blob: 3e2e49e3a491bb58deb278763720094815798e7f [file] [log] [blame] [edit]
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ml/benchmark.h"
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <base/bind.h>
#include <base/check.h>
#include <base/containers/flat_map.h>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/notreached.h>
#include <base/run_loop.h>
#include <base/task/current_thread.h>
#include <base/threading/thread_task_runner_handle.h>
#include <brillo/message_loops/base_message_loop.h>
#include <google/protobuf/text_format.h>
#include <mojo/core/core.h>
#include <mojo/core/embedder/embedder.h>
#include <mojo/public/cpp/bindings/remote.h>
#include "ml/benchmark.pb.h"
#include "ml/model_impl.h"
#include "ml/mojom/graph_executor.mojom.h"
#include "ml/mojom/machine_learning_service.mojom.h"
#include "ml/mojom/model.mojom.h"
#include "ml/test_utils.h"
#include "proto/benchmark_config.pb.h"
using ::chrome::ml_benchmark::BenchmarkResults;
using ::chrome::ml_benchmark::BenchmarkReturnStatus;
using ::chrome::ml_benchmark::CrOSBenchmarkConfig;
using ::chromeos::machine_learning::mojom::CreateGraphExecutorResult;
using ::chromeos::machine_learning::mojom::ExecuteResult;
using ::chromeos::machine_learning::mojom::GraphExecutor;
using ::chromeos::machine_learning::mojom::LoadModelResult;
using ::chromeos::machine_learning::mojom::Model;
using ::chromeos::machine_learning::mojom::TensorPtr;
using ::chromeos::machine_learning::mojom::ValueList;
using ::google::protobuf::Map;
using ::google::protobuf::TextFormat;
using Example = ml::ExpectedInputOutput::Example;
using Feature = ml::ExpectedInputOutput::Example::Feature;
using NodeSpec = ml::FlatBufferModelSpecProto::NodeSpec;
namespace ml {
namespace {
// Percentiles for latency.
constexpr int kLatencyPercentile[] = {50, 90, 95, 99};
// Use a fake model name for benchmark runs.
constexpr char kMlBenchmarkMetricsName[] = "benchmark_model";
// The accumulative result of an inference test run.
struct AccumulativeResult {
// Set to true if any inference fails.
bool has_failure = false;
// Total error for all inference.
float total_error = 0.0;
// Time of each run.
std::vector<int64_t> times_in_us;
// Error message.
std::string error_message;
};
// Serialize `results` into results_data and returns results.status().
int32_t SerializeResults(const BenchmarkResults& results,
void** results_data,
int32_t* results_size) {
if (results.status() != BenchmarkReturnStatus::OK) {
LOG(ERROR) << "result with error: " << results.DebugString();
}
const std::string result_pb = results.SerializeAsString();
CHECK(!result_pb.empty());
const int size = result_pb.size();
// Will be released by the caller.
char* const data = new char[size];
result_pb.copy(data, size);
*results_data = data;
*results_size = size;
return results.status();
}
void InitializeOnce() {
if (!base::CurrentThread::IsSet()) {
(new brillo::BaseMessageLoop())->SetAsCurrent();
}
if (!mojo::core::Core::Get()) {
mojo::core::Init();
}
}
// Constructs `model` based on tflite_config; returns whether the construction
// is successful.
bool ConstructModel(const FlatBufferModelSpecProto& model_proto,
mojo::Remote<Model>* const model) {
auto model_data =
std::make_unique<AlignedModelData>(model_proto.model_string());
// Step 1 builds the FlatBufferModel.
std::unique_ptr<tflite::FlatBufferModel> flat_buffer_model =
tflite::FlatBufferModel::VerifyAndBuildFromBuffer(model_data->data(),
model_data->size());
if (flat_buffer_model == nullptr) {
return false;
}
// Step 2 constructs the ModelImpl.
std::map<std::string, int> required_inputs, required_outputs;
for (const auto& pair : model_proto.required_inputs()) {
required_inputs[pair.first] = pair.second.index();
}
for (const auto& pair : model_proto.required_outputs()) {
required_outputs[pair.first] = pair.second.index();
}
ModelImpl::Create(required_inputs, required_outputs,
std::move(flat_buffer_model), std::move(model_data),
model->BindNewPipeAndPassReceiver(),
kMlBenchmarkMetricsName);
return true;
}
// Constructs `graph_executor`; returns whether the construction is successful.
bool ConstructGraphExecutor(const mojo::Remote<Model>& model,
mojo::Remote<GraphExecutor>* const graph_executor) {
bool succeeded = false;
model->CreateGraphExecutor(
graph_executor->BindNewPipeAndPassReceiver(),
base::Bind(
[](bool* succeeded, const CreateGraphExecutorResult result) {
*succeeded = result == CreateGraphExecutorResult::OK;
},
&succeeded));
// Block until CreateGraphExecutor finishes.
base::RunLoop().RunUntilIdle();
return succeeded;
}
// Converts ExpectedInputOutput::Example into tensor map.
