blob: 317eb4abbb65103d465bcff910159ac7f8bf651e [file] [log] [blame]
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "shill/device_info.h"
#include <memory>
#include <set>
#include <string>
#include <vector>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <linux/netlink.h> // Needs typedefs from sys/socket.h.
#include <linux/rtnetlink.h>
#include <linux/sockios.h>
#include <net/if_arp.h>
#include <sys/socket.h>
#include <base/bind.h>
#include <base/check.h>
#include <base/files/file_util.h>
#include <base/files/scoped_temp_dir.h>
#include <base/memory/ref_counted.h>
#include <base/notreached.h>
#include <base/strings/string_number_conversions.h>
#include <base/test/bind.h>
#include <chromeos/patchpanel/dbus/fake_client.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "shill/cellular/mock_modem_info.h"
#include "shill/ethernet/mock_ethernet_provider.h"
#include "shill/logging.h"
#include "shill/manager.h"
#include "shill/mock_control.h"
#include "shill/mock_device.h"
#include "shill/mock_log.h"
#include "shill/mock_manager.h"
#include "shill/mock_metrics.h"
#include "shill/mock_routing_table.h"
#include "shill/net/ip_address.h"
#include "shill/net/mock_rtnl_handler.h"
#include "shill/net/mock_sockets.h"
#include "shill/net/mock_time.h"
#include "shill/net/rtnl_link_stats.h"
#include "shill/net/rtnl_message.h"
#include "shill/test_event_dispatcher.h"
#include "shill/vpn/mock_vpn_provider.h"
#if !defined(DISABLE_WIFI)
#include "shill/net/mock_netlink_manager.h"
#include "shill/net/netlink_attribute.h"
#include "shill/net/nl80211_message.h"
#endif // DISABLE_WIFI
using testing::_;
using testing::AnyNumber;
using testing::ContainerEq;
using testing::DoAll;
using testing::ElementsAreArray;
using testing::HasSubstr;
using testing::Mock;
using testing::NotNull;
using testing::Return;
using testing::SetArgPointee;
using testing::StrictMock;
using testing::Test;
namespace shill {
class DeviceInfoTest : public Test {
public:
DeviceInfoTest()
: manager_(&control_interface_, &dispatcher_, &metrics_),
device_info_(&manager_) {}
~DeviceInfoTest() override = default;
void SetUp() override {
device_info_.rtnl_handler_ = &rtnl_handler_;
device_info_.routing_table_ = &routing_table_;
#if !defined(DISABLE_WIFI)
device_info_.netlink_manager_ = &netlink_manager_;
#endif // DISABLE_WIFI
device_info_.time_ = &time_;
manager_.set_mock_device_info(&device_info_);
EXPECT_CALL(manager_, FilterPrependDNSServersByFamily(_))
.WillRepeatedly(Return(std::vector<std::string>()));
patchpanel_client_ = new patchpanel::FakeClient();
manager_.patchpanel_client_.reset(patchpanel_client_);
}
IPAddress CreateInterfaceAddress() {
// Create an IP address entry (as if left-over from a previous connection
// manager).
IPAddress address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(address.SetAddressFromString(kTestIPAddress0));
address.set_prefix(kTestIPAddressPrefix0);
std::vector<DeviceInfo::AddressData>& addresses =
device_info_.infos_[kTestDeviceIndex].ip_addresses;
addresses.push_back(DeviceInfo::AddressData(address, 0, RT_SCOPE_UNIVERSE));
EXPECT_EQ(1, addresses.size());
return address;
}
DeviceRefPtr CreateDevice(const std::string& link_name,
const std::string& address,
int interface_index,
Technology technology) {
return device_info_.CreateDevice(link_name, address, interface_index,
technology);
}
virtual std::set<int>& GetDelayedDevices() {
return device_info_.delayed_devices_;
}
void SetSockets() {
auto sockets = std::make_unique<MockSockets>();
mock_sockets_ = sockets.get();
device_info_.set_sockets_for_test(std::move(sockets));
}
// Takes ownership of |provider|.
void SetVPNProvider(VPNProvider* provider) {
manager_.vpn_provider_.reset(provider);
manager_.UpdateProviderMapping();
}
void SetManagerRunning(bool running) { manager_.running_ = running; }
protected:
static const int kTestDeviceIndex;
static const char kTestDeviceName[];
static const uint8_t kTestMacAddress[];
static const char kTestIPAddress0[];
static const int kTestIPAddressPrefix0;
static const char kTestIPAddress1[];
static const int kTestIPAddressPrefix1;
static const char kTestIPAddress2[];
static const char kTestIPAddress3[];
static const char kTestIPAddress4[];
static const char kTestIPAddress5[];
static const char kTestIPAddress6[];
static const char kTestIPAddress7[];
static const int kReceiveByteCount;
static const int kTransmitByteCount;
std::unique_ptr<RTNLMessage> BuildLinkMessage(RTNLMessage::Mode mode);
std::unique_ptr<RTNLMessage> BuildLinkMessageWithInterfaceName(
RTNLMessage::Mode mode,
const std::string& interface_name,
int interface_index = kTestDeviceIndex);
std::unique_ptr<RTNLMessage> BuildAddressMessage(RTNLMessage::Mode mode,
const IPAddress& address,
unsigned char flags,
unsigned char scope);
std::unique_ptr<RTNLMessage> BuildRdnssMessage(
RTNLMessage::Mode mode,
uint32_t lifetime,
const std::vector<IPAddress>& dns_servers);
void SendMessageToDeviceInfo(const RTNLMessage& message);
MockControl control_interface_;
MockMetrics metrics_;
StrictMock<MockManager> manager_;
DeviceInfo device_info_;
EventDispatcherForTest dispatcher_;
MockRoutingTable routing_table_;
#if !defined(DISABLE_WIFI)
MockNetlinkManager netlink_manager_;
#endif // DISABLE_WIFI
StrictMock<MockRTNLHandler> rtnl_handler_;
MockSockets* mock_sockets_; // Owned by DeviceInfo.
MockTime time_;
patchpanel::FakeClient* patchpanel_client_; // Owned by Manager
};
const int DeviceInfoTest::kTestDeviceIndex = 123456;
const char DeviceInfoTest::kTestDeviceName[] = "test-device";
const uint8_t DeviceInfoTest::kTestMacAddress[] = {0xaa, 0xbb, 0xcc,
0xdd, 0xee, 0xff};
const char DeviceInfoTest::kTestIPAddress0[] = "192.168.1.1";
const int DeviceInfoTest::kTestIPAddressPrefix0 = 24;
const char DeviceInfoTest::kTestIPAddress1[] = "fe80::1aa9:5ff:abcd:1234";
const int DeviceInfoTest::kTestIPAddressPrefix1 = 64;
const char DeviceInfoTest::kTestIPAddress2[] = "fe80::1aa9:5ff:abcd:1235";
const char DeviceInfoTest::kTestIPAddress3[] = "fe80::1aa9:5ff:abcd:1236";
const char DeviceInfoTest::kTestIPAddress4[] = "fe80::1aa9:5ff:abcd:1237";
const char DeviceInfoTest::kTestIPAddress5[] = "192.168.1.2";
const char DeviceInfoTest::kTestIPAddress6[] = "192.168.2.2";
const char DeviceInfoTest::kTestIPAddress7[] = "fe80::1aa9:5ff:abcd:1238";
const int DeviceInfoTest::kReceiveByteCount = 1234;
const int DeviceInfoTest::kTransmitByteCount = 5678;
std::unique_ptr<RTNLMessage> DeviceInfoTest::BuildLinkMessageWithInterfaceName(
RTNLMessage::Mode mode,
const std::string& interface_name,
int interface_index) {
auto message =
std::make_unique<RTNLMessage>(RTNLMessage::kTypeLink, mode, 0, 0, 0,
interface_index, IPAddress::kFamilyIPv4);
message->SetAttribute(static_cast<uint16_t>(IFLA_IFNAME),
ByteString(interface_name, true));
ByteString test_address(kTestMacAddress, sizeof(kTestMacAddress));
message->SetAttribute(IFLA_ADDRESS, test_address);
return message;
}
std::unique_ptr<RTNLMessage> DeviceInfoTest::BuildLinkMessage(
RTNLMessage::Mode mode) {
return BuildLinkMessageWithInterfaceName(mode, kTestDeviceName);
}
std::unique_ptr<RTNLMessage> DeviceInfoTest::BuildAddressMessage(
RTNLMessage::Mode mode,
const IPAddress& address,
unsigned char flags,
unsigned char scope) {
auto message =
std::make_unique<RTNLMessage>(RTNLMessage::kTypeAddress, mode, 0, 0, 0,
kTestDeviceIndex, address.family());
message->SetAttribute(IFA_ADDRESS, address.address());
message->set_address_status(
RTNLMessage::AddressStatus(address.prefix(), flags, scope));
return message;
}
std::unique_ptr<RTNLMessage> DeviceInfoTest::BuildRdnssMessage(
RTNLMessage::Mode mode,
uint32_t lifetime,
const std::vector<IPAddress>& dns_servers) {
auto message =
std::make_unique<RTNLMessage>(RTNLMessage::kTypeRdnss, mode, 0, 0, 0,
kTestDeviceIndex, IPAddress::kFamilyIPv6);
message->set_rdnss_option(RTNLMessage::RdnssOption(lifetime, dns_servers));
return message;
}
void DeviceInfoTest::SendMessageToDeviceInfo(const RTNLMessage& message) {
if (message.type() == RTNLMessage::kTypeLink) {
device_info_.LinkMsgHandler(message);
} else if (message.type() == RTNLMessage::kTypeAddress) {
device_info_.AddressMsgHandler(message);
} else if (message.type() == RTNLMessage::kTypeRdnss) {
device_info_.RdnssMsgHandler(message);
} else {
NOTREACHED();
}
}
MATCHER_P(IsIPAddress, address, "") {
// NB: IPAddress objects don't support the "==" operator as per style, so
// we need a custom matcher.
