blob: 9dbedc2a41f2a148991262a59e8fd7a5111a9ae8 [file] [log] [blame]
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* This tool will attempt to mount or create the encrypted stateful partition,
* and the various bind mountable subdirectories.
*
*/
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <grp.h>
#include <pwd.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <linux/fs.h>
#include <glib.h>
#include <openssl/rand.h>
#define CHROMEOS_ENVIRONMENT
#include "tlcl.h"
#include "crossystem.h"
#include "mount-encrypted.h"
#include "mount-helpers.h"
#define STATEFUL_MNT "mnt/stateful_partition"
#define ENCRYPTED_MNT STATEFUL_MNT "/encrypted"
#define BUF_SIZE 1024
#define PROP_SIZE 64
#define LOCKBOX_SIZE_MAX 0x45
static const gchar * const kKernelCmdline = "/proc/cmdline";
static const gchar * const kKernelCmdlineOption = " encrypted-stateful-key=";
static const gchar * const kEncryptedFSType = "ext4";
static const gchar * const kCryptDevName = "encstateful";
static const gchar * const kTpmDev = "/dev/tpm0";
static const gchar * const kNullDev = "/dev/null";
static const gchar * const kNvramExport = "/tmp/lockbox.nvram";
static const float kSizePercent = 0.3;
static const float kMigrationSizeMultiplier = 1.1;
static const uint32_t kLockboxIndex = 0x20000004;
static const uint32_t kLockboxSizeV1 = 0x2c;
static const uint32_t kLockboxSizeV2 = LOCKBOX_SIZE_MAX;
static const uint32_t kLockboxSaltOffset = 0x5;
static const uint64_t kSectorSize = 512;
static const uint64_t kExt4BlockSize = 4096;
static const uint64_t kExt4MinBytes = 16 * 1024 * 1024;
static const char * const kStaticKeyDefault = "default unsafe static key";
static const char * const kStaticKeyFactory = "factory unsafe static key";
static const char * const kStaticKeyFinalizationNeeded = "needs finalization";
static const int kModeProduction = 0;
static const int kModeFactory = 1;
static const int kCryptAllowDiscard = 1;
enum migration_method {
MIGRATE_TEST_ONLY,
MIGRATE_FOR_REAL,
};
enum bind_dir {
BIND_SOURCE,
BIND_DEST,
};
static struct bind_mount {
char * src; /* Location of bind source. */
char * dst; /* Destination of bind. */
char * previous; /* Migratable prior bind source. */
char * pending; /* Location for pending deletion. */
char * owner;
char * group;
mode_t mode;
int submount; /* Submount is bound already. */
} bind_mounts_default[] = {
{ ENCRYPTED_MNT "/var", "var",
STATEFUL_MNT "/var", STATEFUL_MNT "/.var",
"root", "root",
S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, 0 },
{ ENCRYPTED_MNT "/chronos", "home/chronos",
STATEFUL_MNT "/home/chronos", STATEFUL_MNT "/home/.chronos",
"chronos", "chronos",
S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, 1 },
{ },
};
#if DEBUG_ENABLED
struct timeval tick = { };
struct timeval tick_start = { };
#endif
static struct bind_mount *bind_mounts = NULL;
static gchar *rootdir = NULL;
static gchar *stateful_mount = NULL;
static gchar *key_path = NULL;
static gchar *needs_finalization_path = NULL;
static gchar *block_path = NULL;
static gchar *encrypted_mount = NULL;
static gchar *dmcrypt_name = NULL;
static gchar *dmcrypt_dev = NULL;
static int has_tpm = 0;
static int tpm_init_called = 0;
static uint8_t nvram_data[LOCKBOX_SIZE_MAX];
static uint32_t nvram_size = 0;
static void tpm_init(void)
{
uint32_t result;
if (tpm_init_called)
return;
DEBUG("Opening TPM");
setenv("TPM_NO_EXIT", "1", 1);
result = TlclLibInit();
tpm_init_called = 1;
has_tpm = (result == TPM_SUCCESS);
INFO("TPM %s", has_tpm ? "ready" : "not available");
}
/* Returns TPM result status code, and on TPM_SUCCESS, stores ownership
* flag to "owned".
*/
static uint32_t tpm_owned(uint8_t *owned)
{
uint32_t result;
tpm_init();
DEBUG("Reading TPM Ownership Flag");
if (!has_tpm)
result = TPM_E_NO_DEVICE;
else
result = TlclGetOwnership(owned);
DEBUG("TPM Ownership Flag returned: %s", result ? "FAIL" : "ok");
return result;
}
static void tpm_close(void)
{
if (!has_tpm || !tpm_init_called)
return;
TlclLibClose();
tpm_init_called = 0;
}
static void sha256(char *string, uint8_t *digest)
{
SHA256((unsigned char *)string, strlen(string), digest);
}
/* Extract the desired system key from the kernel's boot command line. */
static int get_key_from_cmdline(uint8_t *digest)
{
int result = 0;
gchar *buffer;
gsize length;
char *cmdline, *option_end;
/* Option name without the leading space. */
const gchar *option = kKernelCmdlineOption + 1;
if (!g_file_get_contents(kKernelCmdline, &buffer, &length, NULL)) {
PERROR(kKernelCmdline);
return 0;
}
/* Find a string match either at start of string or following
* a space.