base::flat_map<std::string, TensorPtr> TensorMapFromExample(
const Example& input, const Map<std::string, NodeSpec>& node_spec_map) {
base::flat_map<std::string, TensorPtr> input_map;
// Loop over each feature.
for (const auto& pair : input.features().feature()) {
const NodeSpec& node_spec = node_spec_map.at(pair.first);
std::vector<int64_t> dims(node_spec.dims().begin(), node_spec.dims().end());
switch (pair.second.kind_case()) {
case Feature::kFloatList: {
// For FloatList, make a (1, n) tensor with the value.
const auto& float_values = pair.second.float_list().value();
input_map[pair.first] = NewTensor<double>(
dims,
std::vector<double>(float_values.begin(), float_values.end()));
} break;
case Feature::kInt64List: {
// For Int64List, make a (1, n) tensor with the value.
const auto& int_values = pair.second.int64_list().value();
input_map[pair.first] = NewTensor<int64_t>(
dims, std::vector<int64_t>(int_values.begin(), int_values.end()));
} break;
default:
LOG(ERROR) << "InputType not supported.";
NOTREACHED();
break;
}
}
return input_map;
}
// Converts the `accumulative_result` into BenchmarkResults.
BenchmarkResults ToBenchmarkResults(AccumulativeResult* accumulative_result) {
BenchmarkResults benchmark_result;
if (accumulative_result->times_in_us.empty()) {
benchmark_result.set_status(BenchmarkReturnStatus::RUNTIME_ERROR);
benchmark_result.set_results_message("times_in_us is empty");
return benchmark_result;
}
benchmark_result.set_status(BenchmarkReturnStatus::OK);
// Sorts all times_in_us for all the successful runs.
std::sort(accumulative_result->times_in_us.begin(),
accumulative_result->times_in_us.end());
// Gets percentile for times_in_us.
for (const int i : kLatencyPercentile) {
const int pos = i * accumulative_result->times_in_us.size() / 100;
CHECK(pos < accumulative_result->times_in_us.size())
<< "percentile can't be 100";
(*benchmark_result.mutable_percentile_latencies_in_us())[i] =
accumulative_result->times_in_us[pos];
}
auto& error_metric = *benchmark_result.add_metrics();
error_metric.set_name("average_error");
error_metric.set_units(chrome::ml_benchmark::Metric::UNITLESS);
error_metric.set_direction(chrome::ml_benchmark::Metric::SMALLER_IS_BETTER);
error_metric.set_cardinality(chrome::ml_benchmark::Metric::SINGLE);
error_metric.add_values(accumulative_result->total_error /
accumulative_result->times_in_us.size());
return benchmark_result;
}
// Check two tensors have the same shape and size; then calculate the L1
// Distance between them, and add it to `accumulative result`.
template <class T>
void AccumulateDistance(const TensorPtr& tensor1,
const TensorPtr& tensor2,
AccumulativeResult* const accumulative_result) {
if (tensor1->data->which() != tensor2->data->which()) {
accumulative_result->error_message = "Tensor has different data type.";
accumulative_result->has_failure = true;
return;
}
const TensorView<T> tensor_view1(tensor1);
const TensorView<T> tensor_view2(tensor2);
if (!tensor_view1.IsValidType() || !tensor_view1.IsValidFormat() ||
!tensor_view2.IsValidType() || !tensor_view2.IsValidFormat()) {
accumulative_result->error_message = "Tensor type or format is invalid.";
accumulative_result->has_failure = true;
return;
}
if (tensor_view1.GetShape() != tensor_view2.GetShape() ||
tensor_view1.GetValues().size() != tensor_view2.GetValues().size()) {
accumulative_result->error_message = "Tensor has different shape or size.";
accumulative_result->has_failure = true;
return;
}
for (int j = 0; j < tensor_view1.GetValues().size(); ++j) {
// accumulates the diff between elements.
accumulative_result->total_error +=
std::abs(tensor_view1.GetValues()[j] - tensor_view2.GetValues()[j]);
}
}
// Calls Typed AccumulateDistance function above.
void AccumulateDistance(const TensorPtr& tensor1,
const TensorPtr& tensor2,
AccumulativeResult* const accumulative_result) {
switch (tensor1->data->which()) {
case ValueList::Tag::INT64_LIST:
AccumulateDistance<int64_t>(tensor1, tensor2, accumulative_result);
return;
case ValueList::Tag::FLOAT_LIST:
AccumulateDistance<double>(tensor1, tensor2, accumulative_result);
return;
default:
accumulative_result->error_message = "Tensor type is not supported.";
accumulative_result->has_failure = true;
LOG(ERROR)
<< "Not supported tensor type for calculating AccumulateDistance.";
NOTREACHED();
return;
}
}
BenchmarkResults InferenceForTfliteModel(
const TfliteBenchmarkConfig& tflite_config,
const FlatBufferModelSpecProto& model_proto,
const ExpectedInputOutput& input_output) {
// Initialization for the first time.
