any out-of-range bits.
if (new_file_permissions & ~kPermissions777) {
LOG(WARNING) << "Illegal permissions: " << new_file_permissions;
return false;
}
base::ScopedFD scoped_fd;
if (!TouchFileInternal(path, uid, gid, &scoped_fd)) {
return false;
}
// scoped_fd is valid only if a new file was created.
if (scoped_fd != -1 &&
HANDLE_EINTR(fchmod(scoped_fd.get(), new_file_permissions)) == -1) {
PLOG(WARNING) << "Failed to set permissions for \"" << path.value() << '"';
base::DeleteFile(path);
return false;
}
return true;
}
bool TouchFile(const base::FilePath& path) {
// Use TouchFile() instead of TouchFileInternal() to explicitly set
// permissions to 600 in case umask is set strangely.
return TouchFile(path, kPermissions600, geteuid(), getegid());
}
base::ScopedFD OpenSafely(const base::FilePath& path, int flags, mode_t mode) {
if (!path.IsAbsolute()) {
LOG(ERROR) << "An absolute path is required.";
return base::ScopedFD(); // This is an invalid fd.
}
base::ScopedFD fd(OpenSafelyInternal(-1, path, flags, mode));
if (!fd.is_valid())
return base::ScopedFD();
// Ensure the opened file is a regular file or directory.
struct stat st;
if (fstat(fd.get(), &st) < 0) {
PLOG(ERROR) << "Failed to fstat " << path.value();
return base::ScopedFD();
}
// This detects a FIFO opened for reading, for example.
if (flags & O_DIRECTORY) {
if (!S_ISDIR(st.st_mode)) {
LOG(ERROR) << path.value() << " is not a directory: " << st.st_mode;
return base::ScopedFD();
}
} else if (!S_ISREG(st.st_mode) && !S_ISDIR(st.st_mode)) {
LOG(ERROR) << path.value()
<< " is not a regular file or directory: " << st.st_mode;
return base::ScopedFD();
}
return fd;
}
base::ScopedFD OpenAtSafely(int parent_fd,
const base::FilePath& path,
int flags,
mode_t mode) {
base::ScopedFD fd(OpenSafelyInternal(parent_fd, path, flags, mode));
if (!fd.is_valid())
return base::ScopedFD();
// Ensure the opened file is a regular file or directory.
struct stat st;
if (fstat(fd.get(), &st) < 0) {
PLOG(ERROR) << "Failed to fstat " << path.value();
return base::ScopedFD();
}
// This detects a FIFO opened for reading, for example.
if (flags & O_DIRECTORY) {
if (!S_ISDIR(st.st_mode)) {
LOG(ERROR) << path.value() << " is not a directory: " << st.st_mode;
return base::ScopedFD();
}
} else if (!S_ISREG(st.st_mode)) {
LOG(ERROR) << path.value() << " is not a regular file: " << st.st_mode;
return base::ScopedFD();
}
return fd;
}
base::ScopedFD OpenFifoSafely(const base::FilePath& path,
int flags,
mode_t mode) {
if (!path.IsAbsolute()) {
LOG(ERROR) << "An absolute path is required.";
return base::ScopedFD(); // This is an invalid fd.
}
base::ScopedFD fd(OpenSafelyInternal(-1, path, flags, mode));
if (!fd.is_valid())
return base::ScopedFD();
// Ensure the opened file is a FIFO.
struct stat st;
if (fstat(fd.get(), &st) < 0) {
PLOG(ERROR) << "Failed to fstat " << path.value();
return base::ScopedFD();
}
if (!S_ISFIFO(st.st_mode)) {
LOG(ERROR) << path.value() << " is not a FIFO: " << st.st_mode;
return base::ScopedFD();
}
return fd;
}
base::ScopedFD MkdirRecursively(const base::FilePath& full_path, mode_t mode) {
std::vector<std::string> components;
full_path.GetComponents(&components);
auto itr = components.begin();
if (!full_path.IsAbsolute() || itr == components.end()) {
LOG(ERROR) << "An absolute path is required.";
return base::ScopedFD(); // This is an invalid fd.