*/
cmdline = buffer;
if (strncmp(cmdline, option, strlen(option)) == 0 ||
(cmdline = strstr(cmdline, kKernelCmdlineOption))) {
/* The "=" exists because it is in kKernelCmdlineOption. */
cmdline = strstr(cmdline, "=");
/* strchrnul() cannot return NULL. */
option_end = strchrnul(cmdline, ' ');
*option_end = '\0';
sha256(cmdline, digest);
debug_dump_hex("system key", digest, DIGEST_LENGTH);
result = 1;
}
g_free(buffer);
return result;
}
static int get_system_property(const char *prop, char *buf, size_t length)
{
const char *rc;
DEBUG("Fetching System Property '%s'", prop);
rc = VbGetSystemPropertyString(prop, buf, length);
DEBUG("Got System Property 'mainfw_type': %s", rc ? buf : "FAIL");
return rc != NULL;
}
static int has_chromefw(void)
{
static int state = -1;
char fw[PROP_SIZE];
/* Cache the state so we don't have to perform the query again. */
if (state != -1)
return state;
if (!get_system_property("mainfw_type", fw, sizeof(fw)))
state = 0;
else
state = strcmp(fw, "nonchrome") != 0;
return state;
}
static int is_cr48(void)
{
static int state = -1;
char hwid[PROP_SIZE];
/* Cache the state so we don't have to perform the query again. */
if (state != -1)
return state;
if (!get_system_property("hwid", hwid, sizeof(hwid)))
state = 0;
else
state = strstr(hwid, "MARIO") != NULL;
return state;
}
static uint32_t
_read_nvram(uint8_t *buffer, size_t len, uint32_t index, uint32_t size)
{
uint32_t result;
if (size > len) {
ERROR("NVRAM size (0x%x > 0x%zx) is too big", size, len);
return 0;
}
tpm_init();
DEBUG("Reading NVRAM area 0x%x (size %u)", index, size);
if (!has_tpm)
result = TPM_E_NO_DEVICE;
else
result = TlclRead(index, buffer, size);
DEBUG("NVRAM read returned: %s", result == TPM_SUCCESS ? "ok"
: "FAIL");
return result;
}
/*
* TPM cases:
* - does not exist at all (disabled in test firmware or non-chrome device).
* - exists (below).
*
* TPM ownership cases:
* - unowned (OOBE):
* - expect modern lockbox (no migration allowed).
* - owned: depends on NVRAM area (below).
*
* NVRAM area cases:
* - no NVRAM area at all:
* - interrupted install (cryptohome has the TPM password)
* - ancient device (cr48, cryptohome has thrown away TPM password)
* - broken device (cryptohome has thrown away/never had TPM password)
* - must expect worst-case: no lockbox ever, and migration allowed.
* - defined NVRAM area, but not written to ("Finalized"); interrupted OOBE:
* - if legacy size, allow migration.
* - if not, disallow migration.
* - written ("Finalized") NVRAM area:
* - if legacy size, allow migration.
* - if not, disallow migration.
*
* When returning 1: (NVRAM area found and used)
* - *digest populated with NVRAM area entropy.
* - *migrate is 1 for NVRAM v1, 0 for NVRAM v2.
* When returning 0: (NVRAM missing or error)
* - *digest untouched.
* - *migrate always 1
*/
static int get_nvram_key(uint8_t *digest, int *migrate)
{
uint8_t owned = 0;
uint8_t value[kLockboxSizeV2], bytes_anded, bytes_ored;
uint32_t size, result, i;
uint8_t *rand_bytes;
uint32_t rand_size;
/* Default to allowing migration (disallow when owned with NVRAMv2). */
*migrate = 1;
/* Ignore unowned TPM's NVRAM area. */
result = tpm_owned(&owned);
if (result != TPM_SUCCESS) {
INFO("Could not read TPM Permanent Flags: error 0x%02x.",
result);
return 0;
}
if (!owned) {
INFO("TPM not Owned, ignoring NVRAM area.");
return 0;
}
/* Reading the NVRAM takes 40ms. Instead of querying the NVRAM area
* for its size (which takes time), just read the expected size. If
* it fails, then fall back to the older size. This means cleared
* devices take 80ms (2 failed reads), legacy devices take 80ms
* (1 failed read, 1 good read), and populated devices take 40ms,
* which is the minimum possible time (instead of 40ms + time to
* query NVRAM size).