return address.Equals(arg);
}
TEST_F(DeviceInfoTest, StartStop) {
auto& task_environment = dispatcher_.task_environment();
EXPECT_EQ(nullptr, device_info_.link_listener_);
EXPECT_EQ(nullptr, device_info_.address_listener_);
EXPECT_TRUE(device_info_.infos_.empty());
EXPECT_CALL(rtnl_handler_, RequestDump(RTNLHandler::kRequestLink |
RTNLHandler::kRequestAddr));
device_info_.Start();
EXPECT_NE(nullptr, device_info_.link_listener_);
EXPECT_NE(nullptr, device_info_.address_listener_);
EXPECT_TRUE(device_info_.infos_.empty());
Mock::VerifyAndClearExpectations(&rtnl_handler_);
// Start() should set up a periodic task to request link statistics.
EXPECT_EQ(1, task_environment.GetPendingMainThreadTaskCount());
EXPECT_CALL(rtnl_handler_, RequestDump(RTNLHandler::kRequestLink));
task_environment.FastForwardBy(
task_environment.NextMainThreadPendingTaskDelay());
EXPECT_EQ(1, task_environment.GetPendingMainThreadTaskCount());
EXPECT_CALL(rtnl_handler_, RequestDump(RTNLHandler::kRequestLink));
task_environment.FastForwardBy(
task_environment.NextMainThreadPendingTaskDelay());
CreateInterfaceAddress();
EXPECT_FALSE(device_info_.infos_.empty());
device_info_.Stop();
EXPECT_EQ(nullptr, device_info_.link_listener_);
EXPECT_EQ(nullptr, device_info_.address_listener_);
EXPECT_TRUE(device_info_.infos_.empty());
}
TEST_F(DeviceInfoTest, RegisterDevice) {
scoped_refptr<MockDevice> device0(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
EXPECT_CALL(*device0, Initialize());
device_info_.RegisterDevice(device0);
}
TEST_F(DeviceInfoTest, DeviceEnumeration) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
EXPECT_EQ(nullptr, device_info_.GetDevice(kTestDeviceIndex));
EXPECT_EQ(-1, device_info_.GetIndex(kTestDeviceName));
SendMessageToDeviceInfo(*message);
EXPECT_NE(nullptr, device_info_.GetDevice(kTestDeviceIndex));
unsigned int flags = 0;
EXPECT_TRUE(device_info_.GetFlags(kTestDeviceIndex, &flags));
EXPECT_EQ(IFF_LOWER_UP, flags);
ByteString address;
EXPECT_TRUE(device_info_.GetMacAddress(kTestDeviceIndex, &address));
EXPECT_FALSE(address.IsEmpty());
EXPECT_TRUE(
address.Equals(ByteString(kTestMacAddress, sizeof(kTestMacAddress))));
EXPECT_EQ(kTestDeviceIndex, device_info_.GetIndex(kTestDeviceName));
message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_UP | IFF_RUNNING, 0));
SendMessageToDeviceInfo(*message);
EXPECT_TRUE(device_info_.GetFlags(kTestDeviceIndex, &flags));
EXPECT_EQ(IFF_UP | IFF_RUNNING, flags);
message = BuildLinkMessage(RTNLMessage::kModeDelete);
EXPECT_CALL(manager_, DeregisterDevice(_)).Times(1);
SendMessageToDeviceInfo(*message);
EXPECT_EQ(nullptr, device_info_.GetDevice(kTestDeviceIndex));
EXPECT_FALSE(device_info_.GetFlags(kTestDeviceIndex, nullptr));
EXPECT_EQ(-1, device_info_.GetIndex(kTestDeviceName));
}
TEST_F(DeviceInfoTest, DeviceRemovedEvent) {
// Remove a Wifi device.
scoped_refptr<MockDevice> device0(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
device_info_.infos_[kTestDeviceIndex].device = device0;
auto message = BuildLinkMessage(RTNLMessage::kModeDelete);
EXPECT_CALL(*device0, technology()).WillRepeatedly(Return(Technology::kWifi));
EXPECT_CALL(manager_, DeregisterDevice(_)).Times(1);
EXPECT_CALL(metrics_, DeregisterDevice(kTestDeviceIndex)).Times(1);
SendMessageToDeviceInfo(*message);
Mock::VerifyAndClearExpectations(device0.get());
// Remove a Cellular device.
scoped_refptr<MockDevice> device1(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
device_info_.infos_[kTestDeviceIndex].device = device1;
EXPECT_CALL(*device1, technology())
.WillRepeatedly(Return(Technology::kCellular));
EXPECT_CALL(manager_, DeregisterDevice(_)).Times(1);
EXPECT_CALL(metrics_, DeregisterDevice(kTestDeviceIndex)).Times(1);
message = BuildLinkMessage(RTNLMessage::kModeDelete);
SendMessageToDeviceInfo(*message);
}
TEST_F(DeviceInfoTest, GetUninitializedTechnologies) {
std::vector<std::string> technologies =
device_info_.GetUninitializedTechnologies();
std::set<std::string> expected_technologies;
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
device_info_.infos_[0].technology = Technology::kUnknown;
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
device_info_.infos_[1].technology = Technology::kCellular;
technologies = device_info_.GetUninitializedTechnologies();
expected_technologies.insert(Technology(Technology::kCellular).GetName());
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
device_info_.infos_[2].technology = Technology::kWifi;
technologies = device_info_.GetUninitializedTechnologies();
expected_technologies.insert(Technology(Technology::kWifi).GetName());
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
scoped_refptr<MockDevice> device(
new MockDevice(&manager_, "null0", "addr0", 1));
device_info_.infos_[1].device = device;
technologies = device_info_.GetUninitializedTechnologies();
expected_technologies.erase(Technology(Technology::kCellular).GetName());
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
device_info_.infos_[3].technology = Technology::kCellular;
technologies = device_info_.GetUninitializedTechnologies();
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
device_info_.infos_[3].device = device;
device_info_.infos_[1].device = nullptr;
technologies = device_info_.GetUninitializedTechnologies();
EXPECT_THAT(std::set<std::string>(technologies.begin(), technologies.end()),
ContainerEq(expected_technologies));
}
TEST_F(DeviceInfoTest, GetByteCounts) {
uint64_t rx_bytes, tx_bytes;
EXPECT_FALSE(
device_info_.GetByteCounts(kTestDeviceIndex, &rx_bytes, &tx_bytes));
// No link statistics in the message.
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
EXPECT_TRUE(
device_info_.GetByteCounts(kTestDeviceIndex, &rx_bytes, &tx_bytes));
EXPECT_EQ(0, rx_bytes);
EXPECT_EQ(0, tx_bytes);
// Short link statistics message.
message = BuildLinkMessage(RTNLMessage::kModeAdd);
struct old_rtnl_link_stats64 stats;
memset(&stats, 0, sizeof(stats));
stats.rx_bytes = kReceiveByteCount;
stats.tx_bytes = kTransmitByteCount;
ByteString stats_bytes0(reinterpret_cast<const unsigned char*>(&stats),
sizeof(stats) - 1);
message->SetAttribute(IFLA_STATS64, stats_bytes0);
SendMessageToDeviceInfo(*message);
EXPECT_TRUE(
device_info_.GetByteCounts(kTestDeviceIndex, &rx_bytes, &tx_bytes));
EXPECT_EQ(0, rx_bytes);
EXPECT_EQ(0, tx_bytes);
// Correctly sized link statistics message.
message = BuildLinkMessage(RTNLMessage::kModeAdd);
ByteString stats_bytes1(reinterpret_cast<const unsigned char*>(&stats),
sizeof(stats));
message->SetAttribute(IFLA_STATS64, stats_bytes1);
SendMessageToDeviceInfo(*message);
EXPECT_TRUE(
device_info_.GetByteCounts(kTestDeviceIndex, &rx_bytes, &tx_bytes));
EXPECT_EQ(kReceiveByteCount, rx_bytes);
EXPECT_EQ(kTransmitByteCount, tx_bytes);
}
#if !defined(DISABLE_CELLULAR)
TEST_F(DeviceInfoTest, CreateDeviceCellular) {
IPAddress address = CreateInterfaceAddress();
// A cellular device should be offered to ModemInfo.
