blob: 46f93957c98deb13f7cbbfb52263826bba72fc82 [file] [log] [blame] [edit]
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ml/text_classifier_impl.h"
#include <utility>
#include <vector>
#include <base/check.h>
#include <base/logging.h>
#include <lang_id/lang-id-wrapper.h>
#include <utils/utf8/unicodetext.h>
#include "ml/mojom/text_classifier.mojom.h"
#include "ml/request_metrics.h"
namespace ml {
namespace {
using ::chromeos::machine_learning::mojom::CodepointSpan;
using ::chromeos::machine_learning::mojom::TextAnnotation;
using ::chromeos::machine_learning::mojom::TextAnnotationPtr;
using ::chromeos::machine_learning::mojom::TextAnnotationRequestPtr;
using ::chromeos::machine_learning::mojom::TextClassifier;
using ::chromeos::machine_learning::mojom::TextEntity;
using ::chromeos::machine_learning::mojom::TextEntityData;
using ::chromeos::machine_learning::mojom::TextEntityPtr;
using ::chromeos::machine_learning::mojom::TextLanguage;
using ::chromeos::machine_learning::mojom::TextLanguagePtr;
using ::chromeos::machine_learning::mojom::TextSuggestSelectionRequestPtr;
constexpr char kTextClassifierModelFilePath[] =
"/opt/google/chrome/ml_models/"
"mlservice-model-text_classifier_en-v711_vocab-v1.fb";
constexpr char kLanguageIdentificationModelFilePath[] =
"/opt/google/chrome/ml_models/"
"mlservice-model-language_identification-20190924.smfb";
// To avoid passing a lambda as a base::Closure.
void DeleteTextClassifierImpl(
const TextClassifierImpl* const text_classifier_impl) {
delete text_classifier_impl;
}
} // namespace
bool TextClassifierImpl::Create(
mojo::PendingReceiver<TextClassifier> receiver) {
// Attempt to load model.
auto annotator_model_mmap = std::make_unique<libtextclassifier3::ScopedMmap>(
kTextClassifierModelFilePath);
if (!annotator_model_mmap->handle().ok()) {
LOG(ERROR) << "Failed to load the text classifier model file.";
return false;
}
auto text_classifier_impl = new TextClassifierImpl(
&annotator_model_mmap, kLanguageIdentificationModelFilePath,
std::move(receiver));
if (text_classifier_impl->annotator_ == nullptr ||
text_classifier_impl->language_identifier_ == nullptr) {
// Fails to create annotator, return nullptr.
delete text_classifier_impl;
return false;
}
// Use a disconnection handler to strongly bind `text_classifier_impl` to
// `receiver`.
text_classifier_impl->SetDisconnectionHandler(base::Bind(
&DeleteTextClassifierImpl, base::Unretained(text_classifier_impl)));
return true;
}
TextClassifierImpl::TextClassifierImpl(
std::unique_ptr<libtextclassifier3::ScopedMmap>* annotator_model_mmap,
const std::string& langid_model_path,
mojo::PendingReceiver<TextClassifier> receiver)
: annotator_(libtextclassifier3::Annotator::FromScopedMmap(
annotator_model_mmap, nullptr, nullptr)),
language_identifier_(
libtextclassifier3::langid::LoadFromPath(langid_model_path)),
receiver_(this, std::move(receiver)) {}
void TextClassifierImpl::SetDisconnectionHandler(
base::Closure disconnect_handler) {
receiver_.set_disconnect_handler(std::move(disconnect_handler));
}
void TextClassifierImpl::Annotate(TextAnnotationRequestPtr request,
AnnotateCallback callback) {
RequestMetrics request_metrics("TextClassifier", "Annotate");
request_metrics.StartRecordingPerformanceMetrics();
// Parse and set up the options.
libtextclassifier3::AnnotationOptions option;
if (request->default_locales) {
option.locales = request->default_locales.value();
}
if (request->reference_time) {
option.reference_time_ms_utc =
request->reference_time->ToTimeT() * base::Time::kMillisecondsPerSecond;
}
if (request->reference_timezone) {
option.reference_timezone = request->reference_timezone.value();
}
if (request->enabled_entities) {
option.entity_types.insert(request->enabled_entities.value().begin(),
request->enabled_entities.value().end());
}
option.detected_text_language_tags =
request->detected_text_language_tags.value_or("en");
option.annotation_usecase =
static_cast<libtextclassifier3::AnnotationUsecase>(
request->annotation_usecase);
// Uses the vocab based model.
option.use_vocab_annotator = true;
// Do the annotation.
const std::vector<libtextclassifier3::AnnotatedSpan> annotated_spans =
annotator_->Annotate(request->text, option);
// Parse the result.
std::vector<TextAnnotationPtr> annotations;
for (const auto& annotated_result : annotated_spans) {
DCHECK(annotated_result.span.second >= annotated_result.span.first);
std::vector<TextEntityPtr> entities;
for (const auto& classification : annotated_result.classification) {
// First, get entity data.
auto entity_data = TextEntityData::New();
if (classification.collection == "number") {
entity_data->set_numeric_value(classification.numeric_double_value);
} else {
// For the other types, just encode the substring into string_value.
// TODO(honglinyu): add data extraction for more types when needed
// and available.
// Note that the returned indices by annotator is unicode codepoints.
entity_data->set_string_value(
libtextclassifier3::UTF8ToUnicodeText(request->text, false)
.UTF8Substring(annotated_result.span.first,
annotated_result.span.second));
}
// Second, create the entity.
entities.emplace_back(TextEntity::New(classification.collection,
classification.score,
std::move(entity_data)));
}
annotations.emplace_back(TextAnnotation::New(annotated_result.span.first,
annotated_result.span.second,
std::move(entities)));
}
std::move(callback).Run(std::move(annotations));
request_metrics.FinishRecordingPerformanceMetrics();
}
void TextClassifierImpl::SuggestSelection(
TextSuggestSelectionRequestPtr request, SuggestSelectionCallback callback) {
RequestMetrics request_metrics("TextClassifier", "SuggestSelection");
request_metrics.StartRecordingPerformanceMetrics();
libtextclassifier3::SelectionOptions option;
if (request->default_locales) {
option.locales = request->default_locales.value();
}
option.detected_text_language_tags =
request->detected_text_language_tags.value_or("en");
option.annotation_usecase =
static_cast<libtextclassifier3::AnnotationUsecase>(
request->annotation_usecase);
libtextclassifier3::CodepointSpan user_selection;
user_selection.first = request->user_selection->start_offset;
user_selection.second = request->user_selection->end_offset;
const libtextclassifier3::CodepointSpan suggested_span =
annotator_->SuggestSelection(request->text, user_selection, option);
auto result_span = CodepointSpan::New();
result_span->start_offset = suggested_span.first;
result_span->end_offset = suggested_span.second;
std::move(callback).Run(std::move(result_span));
request_metrics.FinishRecordingPerformanceMetrics();
}
void TextClassifierImpl::FindLanguages(const std::string& text,
FindLanguagesCallback callback) {
RequestMetrics request_metrics("TextClassifier", "FindLanguages");
request_metrics.StartRecordingPerformanceMetrics();
const std::vector<std::pair<std::string, float>> languages =
libtextclassifier3::langid::GetPredictions(language_identifier_.get(),
text);
std::vector<TextLanguagePtr> langid_result;
for (const auto& lang : languages) {
langid_result.emplace_back(TextLanguage::New(lang.first, lang.second));
}
std::move(callback).Run(std::move(langid_result));
request_metrics.FinishRecordingPerformanceMetrics();
}
} // namespace ml