*/
size = kLockboxSizeV2;
result = _read_nvram(value, sizeof(value), kLockboxIndex, size);
if (result != TPM_SUCCESS) {
size = kLockboxSizeV1;
result = _read_nvram(value, sizeof(value), kLockboxIndex, size);
if (result != TPM_SUCCESS) {
/* No NVRAM area at all. */
INFO("No NVRAM area defined: error 0x%02x", result);
return 0;
}
/* Legacy NVRAM area. */
INFO("Version 1 NVRAM area found.");
} else {
*migrate = 0;
INFO("Version 2 NVRAM area found.");
}
debug_dump_hex("nvram", value, size);
/* Ignore defined but unwritten NVRAM area. */
bytes_ored = 0x0;
bytes_anded = 0xff;
for (i = 0; i < size; ++i) {
bytes_ored |= value[i];
bytes_anded &= value[i];
}
if (bytes_ored == 0x0 || bytes_anded == 0xff) {
INFO("NVRAM area has been defined but not written.");
return 0;
}
/* "Export" nvram data for use after the helper. */
if (size <= sizeof(nvram_data)) {
nvram_size = size;
memcpy(nvram_data, value, size);
}
/* Choose random bytes to use based on NVRAM version. */
if (*migrate) {
rand_bytes = value;
rand_size = size;
} else {
rand_bytes = value + kLockboxSaltOffset;
if (kLockboxSaltOffset + DIGEST_LENGTH > size) {
INFO("Impossibly small NVRAM area size (%d).", size);
return 0;
}
rand_size = DIGEST_LENGTH;
}
if (rand_size < DIGEST_LENGTH) {
INFO("Impossibly small rand_size (%d).", rand_size);
return 0;
}
debug_dump_hex("rand_bytes", rand_bytes, rand_size);
SHA256(rand_bytes, rand_size, digest);
debug_dump_hex("system key", digest, DIGEST_LENGTH);
return 1;
}
/* Find the system key used for decrypting the stored encryption key.
* ChromeOS devices are required to use the NVRAM area, all the rest will
* fallback through various places (kernel command line, BIOS UUID, and
* finally a static value) for a system key.
*/
static int find_system_key(int mode, uint8_t *digest, int *migration_allowed)
{
gchar *key;
gsize length;
/* By default, do not allow migration. */
*migration_allowed = 0;
/* Factory mode uses a static system key. */
if (mode == kModeFactory) {
INFO("Using factory insecure system key.");
sha256((char *)kStaticKeyFactory, digest);
debug_dump_hex("system key", digest, DIGEST_LENGTH);
return 1;
}
/* Force ChromeOS devices into requiring the system key come from
* NVRAM.
*/
if (has_chromefw()) {
int rc;
rc = get_nvram_key(digest, migration_allowed);
if (rc) {
INFO("Using NVRAM as system key; already populated%s.",
*migration_allowed ? " (legacy)" : "");
} else {
INFO("Using NVRAM as system key; finalization needed.");
}
return rc;
}
if (get_key_from_cmdline(digest)) {
INFO("Using kernel command line argument as system key.");
return 1;
}
if (g_file_get_contents("/sys/class/dmi/id/product_uuid",
&key, &length, NULL)) {
sha256(key, digest);
debug_dump_hex("system key", digest, DIGEST_LENGTH);
g_free(key);
INFO("Using UUID as system key.");
return 1;
}
INFO("Using default insecure system key.");
sha256((char *)kStaticKeyDefault, digest);
debug_dump_hex("system key", digest, DIGEST_LENGTH);
return 1;
}
/* Returns 1 on success, 0 on failure. */
static int get_random_bytes_tpm(unsigned char *buffer, int wanted)
{
uint32_t remaining = wanted;
tpm_init();
/* Read random bytes from TPM, which can return short reads. */
while (remaining) {
uint32_t result, size;
result = TlclGetRandom(buffer + (wanted - remaining),
remaining, &size);
if (result != TPM_SUCCESS || size > remaining) {
ERROR("TPM GetRandom failed: error 0x%02x.", result);
return 0;
}
remaining -= size;
}
return 1;
}
/* Returns 1 on success, 0 on failure. */
static int get_random_bytes(unsigned char *buffer, int wanted)
{
if (has_tpm && get_random_bytes_tpm(buffer, wanted))
return 1;
if (RAND_bytes(buffer, wanted))
return 1;
SSL_ERROR("RAND_bytes");
return 0;
}
static char *choose_encryption_key(void)
{
unsigned char rand_bytes[DIGEST_LENGTH];
unsigned char digest[DIGEST_LENGTH];
if (!get_random_bytes(rand_bytes, sizeof(rand_bytes)))
ERROR("No entropy source found -- using uninitialized stack");
SHA256(rand_bytes, DIGEST_LENGTH, digest);
debug_dump_hex("encryption key", digest, DIGEST_LENGTH);
return stringify_hex(digest, DIGEST_LENGTH);
}
static int check_bind(struct bind_mount *bind, enum bind_dir dir)
{
struct passwd *user;
struct group *group;
const gchar *target;
if (dir == BIND_SOURCE)
target = bind->src;
else
target = bind->dst;
if (access(target, R_OK) && mkdir(target, bind->mode)) {
PERROR("mkdir(%s)", target);
return -1;
}
/* Destination may be on read-only filesystem, so skip tweaks. */
if (dir == BIND_DEST)