StrictMock<MockModemInfo> modem_info(nullptr, nullptr);
EXPECT_CALL(manager_, modem_info()).WillOnce(Return(&modem_info));
EXPECT_CALL(modem_info, OnDeviceInfoAvailable(kTestDeviceName)).Times(1);
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kCellular));
}
#endif // DISABLE_CELLULAR
TEST_F(DeviceInfoTest, CreateDeviceEthernet) {
IPAddress address = CreateInterfaceAddress();
// An Ethernet device should cause routes and addresses to be flushed.
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
DeviceRefPtr device = CreateDevice(kTestDeviceName, "address",
kTestDeviceIndex, Technology::kEthernet);
EXPECT_NE(nullptr, device);
Mock::VerifyAndClearExpectations(&routing_table_);
Mock::VerifyAndClearExpectations(&rtnl_handler_);
// The Ethernet device destructor should not call DeregisterService()
// while being destructed, since the Manager may itself be partially
// destructed at this time.
EXPECT_CALL(manager_, DeregisterService(_)).Times(0);
device = nullptr;
}
TEST_F(DeviceInfoTest, CreateDeviceVirtioEthernet) {
IPAddress address = CreateInterfaceAddress();
// VirtioEthernet is identical to Ethernet from the perspective of this test.
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
DeviceRefPtr device =
CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kVirtioEthernet);
EXPECT_NE(nullptr, device);
Mock::VerifyAndClearExpectations(&routing_table_);
Mock::VerifyAndClearExpectations(&rtnl_handler_);
}
#if !defined(DISABLE_WIFI)
MATCHER_P(IsGetInterfaceMessage, index, "") {
if (arg->message_type() != Nl80211Message::GetMessageType()) {
return false;
}
const Nl80211Message* msg = reinterpret_cast<const Nl80211Message*>(arg);
if (msg->command() != NL80211_CMD_GET_INTERFACE) {
return false;
}
uint32_t interface_index;
if (!msg->const_attributes()->GetU32AttributeValue(NL80211_ATTR_IFINDEX,
&interface_index)) {
return false;
}
// kInterfaceIndex is signed, but the attribute as handed from the kernel
// is unsigned. We're silently casting it away with this assignment.
uint32_t test_interface_index = index;
return interface_index == test_interface_index;
}
TEST_F(DeviceInfoTest, CreateDeviceWiFi) {
IPAddress address = CreateInterfaceAddress();
// WiFi looks a lot like Ethernet too.
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex));
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
// Set the nl80211 message type to some non-default value.
Nl80211Message::SetMessageType(1234);
EXPECT_CALL(
netlink_manager_,
SendNl80211Message(IsGetInterfaceMessage(kTestDeviceIndex), _, _, _));
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kWifi));
}
#endif // DISABLE_WIFI
class MockLinkReadyListener {
public:
MOCK_METHOD(void, LinkReadyCallback, (const std::string&, int), ());
DeviceInfo::LinkReadyCallback GetOnceCallback() {
return base::BindOnce(&MockLinkReadyListener::LinkReadyCallback,
weak_factory_.GetWeakPtr());
}
private:
base::WeakPtrFactory<MockLinkReadyListener> weak_factory_{this};
};
TEST_F(DeviceInfoTest, CreateDeviceTunnel) {
IPAddress address = CreateInterfaceAddress();
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
// Since the device was not expected, DeviceInfo will remove the interface.
EXPECT_CALL(rtnl_handler_, RemoveInterface(kTestDeviceIndex)).Times(1);
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kTunnel));
MockLinkReadyListener listener;
device_info_.pending_links_.emplace(kTestDeviceName,
listener.GetOnceCallback());
EXPECT_CALL(listener, LinkReadyCallback(kTestDeviceName, kTestDeviceIndex))
.Times(1);
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
EXPECT_CALL(rtnl_handler_, RemoveInterface(_)).Times(0);
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kTunnel));
}
TEST_F(DeviceInfoTest, CreateDevicePPP) {
IPAddress address = CreateInterfaceAddress();
EXPECT_CALL(routing_table_, FlushRoutes(kTestDeviceIndex)).Times(1);
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address)));
// We do not remove PPP interfaces even if the provider does not accept it.
EXPECT_CALL(rtnl_handler_, RemoveInterface(_)).Times(0);
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kPPP));
}
TEST_F(DeviceInfoTest, CreateDeviceLoopback) {
// A loopback device should be brought up, and nothing else done to it.
EXPECT_CALL(routing_table_, FlushRoutes(_)).Times(0);
EXPECT_CALL(rtnl_handler_, RemoveInterfaceAddress(_, _)).Times(0);
EXPECT_CALL(rtnl_handler_,
SetInterfaceFlags(kTestDeviceIndex, IFF_UP, IFF_UP))
.Times(1);
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kLoopback));
}
TEST_F(DeviceInfoTest, CreateDeviceCDCEthernet) {
// A cdc_ether / cdc_ncm device should be postponed to a task.
#if !defined(DISABLE_CELLULAR)
EXPECT_CALL(manager_, modem_info()).Times(0);
#endif // DISABLE_CELLULAR
EXPECT_CALL(routing_table_, FlushRoutes(_)).Times(0);
EXPECT_CALL(rtnl_handler_, RemoveInterfaceAddress(_, _)).Times(0);
EXPECT_TRUE(GetDelayedDevices().empty());
EXPECT_FALSE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kCDCEthernet));
EXPECT_FALSE(GetDelayedDevices().empty());
EXPECT_EQ(1, GetDelayedDevices().size());
EXPECT_EQ(kTestDeviceIndex, *GetDelayedDevices().begin());
EXPECT_EQ(1, dispatcher_.task_environment().GetPendingMainThreadTaskCount());
}
TEST_F(DeviceInfoTest, CreateDeviceUnknown) {
IPAddress address = CreateInterfaceAddress();
// An unknown (blocked, unhandled, etc) device won't be flushed or
// registered.
EXPECT_CALL(routing_table_, FlushRoutes(_)).Times(0);
EXPECT_CALL(rtnl_handler_, RemoveInterfaceAddress(_, _)).Times(0);
EXPECT_TRUE(CreateDevice(kTestDeviceName, "address", kTestDeviceIndex,
Technology::kUnknown)
.get());
}
TEST_F(DeviceInfoTest, BlockedDevices) {
// Manager is not running by default.
EXPECT_CALL(rtnl_handler_, RequestDump(RTNLHandler::kRequestLink)).Times(0);
device_info_.BlockDevice(kTestDeviceName);
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
DeviceRefPtr device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, device);
EXPECT_TRUE(device->technology() == Technology::kBlocked);
}
TEST_F(DeviceInfoTest, BlockDeviceWithManagerRunning) {
SetManagerRunning(true);
EXPECT_CALL(rtnl_handler_, RequestDump(RTNLHandler::kRequestLink)).Times(1);
device_info_.BlockDevice(kTestDeviceName);
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
DeviceRefPtr device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, device);
EXPECT_TRUE(device->technology() == Technology::kBlocked);
}
TEST_F(DeviceInfoTest, RenamedBlockedDevice) {
device_info_.BlockDevice(kTestDeviceName);
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
DeviceRefPtr device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, device);
EXPECT_TRUE(device->technology() == Technology::kBlocked);
// Rename the test device.
const char kRenamedDeviceName[] = "renamed-device";
auto rename_message = BuildLinkMessageWithInterfaceName(RTNLMessage::kModeAdd,
kRenamedDeviceName);
EXPECT_CALL(manager_, DeregisterDevice(_));
EXPECT_CALL(metrics_, DeregisterDevice(kTestDeviceIndex));
SendMessageToDeviceInfo(*rename_message);
DeviceRefPtr renamed_device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, renamed_device);
// Expect that a different device has been created.
EXPECT_NE(device, renamed_device);
// Since we didn't create a uevent file for kRenamedDeviceName, its
// technology should be unknown.
EXPECT_TRUE(renamed_device->technology() == Technology::kUnknown);
}
TEST_F(DeviceInfoTest, RenamedNonBlockedDevice) {
const char kInitialDeviceName[] = "initial-device";
auto initial_message = BuildLinkMessageWithInterfaceName(
RTNLMessage::kModeAdd, kInitialDeviceName);
SendMessageToDeviceInfo(*initial_message);
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
DeviceRefPtr initial_device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, initial_device);
// Since we didn't create a uevent file for kInitialDeviceName, its
// technology should be unknown.
EXPECT_TRUE(initial_device->technology() == Technology::kUnknown);
// Rename the test device.
const char kRenamedDeviceName[] = "renamed-device";
device_info_.BlockDevice(kRenamedDeviceName);
auto rename_message = BuildLinkMessageWithInterfaceName(RTNLMessage::kModeAdd,
kRenamedDeviceName);
EXPECT_CALL(manager_, DeregisterDevice(_)).Times(0);
EXPECT_CALL(metrics_, DeregisterDevice(kTestDeviceIndex)).Times(0);
SendMessageToDeviceInfo(*rename_message);
DeviceRefPtr renamed_device = device_info_.GetDevice(kTestDeviceIndex);
ASSERT_NE(nullptr, renamed_device);
// Expect that the the presence of a renamed device does not cause a new
// Device entry to be created if the initial device was not blocked.