}
base::ScopedFD parent_fd;
int parent_flags = O_NONBLOCK | O_RDONLY | O_DIRECTORY | O_PATH;
while (itr + 1 != components.end()) {
base::ScopedFD child(
OpenPathComponentInternal(parent_fd.get(), *itr, parent_flags, 0));
if (!child.is_valid()) {
return base::ScopedFD();
}
parent_fd = std::move(child);
++itr;
// Try to create the directory. Note that Chromium's MkdirRecursively() uses
// 0700, but we use 0755.
if (mkdirat(parent_fd.get(), itr->c_str(), mode) != 0) {
if (errno != EEXIST) {
PLOG(ERROR) << "Failed to mkdirat " << *itr
<< ": full_path=" << full_path.value();
return base::ScopedFD();
}
}
}
return OpenPathComponentInternal(parent_fd.get(), *itr,
O_RDONLY | O_DIRECTORY, 0);
}
bool WriteStringToFile(const base::FilePath& path, const std::string& data) {
return WriteToFile(path, data.data(), data.size());
}
bool WriteToFile(const base::FilePath& path, const char* data, size_t size) {
if (!base::DirectoryExists(path.DirName())) {
if (!base::CreateDirectory(path.DirName())) {
LOG(ERROR) << "Cannot create directory: " << path.DirName().value();
return false;
}
}
// base::WriteFile takes an int size.
if (size > std::numeric_limits<int>::max()) {
LOG(ERROR) << "Cannot write to " << path.value()
<< ". Data is too large: " << size << " bytes.";
return false;
}
int data_written = base::WriteFile(path, data, size);
return data_written == static_cast<int>(size);
}
bool SyncFileOrDirectory(const base::FilePath& path,
bool is_directory,
bool data_sync) {
const base::TimeTicks start = base::TimeTicks::Now();
data_sync = data_sync && !is_directory;
int flags = (is_directory ? O_RDONLY | O_DIRECTORY : O_WRONLY);
int fd = HANDLE_EINTR(open(path.value().c_str(), flags));
if (fd < 0) {
PLOG(WARNING) << "Could not open " << path.value() << " for syncing";
return false;
}
// POSIX specifies EINTR as a possible return value of fsync() but not for
// fdatasync(). To be on the safe side, it is handled in both cases.
int result =
(data_sync ? HANDLE_EINTR(fdatasync(fd)) : HANDLE_EINTR(fsync(fd)));
if (result < 0) {
PLOG(WARNING) << "Failed to sync " << path.value();
close(fd);
return false;
}
// close() may not be retried on error.
result = IGNORE_EINTR(close(fd));
if (result < 0) {
PLOG(WARNING) << "Failed to close after sync " << path.value();
return false;
}
const base::TimeDelta delta = base::TimeTicks::Now() - start;
if (delta > kLongSync) {
LOG(WARNING) << "Long " << (data_sync ? "fdatasync" : "fsync") << "() of "
<< path.value() << ": " << delta.InSeconds() << " seconds";
}
return true;
}
bool WriteToFileAtomic(const base::FilePath& path,
const char* data,
size_t size,
mode_t mode) {
if (!base::DirectoryExists(path.DirName())) {
if (!base::CreateDirectory(path.DirName())) {
LOG(ERROR) << "Cannot create directory: " << path.DirName().value();
return false;
}
}
std::string random_suffix = GetRandomSuffix();
if (random_suffix.empty()) {
PLOG(WARNING) << "Could not compute random suffix";
return false;
}
std::string temp_name = path.AddExtension(random_suffix).value();
int fd =
HANDLE_EINTR(open(temp_name.c_str(), O_CREAT | O_EXCL | O_WRONLY, mode));
if (fd < 0) {
PLOG(WARNING) << "Could not open " << temp_name << " for atomic write";
unlink(temp_name.c_str());
return false;
}
size_t position = 0;
while (position < size) {
ssize_t bytes_written =
HANDLE_EINTR(write(fd, data + position, size - position));
if (bytes_written < 0) {
PLOG(WARNING) << "Could not write " << temp_name;
close(fd);
unlink(temp_name.c_str());
return false;
}
position += bytes_written;
}
if (HANDLE_EINTR(fdatasync(fd)) < 0) {
PLOG(WARNING) << "Could not fsync " << temp_name;
close(fd);
unlink(temp_name.c_str());
return false;
}
if (close(fd) < 0) {
PLOG(WARNING) << "Could not close " << temp_name;
unlink(temp_name.c_str());
return false;
}
if (rename(temp_name.c_str(), path.value().c_str()) < 0) {
PLOG(WARNING) << "Could not close " << temp_name;
unlink(temp_name.c_str());
return false;
}
return true;
}
int64_t ComputeDirectoryDiskUsage(const base::FilePath& root_path) {
int64_t running_blocks = 0;
base::FileEnumerator file_iter(root_path, true,
base::FileEnumerator::FILES |
base::FileEnumerator::DIRECTORIES |
base::FileEnumerator::SHOW_SYM_LINKS);
while (!file_iter.Next().empty()) {
// st_blocks in struct stat is the number of S_BLKSIZE (512) bytes sized
// blocks occupied by this file.
running_blocks += file_iter.GetInfo().stat().st_blocks;
}
// Each block is S_BLKSIZE (512) bytes so *S_BLKSIZE.
return running_blocks * S_BLKSIZE;
}
} // namespace brillo