return 0;
if (!(user = getpwnam(bind->owner))) {
PERROR("getpwnam(%s)", bind->owner);
return -1;
}
if (!(group = getgrnam(bind->group))) {
PERROR("getgrnam(%s)", bind->group);
return -1;
}
/* Must do explicit chmod since mkdir()'s mode respects umask. */
if (chmod(target, bind->mode)) {
PERROR("chmod(%s)", target);
return -1;
}
if (chown(target, user->pw_uid, group->gr_gid)) {
PERROR("chown(%s)", target);
return -1;
}
return 0;
}
static int migrate_contents(struct bind_mount *bind,
enum migration_method method)
{
const gchar *previous = NULL;
const gchar *pending = NULL;
gchar *dotdir;
/* Skip migration if the previous bind sources are missing. */
if (bind->pending && access(bind->pending, R_OK) == 0)
pending = bind->pending;
if (bind->previous && access(bind->previous, R_OK) == 0)
previous = bind->previous;
if (!pending && !previous)
return 0;
/* Pretend migration happened. */
if (method == MIGRATE_TEST_ONLY)
return 1;
check_bind(bind, BIND_SOURCE);
/* Prefer the pending-delete location when doing migration. */
if (!(dotdir = g_strdup_printf("%s/.", pending ? pending : previous))) {
PERROR("g_strdup_printf");
goto mark_for_removal;
}
INFO("Migrating bind mount contents %s to %s.", dotdir, bind->src);
const gchar *cp[] = {
"/bin/cp", "-a",
dotdir,
bind->src,
NULL
};
if (runcmd(cp, NULL) != 0) {
/* If the copy failed, it may have partially populated the
* new source, so we need to remove the new source and
* rebuild it. Regardless, the previous source must be removed
* as well.
*/
INFO("Failed to migrate %s to %s!", dotdir, bind->src);
remove_tree(bind->src);
check_bind(bind, BIND_SOURCE);
}
mark_for_removal:
g_free(dotdir);
/* The removal of the previous directory needs to happen at finalize
* time, otherwise /var state gets lost on a migration if the
* system is powered off before the encryption key is saved. Instead,
* relocate the directory so it can be removed (or re-migrated).
*/
if (previous) {
/* If both pending and previous directory exists, we must
* remove previous entirely now so it stops taking up disk
* space. The pending area will stay pending to be deleted
* later.
*/
if (pending)
remove_tree(pending);
if (rename(previous, bind->pending)) {
PERROR("rename(%s,%s)", previous, bind->pending);
}
}
/* As noted above, failures are unrecoverable, so getting here means
* "we're done" more than "it worked".
*/
return 1;
}
static void finalized(void)
{
/* TODO(keescook): once ext4 supports secure delete, just unlink. */
if (access(needs_finalization_path, R_OK) == 0) {
/* This is nearly useless on SSDs. */
shred(needs_finalization_path);
unlink(needs_finalization_path);
}
}
static void finalize(uint8_t *system_key, char *encryption_key)
{
struct bind_mount *bind;
INFO("Writing keyfile %s.", key_path);
if (!keyfile_write(key_path, system_key, encryption_key)) {
ERROR("Failed to write %s -- aborting.", key_path);
return;
}
finalized();
for (bind = bind_mounts; bind->src; ++ bind) {
if (!bind->pending || access(bind->pending, R_OK))
continue;
INFO("Removing %s.", bind->pending);
#if DEBUG_ENABLED
continue;
#endif
remove_tree(bind->pending);
}
}
static void needs_finalization(char *encryption_key)
{
uint8_t useless_key[DIGEST_LENGTH];
sha256((char *)kStaticKeyFinalizationNeeded, useless_key);
INFO("Writing finalization intent %s.", needs_finalization_path);
if (!keyfile_write(needs_finalization_path, useless_key,
encryption_key)) {
ERROR("Failed to write %s -- aborting.",
needs_finalization_path);
return;
}
}
/* This triggers the live encryption key to be written to disk, encrypted
* by the system key. It is intended to be called by Cryptohome once the
* TPM is done being set up. If the system key is passed as an argument,
* use it, otherwise attempt to query the TPM again.
*/
static int finalize_from_cmdline(char *key)
{
uint8_t system_key[DIGEST_LENGTH];
char *encryption_key;
int migrate;
/* Early sanity-check to see if the encrypted device exists,
* instead of failing at the end of this function.
*/
if (access(dmcrypt_dev, R_OK)) {
ERROR("'%s' does not exist, giving up.", dmcrypt_dev);
return EXIT_FAILURE;
}
if (key) {
if (strlen(key) != 2 * DIGEST_LENGTH) {
ERROR("Invalid key length.");
return EXIT_FAILURE;
}
if (!hexify_string(key, system_key, DIGEST_LENGTH)) {
ERROR("Failed to convert hex string to byte array");
return EXIT_FAILURE;
}
} else {
/* Factory mode will never call finalize from the command
* line, so force Production mode here.