EXPECT_EQ(initial_device, renamed_device);
EXPECT_TRUE(initial_device->technology() == Technology::kUnknown);
}
TEST_F(DeviceInfoTest, DeviceAddressList) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
auto addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_TRUE(addresses.empty());
// Add an address to the device address list.
IPAddress ip_address0(IPAddress::kFamilyIPv4);
EXPECT_TRUE(ip_address0.SetAddressFromString(kTestIPAddress0));
ip_address0.set_prefix(kTestIPAddressPrefix0);
message = BuildAddressMessage(RTNLMessage::kModeAdd, ip_address0, 0, 0);
SendMessageToDeviceInfo(*message);
addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_EQ(1, addresses.size());
EXPECT_EQ(ip_address0, addresses[0]);
// Re-adding the same address shouldn't cause the address list to change.
SendMessageToDeviceInfo(*message);
addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_EQ(1, addresses.size());
EXPECT_EQ(ip_address0, addresses[0]);
// Adding a new address should expand the list.
IPAddress ip_address1(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ip_address1.SetAddressFromString(kTestIPAddress1));
ip_address1.set_prefix(kTestIPAddressPrefix1);
message = BuildAddressMessage(RTNLMessage::kModeAdd, ip_address1, 0, 0);
SendMessageToDeviceInfo(*message);
addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_EQ(2, addresses.size());
EXPECT_EQ(ip_address0, addresses[0]);
EXPECT_EQ(ip_address1, addresses[1]);
// Deleting an address should reduce the list.
message = BuildAddressMessage(RTNLMessage::kModeDelete, ip_address0, 0, 0);
SendMessageToDeviceInfo(*message);
addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_EQ(1, addresses.size());
EXPECT_EQ(ip_address1, addresses[0]);
// Delete last item.
message = BuildAddressMessage(RTNLMessage::kModeDelete, ip_address1, 0, 0);
SendMessageToDeviceInfo(*message);
addresses = device_info_.GetAddresses(kTestDeviceIndex);
EXPECT_TRUE(addresses.empty());
// Delete device.
message = BuildLinkMessage(RTNLMessage::kModeDelete);
EXPECT_CALL(manager_, DeregisterDevice(_)).Times(1);
SendMessageToDeviceInfo(*message);
// Should be able to handle message for interface that doesn't exist.
message = BuildAddressMessage(RTNLMessage::kModeAdd, ip_address0, 0, 0);
SendMessageToDeviceInfo(*message);
EXPECT_EQ(nullptr, device_info_.GetDevice(kTestDeviceIndex));
}
TEST_F(DeviceInfoTest, FlushAddressList) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
IPAddress address1(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address1.SetAddressFromString(kTestIPAddress1));
address1.set_prefix(kTestIPAddressPrefix1);
message = BuildAddressMessage(RTNLMessage::kModeAdd, address1, 0,
RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
IPAddress address2(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address2.SetAddressFromString(kTestIPAddress2));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address2,
IFA_F_TEMPORARY, RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
IPAddress address3(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address3.SetAddressFromString(kTestIPAddress3));
message =
BuildAddressMessage(RTNLMessage::kModeAdd, address3, 0, RT_SCOPE_LINK);
SendMessageToDeviceInfo(*message);
IPAddress address4(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address4.SetAddressFromString(kTestIPAddress4));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address4,
IFA_F_PERMANENT, RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
// DeviceInfo now has 4 addresses associated with it, but only two of
// them are valid for flush.
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address1)));
EXPECT_CALL(rtnl_handler_,
RemoveInterfaceAddress(kTestDeviceIndex, IsIPAddress(address2)));
device_info_.FlushAddresses(kTestDeviceIndex);
}
TEST_F(DeviceInfoTest, HasOtherAddress) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
SendMessageToDeviceInfo(*message);
IPAddress address0(IPAddress::kFamilyIPv4);
EXPECT_TRUE(address0.SetAddressFromString(kTestIPAddress0));
// There are no addresses on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address0));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address0, 0,
RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
IPAddress address1(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address1.SetAddressFromString(kTestIPAddress1));
address1.set_prefix(kTestIPAddressPrefix1);
message =
BuildAddressMessage(RTNLMessage::kModeAdd, address1, 0, RT_SCOPE_LINK);
SendMessageToDeviceInfo(*message);
IPAddress address2(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address2.SetAddressFromString(kTestIPAddress2));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address2,
IFA_F_TEMPORARY, RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
IPAddress address3(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address3.SetAddressFromString(kTestIPAddress3));
// The only IPv6 addresses on this interface are either flagged as
// temporary, or they are not universally scoped.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address3));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address3, 0,
RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
// address0 is on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address0));
// address1 is on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address1));
// address2 is on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address2));
// address3 is on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address3));
IPAddress address4(IPAddress::kFamilyIPv6);
EXPECT_TRUE(address4.SetAddressFromString(kTestIPAddress4));
// address4 is not on this interface, but address3 is, and is a qualified
// IPv6 address.
EXPECT_TRUE(device_info_.HasOtherAddress(kTestDeviceIndex, address4));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address4,
IFA_F_PERMANENT, RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
// address4 is now on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address4));
IPAddress address5(IPAddress::kFamilyIPv4);
EXPECT_TRUE(address5.SetAddressFromString(kTestIPAddress5));
// address5 is not on this interface, but address0 is.
EXPECT_TRUE(device_info_.HasOtherAddress(kTestDeviceIndex, address5));
message = BuildAddressMessage(RTNLMessage::kModeAdd, address5,
IFA_F_PERMANENT, RT_SCOPE_UNIVERSE);
SendMessageToDeviceInfo(*message);
// address5 is now on this interface.
EXPECT_FALSE(device_info_.HasOtherAddress(kTestDeviceIndex, address5));
}
TEST_F(DeviceInfoTest, HasSubdir) {
base::ScopedTempDir temp_dir;
EXPECT_TRUE(temp_dir.CreateUniqueTempDir());
EXPECT_TRUE(base::CreateDirectory(temp_dir.GetPath().Append("child1")));
base::FilePath child2 = temp_dir.GetPath().Append("child2");
EXPECT_TRUE(base::CreateDirectory(child2));
base::FilePath grandchild = child2.Append("grandchild");
EXPECT_TRUE(base::CreateDirectory(grandchild));
EXPECT_TRUE(base::CreateDirectory(grandchild.Append("greatgrandchild")));
EXPECT_TRUE(
DeviceInfo::HasSubdir(temp_dir.GetPath(), base::FilePath("grandchild")));
EXPECT_TRUE(DeviceInfo::HasSubdir(temp_dir.GetPath(),
base::FilePath("greatgrandchild")));
EXPECT_FALSE(
DeviceInfo::HasSubdir(temp_dir.GetPath(), base::FilePath("nonexistent")));
}
TEST_F(DeviceInfoTest, GetMacAddressFromKernelUnknownDevice) {
SetSockets();
EXPECT_CALL(*mock_sockets_, Socket(_, _, _)).Times(0);
ByteString mac_address =
device_info_.GetMacAddressFromKernel(kTestDeviceIndex);
EXPECT_TRUE(mac_address.IsEmpty());
}
TEST_F(DeviceInfoTest, GetMacAddressFromKernelUnableToOpenSocket) {
SetSockets();
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).WillOnce(Return(-1));
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
EXPECT_NE(nullptr, device_info_.GetDevice(kTestDeviceIndex));
ByteString mac_address =
device_info_.GetMacAddressFromKernel(kTestDeviceIndex);
EXPECT_TRUE(mac_address.IsEmpty());
}
TEST_F(DeviceInfoTest, GetMacAddressFromKernelIoctlFails) {
SetSockets();
const int kFd = 99;
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).WillOnce(Return(kFd));
EXPECT_CALL(*mock_sockets_, Ioctl(kFd, SIOCGIFHWADDR, NotNull()))
.WillOnce(Return(-1));
EXPECT_CALL(*mock_sockets_, Close(kFd));
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
EXPECT_NE(nullptr, device_info_.GetDevice(kTestDeviceIndex));
ByteString mac_address =
device_info_.GetMacAddressFromKernel(kTestDeviceIndex);
EXPECT_TRUE(mac_address.IsEmpty());
}
MATCHER_P2(IfreqEquals, ifindex, ifname, "") {
const struct ifreq* const ifr = static_cast<struct ifreq*>(arg);
return (ifr != nullptr) && (ifr->ifr_ifindex == ifindex) &&
(strcmp(ifname, ifr->ifr_name) == 0);
}
ACTION_P(SetIfreq, ifr) {
struct ifreq* const ifr_arg = static_cast<struct ifreq*>(arg2);
*ifr_arg = ifr;
}
TEST_F(DeviceInfoTest, GetMacAddressFromKernel) {
SetSockets();
const int kFd = 99;
struct ifreq ifr;
static uint8_t kMacAddress[] = {0x00, 0x01, 0x02, 0xaa, 0xbb, 0xcc};
memcpy(ifr.ifr_hwaddr.sa_data, kMacAddress, sizeof(kMacAddress));
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).WillOnce(Return(kFd));
EXPECT_CALL(
*mock_sockets_,
Ioctl(kFd, SIOCGIFHWADDR, IfreqEquals(kTestDeviceIndex, kTestDeviceName)))
.WillOnce(DoAll(SetIfreq(ifr), Return(0)));
EXPECT_CALL(*mock_sockets_, Close(kFd));
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
EXPECT_NE(nullptr, device_info_.GetDevice(kTestDeviceIndex));
ByteString mac_address =
device_info_.GetMacAddressFromKernel(kTestDeviceIndex);
EXPECT_THAT(kMacAddress,
ElementsAreArray(mac_address.GetData(), sizeof(kMacAddress)));
}
TEST_F(DeviceInfoTest, GetMacAddressOfPeerUnknownDevice) {
SetSockets();
EXPECT_CALL(*mock_sockets_, Socket(_, _, _)).Times(0);
IPAddress address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(address.SetAddressFromString(kTestIPAddress0));
ByteString mac_address;
EXPECT_EQ(nullptr, device_info_.GetDevice(kTestDeviceIndex));
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(kTestDeviceIndex, address,
&mac_address));
}
TEST_F(DeviceInfoTest, GetMacAddressOfPeerBadAddress) {
SetSockets();
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
EXPECT_NE(nullptr, device_info_.GetDevice(kTestDeviceIndex));
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).Times(0);
// An improperly formatted IPv4 address should fail.
