| // Copyright 2018 The Chromium OS Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef ML_MODEL_IMPL_H_ |
| #define ML_MODEL_IMPL_H_ |
| |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <string> |
| |
| #include <base/macros.h> |
| #include <mojo/public/cpp/bindings/pending_receiver.h> |
| #include <mojo/public/cpp/bindings/receiver.h> |
| #include <tensorflow/lite/model.h> |
| |
| #include "ml/graph_executor_impl.h" |
| #include "ml/mojom/model.mojom.h" |
| |
| namespace ml { |
| |
| // Holds 4-byte aligned char[] data suitable for a flatbuffer model. |
| class AlignedModelData { |
| public: |
| // Constructs from a std::string. If its .c_str() is not 4-byte aligned, an |
| // aligned copy is made. |
| explicit AlignedModelData(std::string model_str); |
| |
| ~AlignedModelData(); |
| |
| AlignedModelData(const AlignedModelData&) = delete; |
| AlignedModelData& operator=(const AlignedModelData&) = delete; |
| |
| // The start of the model data. The result will be 4-byte aligned. |
| const char* data() const; |
| // The length of the buffer starting at `data()`. |
| size_t size() const; |
| |
| private: |
| // Original std::string containing model data. May be empty. |
| std::unique_ptr<std::string> original_model_str_; |
| // Aligned copy of the original std::string. May be empty. |
| std::unique_ptr<char[]> aligned_copy_; |
| size_t aligned_copy_size_; |
| }; |
| |
| // Holds a TensorFlow lite graph and produces GraphExecutors that may run the |
| // graph. |
| // |
| // All GraphExecutors created by a ModelImpl reference its model definition (and |
| // hence may not outlive the ModelImpl). Multiple such GraphExecutors may be |
| // used concurrently from different sequences. |
| class ModelImpl : public chromeos::machine_learning::mojom::Model { |
| public: |
| // Creates an instance bound to `receiver`. |
| // |
| // The `required_inputs` and `required_outputs` arguments specify a mapping |
| // from required input / output tensor names to their indices in the TF lite |
| // graph, and must outlive this object. |
| // `model_data` is backing data for `model` which this class will take |
| // ownership of. It will be destroyed *after* `model`. |
| // |
| // The RAM of the returned model is not owned by the caller. The model object |
| // will be deleted when the corresponding mojo connection is closed. |
| static ModelImpl* Create( |
| std::map<std::string, int> required_inputs, |
| std::map<std::string, int> required_outputs, |
| std::unique_ptr<tflite::FlatBufferModel> model, |
| std::unique_ptr<AlignedModelData> model_data, |
| mojo::PendingReceiver<chromeos::machine_learning::mojom::Model> receiver, |
| const std::string& metrics_model_name); |
| |
| // Use when constructed from file where no need to pass the `model_string`. |
| // The RAM of the returned model is not owned by the caller. The model object |
| // will be deleted when the corresponding mojo connection is closed. |
| static ModelImpl* Create( |
| std::map<std::string, int> required_inputs, |
| std::map<std::string, int> required_outputs, |
| std::unique_ptr<tflite::FlatBufferModel> model, |
| mojo::PendingReceiver<chromeos::machine_learning::mojom::Model> receiver, |
| const std::string& metrics_model_name); |
| |
| int num_graph_executors_for_testing() const; |
| |
| private: |
| // Constructor is private, call `Create` to create objects. |
| ModelImpl( |
| std::map<std::string, int> required_inputs, |
| std::map<std::string, int> required_outputs, |
| std::unique_ptr<tflite::FlatBufferModel> model, |
| std::unique_ptr<AlignedModelData> model_data, |
| mojo::PendingReceiver<chromeos::machine_learning::mojom::Model> receiver, |
| const std::string& metrics_model_name); |
| ModelImpl(const ModelImpl&) = delete; |
| ModelImpl& operator=(const ModelImpl&) = delete; |
| |
| void set_disconnect_handler(base::Closure disconnect_handler); |
| |
| // chromeos::machine_learning::mojom::Model: |
| void CreateGraphExecutor( |
| mojo::PendingReceiver<chromeos::machine_learning::mojom::GraphExecutor> |
| receiver, |
| CreateGraphExecutorCallback callback) override; |
| void CreateGraphExecutorWithOptions( |
| chromeos::machine_learning::mojom::GraphExecutorOptionsPtr options, |
| mojo::PendingReceiver<chromeos::machine_learning::mojom::GraphExecutor> |
| receiver, |
| CreateGraphExecutorCallback callback) override; |
| |
| // Remove a graph executor from our hosted set. |
| void EraseGraphExecutor(std::list<GraphExecutorImpl>::const_iterator it); |
| |
| const std::map<std::string, int> required_inputs_; |
| const std::map<std::string, int> required_outputs_; |
| |
| // Must be above `model_`. |
| const std::unique_ptr<AlignedModelData> model_data_; |
| |
| const std::unique_ptr<tflite::FlatBufferModel> model_; |
| |
| mojo::Receiver<chromeos::machine_learning::mojom::Model> receiver_; |
| |
| // Emulate a strongly bound receiver set: hold a set of GraphExecutors, |
| // specific elements of which are erased on connection closure. |
| // |
| // That is, when a pipe to a GraphExecutorImpl closes, that object is removed |
| // from this set (by its binding disconnection handler). Further, when a |
| // ModelImpl is destroyed, its entire collection of GraphExecutorImpls is also |
| // destroyed. |
| std::list<GraphExecutorImpl> graph_executors_; |
| |
| // Model name as it should appear in UMA histogram names. |
| const std::string metrics_model_name_; |
| }; |
| |
| } // namespace ml |
| |
| #endif // ML_MODEL_IMPL_H_ |