*/
if (!find_system_key(kModeProduction, system_key, &migrate)) {
ERROR("Could not locate system key.");
return EXIT_FAILURE;
}
}
encryption_key = dm_get_key(dmcrypt_dev);
if (!encryption_key) {
ERROR("Could not locate encryption key for %s.", dmcrypt_dev);
return EXIT_FAILURE;
}
finalize(system_key, encryption_key);
return EXIT_SUCCESS;
}
static void spawn_resizer(const char *device, uint64_t blocks,
uint64_t blocks_max)
{
pid_t pid;
/* Skip resize before forking, if it's not going to happen. */
if (blocks >= blocks_max) {
INFO("Resizing skipped. blocks:%" PRIu64 " >= blocks_max:%" PRIu64,
blocks, blocks_max);
return;
}
fflush(NULL);
pid = fork();
if (pid < 0) {
PERROR("fork");
return;
}
if (pid != 0) {
INFO("Started filesystem resizing process %d.", pid);
return;
}
/* Child */
tpm_close();
INFO_INIT("Resizer spawned.");
if (daemon(0, 1)) {
PERROR("daemon");
goto out;
}
filesystem_resize(device, blocks, blocks_max);
out:
INFO_DONE("Done.");
exit(0);
}
/* Do all the work needed to actually set up the encrypted partition.
* Takes "mode" argument to help determine where the system key should
* come from.
*/
static int setup_encrypted(int mode)
{
int has_system_key;
uint8_t system_key[DIGEST_LENGTH];
char *encryption_key = NULL;
int migrate_allowed = 0, migrate_needed = 0, rebuild = 0;
gchar *lodev = NULL;
uint64_t sectors;
struct bind_mount *bind;
int sparsefd;
struct statvfs stateful_statbuf;
uint64_t blocks_min, blocks_max;
int valid_keyfile = 0;
/* Use the "system key" to decrypt the "encryption key" stored in
* the stateful partition.
*/
has_system_key = find_system_key(mode, system_key, &migrate_allowed);
if (has_system_key) {
encryption_key = keyfile_read(key_path, system_key);
} else {
INFO("No usable system key found.");
}
if (encryption_key) {
/* If we found a stored encryption key, we've already
* finished a complete login and Cryptohome Finalize
* so migration is finished.
*/
migrate_allowed = 0;
valid_keyfile = 1;
} else {
uint8_t useless_key[DIGEST_LENGTH];
sha256((char *)kStaticKeyFinalizationNeeded, useless_key);
encryption_key = keyfile_read(needs_finalization_path,
useless_key);
if (!encryption_key) {
/* This is a brand new system with no keys. */
INFO("Generating new encryption key.");
encryption_key = choose_encryption_key();
if (!encryption_key)
return 0;
rebuild = 1;
} else {
ERROR("Finalization unfinished! " \
"Encryption key still on disk!");
}
}
if (rebuild) {
uint64_t fs_bytes_max;
/* Wipe out the old files, and ignore errors. */
unlink(key_path);
unlink(block_path);
/* Calculate the desired size of the new partition. */
if (statvfs(stateful_mount, &stateful_statbuf)) {
PERROR(stateful_mount);
return 0;
}
fs_bytes_max = stateful_statbuf.f_blocks;
fs_bytes_max *= kSizePercent;
fs_bytes_max *= stateful_statbuf.f_frsize;
INFO("Creating sparse backing file with size %" PRIu64 ".",
fs_bytes_max);
/* Create the sparse file. */
sparsefd = sparse_create(block_path, fs_bytes_max);
if (sparsefd < 0) {
PERROR(block_path);
return 0;
}
} else {
sparsefd = open(block_path, O_RDWR | O_NOFOLLOW);
if (sparsefd < 0) {
PERROR(block_path);
return 0;
}
}
/* Set up loopback device. */
INFO("Loopback attaching %s (named %s).", block_path, dmcrypt_name);
lodev = loop_attach(sparsefd, dmcrypt_name);
if (!lodev || strlen(lodev) == 0) {
ERROR("loop_attach failed");
goto failed;
}
/* Get size as seen by block device. */
sectors = blk_size(lodev) / kSectorSize;
if (!sectors) {
ERROR("Failed to read device size");
goto lo_cleanup;
}
/* Mount loopback device with dm-crypt using the encryption key. */
INFO("Setting up dm-crypt %s as %s.", lodev, dmcrypt_dev);
if (!dm_setup(sectors, encryption_key, dmcrypt_name, lodev,
dmcrypt_dev, kCryptAllowDiscard)) {
/* If dm_setup() fails, it could be due to lacking
* "allow_discard" support, so try again with discard
* disabled. There doesn't seem to be a way to query
* the kernel for this feature short of a fallible
* version test or just trying to set up the dm table
* again, so do the latter.
*/
if (!dm_setup(sectors, encryption_key, dmcrypt_name, lodev,
dmcrypt_dev, !kCryptAllowDiscard)) {
ERROR("dm_setup failed");
goto lo_cleanup;
}
INFO("%s: dm-crypt does not support discard; disabling.",
dmcrypt_dev);
}
/* Decide now if any migration will happen. If so, we will not
* grow the new filesystem in the background, since we need to
* copy the contents over before /var is valid again.