IPAddress empty_ipv4_address(IPAddress::kFamilyIPv4);
ByteString mac_address;
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(
kTestDeviceIndex, empty_ipv4_address, &mac_address));
// IPv6 addresses are not supported.
IPAddress valid_ipv6_address(IPAddress::kFamilyIPv6);
EXPECT_TRUE(valid_ipv6_address.SetAddressFromString(kTestIPAddress1));
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(
kTestDeviceIndex, valid_ipv6_address, &mac_address));
}
TEST_F(DeviceInfoTest, GetMacAddressOfPeerUnableToOpenSocket) {
SetSockets();
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).WillOnce(Return(-1));
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
IPAddress ip_address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(ip_address.SetAddressFromString(kTestIPAddress0));
ByteString mac_address;
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(kTestDeviceIndex, ip_address,
&mac_address));
}
TEST_F(DeviceInfoTest, GetMacAddressOfPeerIoctlFails) {
SetSockets();
const int kFd = 99;
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0)).WillOnce(Return(kFd));
EXPECT_CALL(*mock_sockets_, Ioctl(kFd, SIOCGARP, NotNull()))
.WillOnce(Return(-1));
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
IPAddress ip_address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(ip_address.SetAddressFromString(kTestIPAddress0));
ByteString mac_address;
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(kTestDeviceIndex, ip_address,
&mac_address));
}
MATCHER_P2(ArpreqEquals, ifname, peer, "") {
const struct arpreq* const areq = static_cast<struct arpreq*>(arg);
if (areq == nullptr) {
return false;
}
const struct sockaddr_in* const protocol_address =
reinterpret_cast<const struct sockaddr_in*>(&areq->arp_pa);
const struct sockaddr_in* const mac_address =
reinterpret_cast<const struct sockaddr_in*>(&areq->arp_ha);
return strcmp(ifname, areq->arp_dev) == 0 &&
protocol_address->sin_family == AF_INET &&
memcmp(&protocol_address->sin_addr.s_addr,
peer.address().GetConstData(),
peer.address().GetLength()) == 0 &&
mac_address->sin_family == ARPHRD_ETHER;
}
ACTION_P(SetArpreq, areq) {
struct arpreq* const areq_arg = static_cast<struct arpreq*>(arg2);
*areq_arg = areq;
}
TEST_F(DeviceInfoTest, GetMacAddressOfPeer) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
message->set_link_status(RTNLMessage::LinkStatus(0, IFF_LOWER_UP, 0));
SendMessageToDeviceInfo(*message);
SetSockets();
const int kFd = 99;
EXPECT_CALL(*mock_sockets_, Socket(PF_INET, _, 0))
.WillRepeatedly(Return(kFd));
IPAddress ip_address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(ip_address.SetAddressFromString(kTestIPAddress0));
static uint8_t kZeroMacAddress[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
struct arpreq zero_areq_response;
memcpy(zero_areq_response.arp_ha.sa_data, kZeroMacAddress,
sizeof(kZeroMacAddress));
static uint8_t kMacAddress[] = {0x01, 0x02, 0x03, 0xaa, 0xbb, 0xcc};
struct arpreq areq_response;
memcpy(areq_response.arp_ha.sa_data, kMacAddress, sizeof(kMacAddress));
EXPECT_CALL(*mock_sockets_,
Ioctl(kFd, SIOCGARP, ArpreqEquals(kTestDeviceName, ip_address)))
.WillOnce(DoAll(SetArpreq(zero_areq_response), Return(0)))
.WillOnce(DoAll(SetArpreq(areq_response), Return(0)));
ByteString mac_address;
EXPECT_FALSE(device_info_.GetMacAddressOfPeer(kTestDeviceIndex, ip_address,
&mac_address));
EXPECT_TRUE(device_info_.GetMacAddressOfPeer(kTestDeviceIndex, ip_address,
&mac_address));
EXPECT_THAT(kMacAddress,
ElementsAreArray(mac_address.GetData(), sizeof(kMacAddress)));
}
TEST_F(DeviceInfoTest, IPv6AddressChanged) {
scoped_refptr<MockDevice> device(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
// Device info entry does not exist.
EXPECT_EQ(device_info_.GetPrimaryIPv6Address(kTestDeviceIndex), nullptr);
device_info_.infos_[kTestDeviceIndex].device = device;
// Device info entry contains no addresses.
EXPECT_EQ(device_info_.GetPrimaryIPv6Address(kTestDeviceIndex), nullptr);
IPAddress ipv4_address(IPAddress::kFamilyIPv4);
EXPECT_TRUE(ipv4_address.SetAddressFromString(kTestIPAddress0));
auto message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv4_address, 0, 0);
EXPECT_CALL(*device, OnIPv6AddressChanged(_)).Times(0);
// We should ignore IPv4 addresses.
SendMessageToDeviceInfo(*message);
EXPECT_EQ(device_info_.GetPrimaryIPv6Address(kTestDeviceIndex), nullptr);
IPAddress ipv6_address1(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address1.SetAddressFromString(kTestIPAddress1));
message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv6_address1, 0,
RT_SCOPE_LINK);
// We should ignore non-SCOPE_UNIVERSE messages for IPv6.
SendMessageToDeviceInfo(*message);
EXPECT_EQ(device_info_.GetPrimaryIPv6Address(kTestDeviceIndex), nullptr);
Mock::VerifyAndClearExpectations(device.get());
IPAddress ipv6_address2(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address2.SetAddressFromString(kTestIPAddress2));
message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv6_address2,
IFA_F_TEMPORARY, RT_SCOPE_UNIVERSE);
// Add a temporary address.
EXPECT_CALL(*device, OnIPv6AddressChanged(_));
SendMessageToDeviceInfo(*message);
EXPECT_EQ(*device_info_.GetPrimaryIPv6Address(kTestDeviceIndex),
ipv6_address2);
Mock::VerifyAndClearExpectations(device.get());
IPAddress ipv6_address3(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address3.SetAddressFromString(kTestIPAddress3));
message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv6_address3, 0,
RT_SCOPE_UNIVERSE);
// Adding a non-temporary address alerts the Device, but does not override
// the primary address since the previous one was temporary.
EXPECT_CALL(*device, OnIPv6AddressChanged(_));
SendMessageToDeviceInfo(*message);
EXPECT_EQ(*device_info_.GetPrimaryIPv6Address(kTestDeviceIndex),
ipv6_address2);
Mock::VerifyAndClearExpectations(device.get());
IPAddress ipv6_address4(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address4.SetAddressFromString(kTestIPAddress4));
message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv6_address4,
IFA_F_TEMPORARY | IFA_F_DEPRECATED,
RT_SCOPE_UNIVERSE);
// Adding a temporary deprecated address alerts the Device, but does not
// override the primary address since the previous one was non-deprecated.
EXPECT_CALL(*device, OnIPv6AddressChanged(_));
SendMessageToDeviceInfo(*message);
EXPECT_EQ(*device_info_.GetPrimaryIPv6Address(kTestDeviceIndex),
ipv6_address2);
Mock::VerifyAndClearExpectations(device.get());
IPAddress ipv6_address7(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address7.SetAddressFromString(kTestIPAddress7));
message = BuildAddressMessage(RTNLMessage::kModeAdd, ipv6_address7,
IFA_F_TEMPORARY, RT_SCOPE_UNIVERSE);
// Another temporary (non-deprecated) address alerts the Device, and will
// override the previous primary address.