InitializeOnce();
BenchmarkResults benchmark_result;
// Step 1: construct the model.
mojo::Remote<Model> model;
if (!ConstructModel(model_proto, &model)) {
benchmark_result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
benchmark_result.set_results_message(
"Can't construct the Model from the model file.");
return benchmark_result;
}
// Step 2: construct the graph executor.
mojo::Remote<GraphExecutor> graph_executor;
if (!ConstructGraphExecutor(model, &graph_executor)) {
benchmark_result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
benchmark_result.set_results_message(
"Can't construct the GraphExecutor from the model.");
return benchmark_result;
}
// Step 3: run inference multiple times.
std::vector<std::string> output_name;
for (const auto& pair : model_proto.required_outputs()) {
output_name.push_back(pair.first);
}
AccumulativeResult accumulative_result;
const base::flat_map<std::string, TensorPtr> expected_output =
TensorMapFromExample(input_output.expected_output(),
model_proto.required_outputs());
for (int i = 0; i < tflite_config.num_runs(); ++i) {
// Starts the timer.
const std::clock_t start_time = std::clock();
// Run infernce.
graph_executor->Execute(
TensorMapFromExample(input_output.input(),
model_proto.required_inputs()),
output_name,
base::Bind(
[](AccumulativeResult* accumulative_result,
const std::vector<std::string>* const output_name,
const base::flat_map<std::string, TensorPtr>* const
expected_output,
ExecuteResult result,
base::Optional<std::vector<TensorPtr>> outputs) {
// Check that the inference run successfully.
if (result != ExecuteResult::OK || !outputs.has_value()) {
accumulative_result->error_message = "Inference not OK";
accumulative_result->has_failure = true;
return;
}
// Compare the output tensor with the expected tensor; add their
// distance to the accumulative_result if two tensors have the
// same type and shape.
for (int i = 0; i < output_name->size(); ++i) {
AccumulateDistance(outputs->at(i),
expected_output->at(output_name->at(i)),
accumulative_result);
if (accumulative_result->has_failure) {
return;
}
}
},
&accumulative_result, &output_name, &expected_output));
base::RunLoop().RunUntilIdle();
// Inference should always succeed; return error otherwise.
if (accumulative_result.has_failure) {
benchmark_result.set_status(BenchmarkReturnStatus::RUNTIME_ERROR);
benchmark_result.set_results_message(accumulative_result.error_message);
return benchmark_result;
}
// Records time.
const int64_t cpu_time_us = static_cast<int64_t>(
(std::clock() - start_time) * 1000000.0 / CLOCKS_PER_SEC);
accumulative_result.times_in_us.push_back(cpu_time_us);
}
// Converts accumulative_result into BenchmarkResults.
return ToBenchmarkResults(&accumulative_result);
}
} // namespace
} // namespace ml
int32_t benchmark_start(const void* config_bytes,
int32_t config_bytes_size,
void** results_bytes,
int32_t* results_bytes_size) {
CHECK(config_bytes);
CHECK(results_bytes);
CHECK(results_bytes_size);
BenchmarkResults result;
// Step 1 De-serialize the CrOSBenchmarkConfig.
CrOSBenchmarkConfig benchmark_config;
if (!benchmark_config.ParseFromArray(config_bytes, config_bytes_size)) {
result.set_status(BenchmarkReturnStatus::INCORRECT_CONFIGURATION);
result.set_results_message("Can't parse CrOSBenchmarkConfig.");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
// Step 2 Parse the TfliteBenchmarkConfig
ml::TfliteBenchmarkConfig tflite_config;
if (!TextFormat::ParseFromString(benchmark_config.driver_config(),
&tflite_config)) {
result.set_status(BenchmarkReturnStatus::INCORRECT_CONFIGURATION);
result.set_results_message("Can't parse TfliteBenchmarkConfig.");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
// Step 3 Parse the FlatBufferModelSpecProto.
ml::FlatBufferModelSpecProto model_proto;
std::string model_buf;
if (!base::ReadFileToString(
base::FilePath(tflite_config.tflite_model_filepath()), &model_buf)) {
result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
result.set_results_message(tflite_config.tflite_model_filepath() +
" can't be read.");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
if (!model_proto.ParseFromString(model_buf)) {
result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
result.set_results_message("Can't parse FlatBufferModelSpecProto");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
// Step 4 Parse the ExpectedInputOutput.
ml::ExpectedInputOutput input_output;
std::string input_buf;
if (!base::ReadFileToString(
base::FilePath(tflite_config.input_output_filepath()), &input_buf)) {
result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
result.set_results_message(tflite_config.input_output_filepath() +
" can't be read.");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
if (!input_output.ParseFromString(input_buf)) {
result.set_status(BenchmarkReturnStatus::INITIALIZATION_FAILED);
result.set_results_message("Can't parse ExpectedInputOutput");
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
// Step 5 runs InferenceForTfliteModel with the tflite_config,
result =
ml::InferenceForTfliteModel(tflite_config, model_proto, input_output);
return ml::SerializeResults(result, results_bytes, results_bytes_size);
}
void free_benchmark_results(void* results_bytes) {
delete[] static_cast<char*>(results_bytes);
}