*/
if (!rebuild)
migrate_allowed = 0;
if (migrate_allowed) {
for (bind = bind_mounts; bind->src; ++ bind) {
if (migrate_contents(bind, MIGRATE_TEST_ONLY))
migrate_needed = 1;
}
}
/* Calculate filesystem min/max size. */
blocks_max = sectors / (kExt4BlockSize / kSectorSize);
blocks_min = kExt4MinBytes / kExt4BlockSize;
if (migrate_needed && migrate_allowed) {
uint64_t fs_bytes_min;
uint64_t calc_blocks_min;
/* When doing a migration, the new filesystem must be
* large enough to hold what we're going to migrate.
* Instead of walking the bind mount sources, which would
* be IO and time expensive, just read the bytes-used
* value from statvfs (plus 10% for overhead). It will
* be too large, since it includes the eCryptFS data, so
* we must cap at the max filesystem size just in case.
*/
/* Bytes used in stateful partition plus 10%. */
fs_bytes_min = stateful_statbuf.f_blocks -
stateful_statbuf.f_bfree;
fs_bytes_min *= stateful_statbuf.f_frsize;
DEBUG("Stateful bytes used: %" PRIu64 "", fs_bytes_min);
fs_bytes_min *= kMigrationSizeMultiplier;
/* Minimum blocks needed for that many bytes. */
calc_blocks_min = fs_bytes_min / kExt4BlockSize;
/* Do not use more than blocks_max. */
if (calc_blocks_min > blocks_max)
calc_blocks_min = blocks_max;
/* Do not use less than blocks_min. */
else if (calc_blocks_min < blocks_min)
calc_blocks_min = blocks_min;
DEBUG("Maximum fs blocks: %" PRIu64 "", blocks_max);
DEBUG("Minimum fs blocks: %" PRIu64 "", blocks_min);
DEBUG("Migration blocks chosen: %" PRIu64 "", calc_blocks_min);
blocks_min = calc_blocks_min;
}
if (rebuild) {
INFO("Building filesystem on %s "
"(blocksize:%" PRIu64 ", min:%" PRIu64 ", max:%" PRIu64 ").",
dmcrypt_dev, kExt4BlockSize, blocks_min, blocks_max);
if (!filesystem_build(dmcrypt_dev, kExt4BlockSize,
blocks_min, blocks_max))
goto dm_cleanup;
}
/* Mount the dm-crypt partition finally. */
INFO("Mounting %s onto %s.", dmcrypt_dev, encrypted_mount);
if (access(encrypted_mount, R_OK) &&
mkdir(encrypted_mount, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)) {
PERROR(dmcrypt_dev);
goto dm_cleanup;
}
if (mount(dmcrypt_dev, encrypted_mount, kEncryptedFSType,
MS_NODEV | MS_NOEXEC | MS_NOSUID | MS_RELATIME,
"discard,commit=600")) {
PERROR("mount(%s,%s)", dmcrypt_dev, encrypted_mount);
goto dm_cleanup;
}
/* Always spawn filesystem resizer, in case growth was interrupted. */
/* TODO(keescook): if already full size, don't resize. */
spawn_resizer(dmcrypt_dev, blocks_min, blocks_max);
/* If the legacy lockbox NVRAM area exists, we've rebuilt the
* filesystem, and there are old bind sources on disk, attempt
* migration.
*/
if (migrate_needed && migrate_allowed) {
/* Migration needs to happen before bind mounting because
* some partitions were not already on the stateful partition,
* and would be over-mounted by the new bind mount.
*/
for (bind = bind_mounts; bind->src; ++ bind)
migrate_contents(bind, MIGRATE_FOR_REAL);
}
/* Perform bind mounts. */
for (bind = bind_mounts; bind->src; ++ bind) {
INFO("Bind mounting %s onto %s.", bind->src, bind->dst);
if (check_bind(bind, BIND_SOURCE) ||
check_bind(bind, BIND_DEST))
goto unbind;
if (mount(bind->src, bind->dst, "none", MS_BIND, NULL)) {
PERROR("mount(%s,%s)", bind->src, bind->dst);
goto unbind;
}
}
/* When we are creating the encrypted mount for the first time,
* either finalize immediately, or write the encryption key to
* disk (*sigh*) to handle the seemingly endless broken or
* wedged TPM states.
*/
if (rebuild) {
/* Devices that already have the NVRAM area populated and
* are being rebuilt don't need to wait for Cryptohome
* because the NVRAM area isn't going to change.
*
* Devices that do not have the NVRAM area populated
* may potentially never have the NVRAM area populated,
* which means we have to write the encryption key to
* disk until we finalize. Once secure deletion is
* supported on ext4, this won't be as horrible.
*/
if (has_system_key)
finalize(system_key, encryption_key);
else
needs_finalization(encryption_key);
} else {
/* If we're not rebuilding and we have a sane system
* key, then we must either need finalization (if we
* failed to finalize in Cryptohome), or we have already
* finalized, but maybe failed to clean up.