EXPECT_CALL(*device, OnIPv6AddressChanged(_));
SendMessageToDeviceInfo(*message);
EXPECT_EQ(*device_info_.GetPrimaryIPv6Address(kTestDeviceIndex),
ipv6_address7);
}
TEST_F(DeviceInfoTest, IPv6DnsServerAddressesChanged) {
scoped_refptr<MockDevice> device(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
device_info_.time_ = &time_;
std::vector<IPAddress> dns_server_addresses_out;
uint32_t lifetime_out;
// Device info entry does not exist.
EXPECT_FALSE(device_info_.GetIPv6DnsServerAddresses(
kTestDeviceIndex, &dns_server_addresses_out, &lifetime_out));
device_info_.infos_[kTestDeviceIndex].device = device;
// Device info entry contains no IPv6 dns server addresses.
EXPECT_FALSE(device_info_.GetIPv6DnsServerAddresses(
kTestDeviceIndex, &dns_server_addresses_out, &lifetime_out));
// Setup IPv6 dns server addresses.
IPAddress ipv6_address1(IPAddress::kFamilyIPv6);
IPAddress ipv6_address2(IPAddress::kFamilyIPv6);
EXPECT_TRUE(ipv6_address1.SetAddressFromString(kTestIPAddress1));
EXPECT_TRUE(ipv6_address2.SetAddressFromString(kTestIPAddress2));
std::vector<IPAddress> dns_server_addresses_in = {ipv6_address1,
ipv6_address2};
// Infinite lifetime
const uint32_t kInfiniteLifetime = 0xffffffff;
auto message = BuildRdnssMessage(RTNLMessage::kModeAdd, kInfiniteLifetime,
dns_server_addresses_in);
EXPECT_CALL(time_, GetSecondsBoottime(_))
.WillOnce(DoAll(SetArgPointee<0>(0), Return(true)));
EXPECT_CALL(*device, OnIPv6DnsServerAddressesChanged()).Times(1);
SendMessageToDeviceInfo(*message);
EXPECT_CALL(time_, GetSecondsBoottime(_)).Times(0);
EXPECT_TRUE(device_info_.GetIPv6DnsServerAddresses(
kTestDeviceIndex, &dns_server_addresses_out, &lifetime_out));
// Verify addresses and lifetime.
EXPECT_EQ(kInfiniteLifetime, lifetime_out);
EXPECT_EQ(2, dns_server_addresses_out.size());
EXPECT_EQ(kTestIPAddress1, dns_server_addresses_out.at(0).ToString());
EXPECT_EQ(kTestIPAddress2, dns_server_addresses_out.at(1).ToString());
// Lifetime of 120, retrieve DNS server addresses after 10 seconds.
const uint32_t kLifetime120 = 120;
const uint32_t kElapseTime10 = 10;
auto message1 = BuildRdnssMessage(RTNLMessage::kModeAdd, kLifetime120,
dns_server_addresses_in);
EXPECT_CALL(time_, GetSecondsBoottime(_))
.WillOnce(DoAll(SetArgPointee<0>(0), Return(true)));
EXPECT_CALL(*device, OnIPv6DnsServerAddressesChanged()).Times(1);
SendMessageToDeviceInfo(*message1);
// 10 seconds passed when GetIPv6DnsServerAddreses is called.
EXPECT_CALL(time_, GetSecondsBoottime(_))
.WillOnce(DoAll(SetArgPointee<0>(kElapseTime10), Return(true)));
EXPECT_TRUE(device_info_.GetIPv6DnsServerAddresses(
kTestDeviceIndex, &dns_server_addresses_out, &lifetime_out));
// Verify addresses and lifetime.
EXPECT_EQ(kLifetime120 - kElapseTime10, lifetime_out);
EXPECT_EQ(2, dns_server_addresses_out.size());
EXPECT_EQ(kTestIPAddress1, dns_server_addresses_out.at(0).ToString());
EXPECT_EQ(kTestIPAddress2, dns_server_addresses_out.at(1).ToString());
// Lifetime of 120, retrieve DNS server addresses after lifetime expired.
EXPECT_CALL(time_, GetSecondsBoottime(_))
.WillOnce(DoAll(SetArgPointee<0>(0), Return(true)));
EXPECT_CALL(*device, OnIPv6DnsServerAddressesChanged()).Times(1);
SendMessageToDeviceInfo(*message1);
// 120 seconds passed when GetIPv6DnsServerAddreses is called.
EXPECT_CALL(time_, GetSecondsBoottime(_))
.WillOnce(DoAll(SetArgPointee<0>(kLifetime120), Return(true)));
EXPECT_TRUE(device_info_.GetIPv6DnsServerAddresses(
kTestDeviceIndex, &dns_server_addresses_out, &lifetime_out));
// Verify addresses and lifetime.
EXPECT_EQ(0, lifetime_out);
EXPECT_EQ(2, dns_server_addresses_out.size());
EXPECT_EQ(kTestIPAddress1, dns_server_addresses_out.at(0).ToString());
EXPECT_EQ(kTestIPAddress2, dns_server_addresses_out.at(1).ToString());
}
TEST_F(DeviceInfoTest, OnNeighborReachabilityEvent) {
device_info_.OnPatchpanelClientReady();
scoped_refptr<MockDevice> device0(
new MockDevice(&manager_, "null0", "addr0", kTestDeviceIndex));
scoped_refptr<MockDevice> device1(
new MockDevice(&manager_, "null1", "addr1", kTestDeviceIndex + 1));
device_info_.RegisterDevice(device0);
device_info_.RegisterDevice(device1);
using NeighborSignal = patchpanel::NeighborReachabilityEventSignal;
NeighborSignal signal0;
signal0.set_ifindex(kTestDeviceIndex);
signal0.set_ip_addr(kTestIPAddress0);
signal0.set_role(NeighborSignal::GATEWAY);
signal0.set_type(NeighborSignal::FAILED);
EXPECT_CALL(*device0, OnNeighborReachabilityEvent(IPAddress(kTestIPAddress0),
NeighborSignal::GATEWAY,
NeighborSignal::FAILED));
patchpanel_client_->TriggerNeighborReachabilityEvent(signal0);
NeighborSignal signal1;
signal1.set_ifindex(kTestDeviceIndex + 1);
signal1.set_ip_addr(kTestIPAddress1);
signal1.set_role(NeighborSignal::DNS_SERVER);
signal1.set_type(NeighborSignal::FAILED);
EXPECT_CALL(*device1, OnNeighborReachabilityEvent(IPAddress(kTestIPAddress1),
NeighborSignal::DNS_SERVER,
NeighborSignal::FAILED));
patchpanel_client_->TriggerNeighborReachabilityEvent(signal1);
NeighborSignal signal2;
signal2.set_ifindex(kTestDeviceIndex);
signal2.set_ip_addr(kTestIPAddress2);
signal2.set_role(NeighborSignal::GATEWAY_AND_DNS_SERVER);
signal2.set_type(NeighborSignal::REACHABLE);
EXPECT_CALL(*device0, OnNeighborReachabilityEvent(
IPAddress(kTestIPAddress2),
NeighborSignal::GATEWAY_AND_DNS_SERVER,
NeighborSignal::REACHABLE));
patchpanel_client_->TriggerNeighborReachabilityEvent(signal2);
}
TEST_F(DeviceInfoTest, CreateWireGuardInterface) {
const std::string kIfName = "wg0";
const std::string kLinkKind = "wireguard";
int link_ready_calls_num = 0;
int on_failure_calls_num = 0;
auto link_ready_cb = [&](const std::string&, int) { link_ready_calls_num++; };
auto on_failure_cb = [&]() { on_failure_calls_num++; };
RTNLHandler::ResponseCallback registered_response_cb;
auto call_create_wireguard_interface = [&]() {
return device_info_.CreateWireGuardInterface(
kIfName, base::BindLambdaForTesting(link_ready_cb),
base::BindLambdaForTesting(on_failure_cb));
};
// RTNLHandler::AddInterface() returns false directly.
EXPECT_CALL(rtnl_handler_, AddInterface(kIfName, kLinkKind, _))
.WillOnce(Return(false));
EXPECT_FALSE(call_create_wireguard_interface());
EXPECT_EQ(link_ready_calls_num, 0);
EXPECT_EQ(on_failure_calls_num, 0);
// RTNLHandler::AddInterface() returns true, but the kernel returns false.
EXPECT_CALL(rtnl_handler_, AddInterface(kIfName, kLinkKind, _))
.WillRepeatedly([&](const std::string& interface_name,
const std::string& link_kind,
RTNLHandler::ResponseCallback response_callback) {
registered_response_cb = std::move(response_callback);
return true;
});
EXPECT_TRUE(call_create_wireguard_interface());
std::move(registered_response_cb).Run(100);
EXPECT_EQ(link_ready_calls_num, 0);
EXPECT_EQ(on_failure_calls_num, 1);
// RTNLHandler::AddInterface() returns true, and the kernel returns ack. No
// callback to the client should be invoked now.
