blob: 5f3565a4aeee284f4633c8d390a008ecd5030a18 [file] [log] [blame]
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "patchpanel/counters_service.h"
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <base/check.h>
#include <base/strings/strcat.h>
#include <base/strings/string_split.h>
#include <re2/re2.h>
namespace patchpanel {
namespace {
using Counter = CountersService::Counter;
using SourceDevice = CountersService::SourceDevice;
constexpr char kMangleTable[] = "mangle";
constexpr char kVpnChainTag[] = "vpn";
constexpr char kRxTag[] = "rx_";
constexpr char kTxTag[] = "tx_";
// The following regexs and code is written and tested for iptables v1.6.2.
// Output code of iptables can be found at:
// https://git.netfilter.org/iptables/tree/iptables/iptables.c?h=v1.6.2
// The chain line looks like:
// "Chain tx_eth0 (2 references)".
// This regex extracts "tx" (direction), "eth0" (ifname) from this example.
constexpr LazyRE2 kChainLine = {R"(Chain (rx|tx)_(\w+).*)"};
// The counter line for a defined source looks like (some spaces are deleted to
// make it fit in one line):
// " 5374 6172 RETURN all -- any any anywhere anywhere mark match 0x2000/0x3f00"
// The final counter line for catching untagged traffic looks like:
// " 5374 6172 all -- any any anywhere anywhere"
// The first two counters are captured for pkts and bytes. For lines with a mark
// matcher, the source is also captured.
constexpr LazyRE2 kCounterLine = {R"( *(\d+) +(\d+).*mark match (.*)/0x3f00)"};
constexpr LazyRE2 kFinalCounterLine = {R"( *(\d+) +(\d+).*anywhere\s*)"};
bool MatchCounterLine(const std::string& line,
uint64_t* pkts,
uint64_t* bytes,
TrafficSource* source) {
Fwmark mark;
if (RE2::FullMatch(line, *kCounterLine, pkts, bytes,
RE2::Hex(&mark.fwmark))) {
*source = mark.Source();
return true;
}
if (RE2::FullMatch(line, *kFinalCounterLine, pkts, bytes)) {
*source = TrafficSource::UNKNOWN;
return true;
}
return false;
}
// Parses the output of `iptables -L -x -v` (or `ip6tables`) and adds the parsed
// values into the corresponding counters in |counters|. An example of |output|
// can be found in the test file. This function will try to find the pattern of:
// <one chain line for an accounting chain>
// <one header line>
// <one counter line for an accounting rule>
// The interface name and direction (rx or tx) will be extracted from the chain
// line, and then the values extracted from the counter line will be added into
// the counter for that interface. Note that this function will not fully
// validate if |output| is an output from iptables.
bool ParseOutput(const std::string& output,
const std::set<std::string>& devices,
std::map<SourceDevice, Counter>* counters) {
DCHECK(counters);
const std::vector<std::string> lines = base::SplitString(
output, "\n", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL);
// Finds the chain line for an accounting chain first, and then parse the
// following line(s) to get the counters for this chain. Repeats this process
// until we reach the end of |output|.
for (auto it = lines.cbegin(); it != lines.cend(); it++) {
// Finds the chain name line.
std::string direction, ifname;
while (it != lines.cend() &&
!RE2::FullMatch(*it, *kChainLine, &direction, &ifname))
it++;
if (it == lines.cend())
break;
// Skips this group if this ifname is not requested.
if (!devices.empty() && devices.find(ifname) == devices.end())
continue;
// Skips the chain name line and the header line.
if (lines.cend() - it <= 2) {
LOG(ERROR) << "Invalid iptables output for " << direction << "_"
<< ifname;
return false;
}
it += 2;
// Checks that there are some counter rules defined.
if (it == lines.cend() || it->empty()) {
LOG(ERROR) << "No counter rule defined for " << direction << "_"
<< ifname;
return false;
}
// The next block of lines are the counters lines for individual sources.
for (; it != lines.cend() && !it->empty(); it++) {
uint64_t pkts, bytes;
TrafficSource source;
if (!MatchCounterLine(*it, &pkts, &bytes, &source)) {
LOG(ERROR) << "Cannot parse counter line \"" << *it << "\" for "
<< direction << "_" << ifname;
return false;
}
if (pkts == 0 && bytes == 0)
continue;
auto& counter =
(*counters)[std::make_pair(TrafficSourceToProto(source), ifname)];
if (direction == "rx") {
counter.rx_bytes += bytes;
counter.rx_packets += pkts;
} else {
counter.tx_bytes += bytes;
counter.tx_packets += pkts;
}
}
}
return true;
}
} // namespace
Counter::Counter(uint64_t rx_bytes,
uint64_t rx_packets,
uint64_t tx_bytes,
uint64_t tx_packets)
: rx_bytes(rx_bytes),
rx_packets(rx_packets),
tx_bytes(tx_bytes),
tx_packets(tx_packets) {}
CountersService::CountersService(Datapath* datapath,
MinijailedProcessRunner* runner)
: datapath_(datapath), runner_(runner) {}
std::map<SourceDevice, Counter> CountersService::GetCounters(
const std::set<std::string>& devices) {
std::map<SourceDevice, Counter> counters;
// Handles counters for IPv4 and IPv6 separately and returns failure if either
// of the procession fails, since counters for only IPv4 or IPv6 are biased.