*/
if (has_system_key) {
if (!valid_keyfile)
finalize(system_key, encryption_key);
else
finalized();
}
}
free(lodev);
return 1;
unbind:
for (bind = bind_mounts; bind->src; ++ bind) {
INFO("Unmounting %s.", bind->dst);
umount(bind->dst);
}
INFO("Unmounting %s.", encrypted_mount);
umount(encrypted_mount);
dm_cleanup:
INFO("Removing %s.", dmcrypt_dev);
/* TODO(keescook): something holds this open briefly on mkfs failure
* and I haven't been able to catch it yet. Adding an "fuser" call
* here is sufficient to lose the race. Instead, just sleep during
* the error path.
*/
sleep(1);
dm_teardown(dmcrypt_dev);
lo_cleanup:
INFO("Unlooping %s.", lodev);
loop_detach(lodev);
failed:
free(lodev);
return 0;
}
/* Clean up all bind mounts, mounts, attaches, etc. Only the final
* action informs the return value. This makes it so that failures
* can be cleaned up from, and continue the shutdown process on a
* second call. If the loopback cannot be found, claim success.
*/
static int shutdown(void)
{
struct bind_mount *bind;
for (bind = bind_mounts; bind->src; ++ bind) {
INFO("Unmounting %s.", bind->dst);
errno = 0;
/* Allow either success or a "not mounted" failure. */
if (umount(bind->dst)) {
if (errno != EINVAL) {
PERROR("umount(%s)", bind->dst);
return EXIT_FAILURE;
}
}
}
INFO("Unmounting %s.", encrypted_mount);
errno = 0;
/* Allow either success or a "not mounted" failure. */
if (umount(encrypted_mount)) {
if (errno != EINVAL) {
PERROR("umount(%s)", encrypted_mount);
return EXIT_FAILURE;
}
}
/*
* Force syncs to make sure we don't tickle racey/buggy kernel
* routines that might be causing crosbug.com/p/17610.
*/
sync();
/* Optionally run fsck on the device after umount. */
if (getenv("MOUNT_ENCRYPTED_FSCK")) {
char *cmd;
if (asprintf(&cmd, "fsck -a %s", dmcrypt_dev) == -1)
PERROR("asprintf");
else {
int rc;
rc = system(cmd);
if (rc != 0)
ERROR("'%s' failed: %d", cmd, rc);
}
}
INFO("Removing %s.", dmcrypt_dev);
if (!dm_teardown(dmcrypt_dev))
ERROR("dm_teardown(%s)", dmcrypt_dev);
sync();
INFO("Unlooping %s (named %s).", block_path, dmcrypt_name);
if (!loop_detach_name(dmcrypt_name)) {
ERROR("loop_detach_name(%s)", dmcrypt_name);
return EXIT_FAILURE;
}
sync();
return EXIT_SUCCESS;
}
static void check_mount_states(void)
{
struct bind_mount *bind;
/* Verify stateful partition exists. */
if (access(stateful_mount, R_OK)) {
INFO("%s does not exist.", stateful_mount);
exit(1);
}
/* Verify stateful is either a separate mount, or that the
* root directory is writable (i.e. a factory install, dev mode
* where root remounted rw, etc).
*/
if (same_vfs(stateful_mount, rootdir) && access(rootdir, W_OK)) {
INFO("%s is not mounted.", stateful_mount);
exit(1);
}
/* Verify encrypted partition is missing or not already mounted. */
if (access(encrypted_mount, R_OK) == 0 &&
!same_vfs(encrypted_mount, stateful_mount)) {
INFO("%s already appears to be mounted.", encrypted_mount);
exit(0);
}
/* Verify that bind mount targets exist. */
for (bind = bind_mounts; bind->src; ++ bind) {
if (access(bind->dst, R_OK)) {
PERROR("%s mount point is missing.", bind->dst);
exit(1);
}
}
/* Verify that old bind mounts on stateful haven't happened yet. */
for (bind = bind_mounts; bind->src; ++ bind) {
if (bind->submount)
continue;
if (same_vfs(bind->dst, stateful_mount)) {
INFO("%s already bind mounted.", bind->dst);
exit(1);
}
}
INFO("VFS mount state sanity check ok.");
}
static int report_info(void)
{
uint8_t system_key[DIGEST_LENGTH];
uint8_t owned = 0;
struct bind_mount *mnt;
int migrate = -1;
printf("TPM: %s\n", has_tpm ? "yes" : "no");
if (has_tpm) {
printf("TPM Owned: %s\n", tpm_owned(&owned) != TPM_SUCCESS ?