EXPECT_TRUE(call_create_wireguard_interface());
std::move(registered_response_cb).Run(0);
EXPECT_EQ(link_ready_calls_num, 0);
EXPECT_EQ(on_failure_calls_num, 1);
// Link is ready.
CreateDevice(kIfName, "192.168.1.1", 123, Technology::kTunnel);
EXPECT_EQ(link_ready_calls_num, 1);
EXPECT_EQ(on_failure_calls_num, 1);
}
class DeviceInfoTechnologyTest : public DeviceInfoTest {
public:
DeviceInfoTechnologyTest()
: DeviceInfoTest(), test_device_name_(kTestDeviceName) {}
~DeviceInfoTechnologyTest() override = default;
void SetUp() override {
CHECK(temp_dir_.CreateUniqueTempDir());
device_info_root_ = temp_dir_.GetPath().Append("sys/class/net");
device_info_.device_info_root_ = device_info_root_;
// Most tests require that the uevent file exist.
CreateInfoFile("uevent", "xxx");
}
Technology GetDeviceTechnology() {
return device_info_.GetDeviceTechnology(test_device_name_, base::nullopt);
}
Technology GetDeviceTechnology(const std::string& kind) {
return device_info_.GetDeviceTechnology(test_device_name_, kind);
}
base::FilePath GetInfoPath(const std::string& name);
void CreateInfoFile(const std::string& name, const std::string& contents);
void CreateInfoSymLink(const std::string& name, const std::string& contents);
void SetDeviceName(const std::string& name) {
test_device_name_ = name;
EXPECT_TRUE(temp_dir_.Delete()); // nuke old temp dir
SetUp();
}
protected:
base::ScopedTempDir temp_dir_;
base::FilePath device_info_root_;
std::string test_device_name_;
};
base::FilePath DeviceInfoTechnologyTest::GetInfoPath(const std::string& name) {
return device_info_root_.Append(test_device_name_).Append(name);
}
void DeviceInfoTechnologyTest::CreateInfoFile(const std::string& name,
const std::string& contents) {
base::FilePath info_path = GetInfoPath(name);
EXPECT_TRUE(base::CreateDirectory(info_path.DirName()));
std::string contents_newline(contents + "\n");
EXPECT_TRUE(base::WriteFile(info_path, contents_newline.c_str(),
contents_newline.size()));
}
void DeviceInfoTechnologyTest::CreateInfoSymLink(const std::string& name,
const std::string& contents) {
base::FilePath info_path = GetInfoPath(name);
EXPECT_TRUE(base::CreateDirectory(info_path.DirName()));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath(contents), info_path));
}
TEST_F(DeviceInfoTechnologyTest, Unknown) {
// With a uevent file but no driver symlink, we should get a pseudo-technology
// which specifies this condition explicitly.
EXPECT_EQ(Technology::kNoDeviceSymlink, GetDeviceTechnology());
// Should be unknown without a uevent file.
EXPECT_TRUE(base::DeleteFile(GetInfoPath("uevent")));
EXPECT_EQ(Technology::kUnknown, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, IgnoredVeth) {
test_device_name_ = "veth0";
// A new uevent file is needed since the device name has changed.
CreateInfoFile("uevent", "xxx");
// A device with a "veth" prefix should be ignored.
EXPECT_EQ(Technology::kUnknown, GetDeviceTechnology("veth"));
}
TEST_F(DeviceInfoTechnologyTest, IgnoredArcMultinetBridgeDevice) {
test_device_name_ = "arc_eth0";
// A new uevent file is needed since the device name has changed.
CreateInfoFile("uevent", "xxx");
// A device with a "arc_" prefix should be ignored.
EXPECT_EQ(Technology::kUnknown, GetDeviceTechnology("bridge"));
}
TEST_F(DeviceInfoTechnologyTest, Loopback) {
CreateInfoFile("type", base::NumberToString(ARPHRD_LOOPBACK));
EXPECT_EQ(Technology::kLoopback, GetDeviceTechnology());
}
// As long as it's not named 'veth*', we should detect it as Ethernet.
TEST_F(DeviceInfoTechnologyTest, Veth) {
CreateInfoFile("uevent", "xxx");
EXPECT_EQ(Technology::kEthernet, GetDeviceTechnology("veth"));
}
TEST_F(DeviceInfoTechnologyTest, PPP) {
CreateInfoFile("type", base::NumberToString(ARPHRD_PPP));
EXPECT_EQ(Technology::kPPP, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, Tunnel) {
CreateInfoFile("tun_flags", base::NumberToString(IFF_TUN));
EXPECT_EQ(Technology::kTunnel, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, WiFi) {
CreateInfoFile("uevent", "DEVTYPE=wlan");
EXPECT_EQ(Technology::kWifi, GetDeviceTechnology());
CreateInfoFile("uevent", "foo\nDEVTYPE=wlan");
EXPECT_EQ(Technology::kWifi, GetDeviceTechnology());
CreateInfoFile("type", base::NumberToString(ARPHRD_IEEE80211_RADIOTAP));
EXPECT_EQ(Technology::kWiFiMonitor, GetDeviceTechnology());
// mac80211_hwsim creates ARPHRD_IEEE80211_RADIOTAP devices that don't list
// DEVTYPE=wlan.
CreateInfoFile("uevent", "INTERFACE=hwsim0");
EXPECT_EQ(Technology::kWiFiMonitor, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, Bridge) {
CreateInfoFile("uevent", "DEVTYPE=bridge");
EXPECT_EQ(Technology::kEthernet, GetDeviceTechnology("bridge"));
CreateInfoFile("uevent", "bar\nDEVTYPE=bridge");
EXPECT_EQ(Technology::kEthernet, GetDeviceTechnology("bridge"));
}
TEST_F(DeviceInfoTechnologyTest, Ifb) {
test_device_name_ = "ifb0";
CreateInfoFile("uevent", "INTERFACE=ifb0");
EXPECT_EQ(Technology::kUnknown, GetDeviceTechnology("ifb"));
}
TEST_F(DeviceInfoTechnologyTest, RmnetData) {
test_device_name_ = "rmnet_data0";
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology("rmnet"));
}
TEST_F(DeviceInfoTechnologyTest, RmnetIPA) {
test_device_name_ = "rmnet_ipa0";
CreateInfoFile("type", base::NumberToString(ARPHRD_RAWIP));
EXPECT_EQ(Technology::kUnknown, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, Ethernet) {
CreateInfoSymLink("device/driver", "xxx");
EXPECT_EQ(Technology::kEthernet, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, CellularCdcMbim) {
CreateInfoSymLink("device/driver", "cdc_mbim");
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, CellularQmiWwan) {
CreateInfoSymLink("device/driver", "qmi_wwan");
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
}
// Modem with absolute driver path with top-level tty file:
// /sys/class/net/dev0/device -> /sys/devices/virtual/0/00
// /sys/devices/virtual/0/00/driver -> /drivers/cdc_ether or /drivers/cdc_ncm
// /sys/devices/virtual/0/01/tty [empty directory]
TEST_F(DeviceInfoTechnologyTest, CDCEthernetModem1) {
base::FilePath device_root(
temp_dir_.GetPath().Append("sys/devices/virtual/0"));
base::FilePath device_path(device_root.Append("00"));
base::FilePath driver_symlink(device_path.Append("driver"));
EXPECT_TRUE(base::CreateDirectory(device_path));
CreateInfoSymLink("device", device_path.value());
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ether"),
driver_symlink));
EXPECT_TRUE(base::CreateDirectory(device_root.Append("01/tty")));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
EXPECT_TRUE(base::DeleteFile(driver_symlink));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ncm"),
driver_symlink));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
}
// Modem with relative driver path with top-level tty file.
// /sys/class/net/dev0/device -> ../../../device_dir/0/00
// /sys/device_dir/0/00/driver -> /drivers/cdc_ether or /drivers/cdc_ncm
// /sys/device_dir/0/01/tty [empty directory]
TEST_F(DeviceInfoTechnologyTest, CDCEthernetModem2) {
CreateInfoSymLink("device", "../../../device_dir/0/00");
base::FilePath device_root(temp_dir_.GetPath().Append("sys/device_dir/0"));
base::FilePath device_path(device_root.Append("00"));
base::FilePath driver_symlink(device_path.Append("driver"));
EXPECT_TRUE(base::CreateDirectory(device_path));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ether"),
driver_symlink));
EXPECT_TRUE(base::CreateDirectory(device_root.Append("01/tty")));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
EXPECT_TRUE(base::DeleteFile(driver_symlink));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ncm"),
driver_symlink));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
}
// Modem with relative driver path with lower-level tty file.