std::string iptables_result;
int ret = runner_->iptables(kMangleTable, {"-L", "-x", "-v", "-w"},
true /*log_failures*/, &iptables_result);
if (ret != 0 || iptables_result.empty()) {
LOG(ERROR) << "Failed to query IPv4 counters";
return {};
}
if (!ParseOutput(iptables_result, devices, &counters)) {
LOG(ERROR) << "Failed to parse IPv4 counters";
return {};
}
std::string ip6tables_result;
ret = runner_->ip6tables(kMangleTable, {"-L", "-x", "-v", "-w"},
true /*log_failures*/, &ip6tables_result);
if (ret != 0 || ip6tables_result.empty()) {
LOG(ERROR) << "Failed to query IPv6 counters";
return {};
}
if (!ParseOutput(ip6tables_result, devices, &counters)) {
LOG(ERROR) << "Failed to parse IPv6 counters";
return {};
}
return counters;
}
void CountersService::OnPhysicalDeviceAdded(const std::string& ifname) {
SetupAccountingRules(ifname);
SetupJumpRules("-A", ifname, ifname);
}
void CountersService::OnPhysicalDeviceRemoved(const std::string& ifname) {
SetupJumpRules("-D", ifname, ifname);
}
void CountersService::OnVpnDeviceAdded(const std::string& ifname) {
SetupAccountingRules(kVpnChainTag);
SetupJumpRules("-A", ifname, kVpnChainTag);
}
void CountersService::OnVpnDeviceRemoved(const std::string& ifname) {
SetupJumpRules("-D", ifname, kVpnChainTag);
}
bool CountersService::MakeAccountingChain(const std::string& chain_name) {
return datapath_->ModifyChain(IpFamily::Dual, kMangleTable, "-N", chain_name,
false /*log_failures*/);
}
bool CountersService::AddAccountingRule(const std::string& chain_name,
TrafficSource source) {
std::vector<std::string> args = {"-A",
chain_name,
"-m",
"mark",
"--mark",
Fwmark::FromSource(source).ToString() + "/" +
kFwmarkAllSourcesMask.ToString(),
"-j",
"RETURN",
"-w"};
return datapath_->ModifyIptables(IpFamily::Dual, kMangleTable, args);
}
void CountersService::SetupAccountingRules(const std::string& chain_tag) {
// For a new target accounting chain, create
// 1) an accounting chain to jump to,
// 2) source accounting rules in the chain.
// Note that the length of a chain name must less than 29 chars and IFNAMSIZ
// is 16 so we can only use at most 12 chars for the prefix.
const std::string ingress_chain = kRxTag + chain_tag;
const std::string egress_chain = kTxTag + chain_tag;
// Creates egress and ingress traffic chains, or stops if they already exist.
if (!MakeAccountingChain(egress_chain) ||
!MakeAccountingChain(ingress_chain)) {
LOG(INFO) << "Traffic accounting chains already exist for " << chain_tag;
return;
}
// Add source accounting rules.
for (TrafficSource source : kAllSources) {
AddAccountingRule(ingress_chain, source);
AddAccountingRule(egress_chain, source);
}
// Add catch-all accounting rule for any remaining and untagged traffic.
datapath_->ModifyIptables(IpFamily::Dual, kMangleTable,
{"-A", ingress_chain, "-w"});
datapath_->ModifyIptables(IpFamily::Dual, kMangleTable,
{"-A", egress_chain, "-w"});
}
void CountersService::SetupJumpRules(const std::string& op,
const std::string& ifname,
const std::string& chain_tag) {
// For each device create a jumping rule in mangle POSTROUTING for egress
// traffic, and two jumping rules in mangle INPUT and FORWARD for ingress
// traffic.
datapath_->ModifyIptables(
IpFamily::Dual, kMangleTable,
{op, "FORWARD", "-i", ifname, "-j", kRxTag + chain_tag, "-w"});
datapath_->ModifyIptables(
IpFamily::Dual, kMangleTable,
{op, "INPUT", "-i", ifname, "-j", kRxTag + chain_tag, "-w"});
datapath_->ModifyIptables(
IpFamily::Dual, kMangleTable,
{op, "POSTROUTING", "-o", ifname, "-j", kTxTag + chain_tag, "-w"});
}
TrafficCounter::Source TrafficSourceToProto(TrafficSource source) {
switch (source) {
case CHROME:
return TrafficCounter::CHROME;
case USER:
return TrafficCounter::USER;
case UPDATE_ENGINE:
return TrafficCounter::UPDATE_ENGINE;
case SYSTEM:
return TrafficCounter::SYSTEM;
case HOST_VPN:
return TrafficCounter::VPN;
case ARC:
return TrafficCounter::ARC;
case CROSVM:
return TrafficCounter::CROSVM;
case PLUGINVM:
return TrafficCounter::PLUGINVM;
case TETHER_DOWNSTREAM:
return TrafficCounter::SYSTEM;
case ARC_VPN:
return TrafficCounter::VPN;
case UNKNOWN:
default:
return TrafficCounter::UNKNOWN;
}
}
TrafficSource ProtoToTrafficSource(TrafficCounter::Source source) {
switch (source) {
case TrafficCounter::CHROME:
return CHROME;
case TrafficCounter::USER:
return USER;
case TrafficCounter::UPDATE_ENGINE:
return UPDATE_ENGINE;
case TrafficCounter::SYSTEM:
return SYSTEM;
case TrafficCounter::VPN:
return HOST_VPN;
case TrafficCounter::ARC:
return ARC;
case TrafficCounter::CROSVM:
return CROSVM;
case TrafficCounter::PLUGINVM:
return PLUGINVM;
default:
case TrafficCounter::UNKNOWN:
return UNKNOWN;
}
}
} // namespace patchpanel