// /sys/class/net/dev0/device -> ../../../device_dir/0/00
// /sys/device_dir/0/00/driver -> /drivers/cdc_ether or /drivers/cdc_ncm
// /sys/device_dir/0/01/yyy/tty [empty directory]
TEST_F(DeviceInfoTechnologyTest, CDCEthernetModem3) {
CreateInfoSymLink("device", "../../../device_dir/0/00");
base::FilePath device_root(temp_dir_.GetPath().Append("sys/device_dir/0"));
base::FilePath device_path(device_root.Append("00"));
base::FilePath driver_symlink(device_path.Append("driver"));
EXPECT_TRUE(base::CreateDirectory(device_path));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ether"),
driver_symlink));
EXPECT_TRUE(base::CreateDirectory(device_root.Append("01/yyy/tty")));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
EXPECT_TRUE(base::DeleteFile(driver_symlink));
EXPECT_TRUE(base::CreateSymbolicLink(base::FilePath("/drivers/cdc_ncm"),
driver_symlink));
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, CDCEtherNonModem) {
CreateInfoSymLink("device", "device_dir");
CreateInfoSymLink("device_dir/driver", "cdc_ether");
EXPECT_EQ(Technology::kCDCEthernet, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, CDCNcmNonModem) {
CreateInfoSymLink("device", "device_dir");
CreateInfoSymLink("device_dir/driver", "cdc_ncm");
EXPECT_EQ(Technology::kCDCEthernet, GetDeviceTechnology());
}
TEST_F(DeviceInfoTechnologyTest, PseudoModem) {
SetDeviceName("pseudomodem");
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology("veth"));
SetDeviceName("pseudomodem9");
EXPECT_EQ(Technology::kCellular, GetDeviceTechnology("veth"));
}
class DeviceInfoForDelayedCreationTest : public DeviceInfo {
public:
explicit DeviceInfoForDelayedCreationTest(Manager* manager)
: DeviceInfo(manager) {}
MOCK_METHOD(DeviceRefPtr,
CreateDevice,
(const std::string&, const std::string&, int, Technology),
(override));
MOCK_METHOD(Technology,
GetDeviceTechnology,
(const std::string&, const base::Optional<std::string>& kind),
(override));
};
class DeviceInfoDelayedCreationTest : public DeviceInfoTest {
public:
DeviceInfoDelayedCreationTest() : test_device_info_(&manager_) {}
~DeviceInfoDelayedCreationTest() override = default;
std::set<int>& GetDelayedDevices() override {
return test_device_info_.delayed_devices_;
}
void DelayedDeviceCreationTask() {
test_device_info_.DelayedDeviceCreationTask();
}
void AddDelayedDevice(Technology delayed_technology) {
auto message = BuildLinkMessage(RTNLMessage::kModeAdd);
EXPECT_CALL(test_device_info_, GetDeviceTechnology(kTestDeviceName, _))
.WillOnce(Return(delayed_technology));
EXPECT_CALL(
test_device_info_,
CreateDevice(kTestDeviceName, _, kTestDeviceIndex, delayed_technology))
.WillOnce(Return(DeviceRefPtr()));
test_device_info_.AddLinkMsgHandler(*message);
Mock::VerifyAndClearExpectations(&test_device_info_);
// We need to insert the device index ourselves since we have mocked
// out CreateDevice. This insertion is tested in CreateDeviceCDCEthernet
// above.
GetDelayedDevices().insert(kTestDeviceIndex);
}
void EnsureDelayedDevice(Technology reported_device_technology,
Technology created_device_technology) {
EXPECT_CALL(test_device_info_, GetDeviceTechnology(_, _))
.WillOnce(Return(reported_device_technology));
EXPECT_CALL(test_device_info_,
CreateDevice(kTestDeviceName, _, kTestDeviceIndex,
created_device_technology))
.WillOnce(Return(DeviceRefPtr()));
DelayedDeviceCreationTask();
EXPECT_TRUE(GetDelayedDevices().empty());
}
#if !defined(DISABLE_WIFI)
void TriggerOnWiFiInterfaceInfoReceived(const Nl80211Message& message) {
test_device_info_.OnWiFiInterfaceInfoReceived(message);
}
#endif // DISABLE_WIFI
protected:
DeviceInfoForDelayedCreationTest test_device_info_;
};
TEST_F(DeviceInfoDelayedCreationTest, NoDevices) {
EXPECT_TRUE(GetDelayedDevices().empty());
EXPECT_CALL(test_device_info_, GetDeviceTechnology(_, _)).Times(0);
DelayedDeviceCreationTask();
}
TEST_F(DeviceInfoDelayedCreationTest, CDCEthernetDevice) {
AddDelayedDevice(Technology::kCDCEthernet);
EnsureDelayedDevice(Technology::kCDCEthernet, Technology::kEthernet);
}
TEST_F(DeviceInfoDelayedCreationTest, CellularDevice) {
AddDelayedDevice(Technology::kCDCEthernet);
EnsureDelayedDevice(Technology::kCellular, Technology::kCellular);
}
TEST_F(DeviceInfoDelayedCreationTest, TunnelDevice) {
AddDelayedDevice(Technology::kNoDeviceSymlink);
EnsureDelayedDevice(Technology::kTunnel, Technology::kTunnel);
}
TEST_F(DeviceInfoDelayedCreationTest, NoDeviceSymlinkEthernet) {
AddDelayedDevice(Technology::kNoDeviceSymlink);
EXPECT_CALL(manager_, ignore_unknown_ethernet()).WillOnce(Return(false));
EnsureDelayedDevice(Technology::kNoDeviceSymlink, Technology::kEthernet);
}
TEST_F(DeviceInfoDelayedCreationTest, NoDeviceSymlinkIgnored) {
AddDelayedDevice(Technology::kNoDeviceSymlink);
EXPECT_CALL(manager_, ignore_unknown_ethernet()).WillOnce(Return(true));
EnsureDelayedDevice(Technology::kNoDeviceSymlink, Technology::kUnknown);
}
TEST_F(DeviceInfoDelayedCreationTest, GuestInterface) {
AddDelayedDevice(Technology::kNoDeviceSymlink);
EnsureDelayedDevice(Technology::kGuestInterface, Technology::kGuestInterface);
}
#if !defined(DISABLE_WIFI)
TEST_F(DeviceInfoDelayedCreationTest, WiFiDevice) {
ScopedMockLog log;
EXPECT_CALL(log, Log(logging::LOGGING_ERROR, _,
HasSubstr("Message is not a new interface response")));
GetInterfaceMessage non_interface_response_message;
TriggerOnWiFiInterfaceInfoReceived(non_interface_response_message);
Mock::VerifyAndClearExpectations(&log);
EXPECT_CALL(log, Log(logging::LOGGING_ERROR, _,
HasSubstr("Message contains no interface index")));
NewInterfaceMessage message;
TriggerOnWiFiInterfaceInfoReceived(message);
Mock::VerifyAndClearExpectations(&log);
message.attributes()->CreateNl80211Attribute(
NL80211_ATTR_IFINDEX, NetlinkMessage::MessageContext());
message.attributes()->SetU32AttributeValue(NL80211_ATTR_IFINDEX,
kTestDeviceIndex);
EXPECT_CALL(log, Log(logging::LOGGING_ERROR, _,
HasSubstr("Message contains no interface type")));
TriggerOnWiFiInterfaceInfoReceived(message);
Mock::VerifyAndClearExpectations(&log);
message.attributes()->CreateNl80211Attribute(
NL80211_ATTR_IFTYPE, NetlinkMessage::MessageContext());
message.attributes()->SetU32AttributeValue(NL80211_ATTR_IFTYPE,
NL80211_IFTYPE_AP);
EXPECT_CALL(log, Log(logging::LOGGING_ERROR, _,
HasSubstr("Could not find device info for interface")));
TriggerOnWiFiInterfaceInfoReceived(message);
Mock::VerifyAndClearExpectations(&log);
// Use the AddDelayedDevice() method to create a device info entry with no
// associated device.
AddDelayedDevice(Technology::kNoDeviceSymlink);
EXPECT_CALL(log, Log(logging::LOGGING_INFO, _,
HasSubstr("it is not in station mode")));
TriggerOnWiFiInterfaceInfoReceived(message);
Mock::VerifyAndClearExpectations(&log);
Mock::VerifyAndClearExpectations(&manager_);
message.attributes()->SetU32AttributeValue(NL80211_ATTR_IFTYPE,
NL80211_IFTYPE_STATION);
EXPECT_CALL(manager_, RegisterDevice(_));
EXPECT_CALL(manager_, device_info())
.WillRepeatedly(Return(&test_device_info_));
EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
EXPECT_CALL(log,
Log(logging::LOGGING_INFO, _, HasSubstr("Creating WiFi device")));
TriggerOnWiFiInterfaceInfoReceived(message);
Mock::VerifyAndClearExpectations(&log);
Mock::VerifyAndClearExpectations(&manager_);
EXPECT_CALL(manager_, RegisterDevice(_)).Times(0);
EXPECT_CALL(log, Log(logging::LOGGING_ERROR, _,
HasSubstr("Device already created for interface")));
TriggerOnWiFiInterfaceInfoReceived(message);
}
#endif // DISABLE_WIFI
} // namespace shill