"fail" : (owned ? "yes" : "no"));
}
printf("ChromeOS: %s\n", has_chromefw() ? "yes" : "no");
printf("CR48: %s\n", is_cr48() ? "yes" : "no");
if (has_chromefw()) {
int rc;
rc = get_nvram_key(system_key, &migrate);
if (!rc)
printf("NVRAM: missing.\n");
else {
printf("NVRAM: %s, %s.\n",
migrate ? "legacy" : "modern",
rc ? "available" : "ignored");
}
}
else {
printf("NVRAM: not present\n");
}
printf("rootdir: %s\n", rootdir);
printf("stateful_mount: %s\n", stateful_mount);
printf("key_path: %s\n", key_path);
printf("block_path: %s\n", block_path);
printf("encrypted_mount: %s\n", encrypted_mount);
printf("dmcrypt_name: %s\n", dmcrypt_name);
printf("dmcrypt_dev: %s\n", dmcrypt_dev);
printf("bind mounts:\n");
for (mnt = bind_mounts; mnt->src; ++mnt) {
printf("\tsrc:%s\n", mnt->src);
printf("\tdst:%s\n", mnt->dst);
printf("\tprevious:%s\n", mnt->previous);
printf("\tpending:%s\n", mnt->pending);
printf("\towner:%s\n", mnt->owner);
printf("\tmode:%o\n", mnt->mode);
printf("\tsubmount:%d\n", mnt->submount);
printf("\n");
}
return EXIT_SUCCESS;
}
/* This expects "mnt" to be allocated and initialized to NULL bytes. */
static int dup_bind_mount(struct bind_mount *mnt, struct bind_mount *old,
char *dir)
{
if (old->src && asprintf(&mnt->src, "%s%s", dir, old->src) == -1)
goto fail;
if (old->dst && asprintf(&mnt->dst, "%s%s", dir, old->dst) == -1)
goto fail;
if (old->previous && asprintf(&mnt->previous, "%s%s", dir,
old->previous) == -1)
goto fail;
if (old->pending && asprintf(&mnt->pending, "%s%s", dir,
old->pending) == -1)
goto fail;
if (!(mnt->owner = strdup(old->owner)))
goto fail;
if (!(mnt->group = strdup(old->group)))
goto fail;
mnt->mode = old->mode;
mnt->submount = old->submount;
return 0;
fail:
perror(__FUNCTION__);
return 1;
}
static void prepare_paths(void)
{
char *dir = NULL;
struct bind_mount *old;
struct bind_mount *mnt;
mnt = bind_mounts = calloc(sizeof(bind_mounts_default) /
sizeof(*bind_mounts_default),
sizeof(*bind_mounts_default));
if (!mnt) {
perror("calloc");
exit(1);
}
if ((dir = getenv("MOUNT_ENCRYPTED_ROOT")) != NULL) {
unsigned char digest[DIGEST_LENGTH];
gchar *hex;
if (asprintf(&rootdir, "%s/", dir) == -1)
goto fail;
/* Generate a shortened hash for non-default cryptnames,
* which will get re-used in the loopback name, which
* must be less than 64 (LO_NAME_SIZE) bytes. */
sha256(dir, digest);
hex = stringify_hex(digest, sizeof(digest));
hex[17] = '\0';
if (asprintf(&dmcrypt_name, "%s_%s", kCryptDevName,
hex) == -1)
goto fail;
g_free(hex);
} else {
rootdir = "/";
if (!(dmcrypt_name = strdup(kCryptDevName)))
goto fail;
}
if (asprintf(&stateful_mount, "%s%s", rootdir, STATEFUL_MNT) == -1)
goto fail;
if (asprintf(&key_path, "%s%s", rootdir,
STATEFUL_MNT "/encrypted.key") == -1)
goto fail;
if (asprintf(&needs_finalization_path, "%s%s", rootdir,
STATEFUL_MNT "/encrypted.needs-finalization") == -1)
goto fail;
if (asprintf(&block_path, "%s%s", rootdir,
STATEFUL_MNT "/encrypted.block") == -1)
goto fail;
if (asprintf(&encrypted_mount, "%s%s", rootdir, ENCRYPTED_MNT) == -1)
goto fail;
if (asprintf(&dmcrypt_dev, "/dev/mapper/%s", dmcrypt_name) == -1)
goto fail;
for (old = bind_mounts_default; old->src; ++old) {
if (dup_bind_mount(mnt++, old, rootdir))
exit(1);
}
return;
fail:
perror("asprintf");
exit(1);
}
/* Exports NVRAM contents to tmpfs for use by install attributes */
void nvram_export(uint8_t *data, uint32_t size)
{
int fd;
DEBUG("Export NVRAM contents");
if (!size || !data)
return;
fd = open(kNvramExport, O_WRONLY|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR);
if (fd < 0) {
perror("open(nvram_export)");
return;
}
if (write(fd, data, size) != size) {
/* Don't leave broken files around */
unlink(kNvramExport);
}
close(fd);
}
int main(int argc, char *argv[])
{
int okay;
int mode = kModeProduction;
INFO_INIT("Starting.");
prepare_paths();
if (argc > 1) {
if (!strcmp(argv[1], "umount"))
return shutdown();
else if (!strcmp(argv[1], "info"))
return report_info();
else if (!strcmp(argv[1], "finalize"))
return finalize_from_cmdline(argc > 2 ? argv[2] : NULL);
else if (!strcmp(argv[1], "factory"))
mode = kModeFactory;
else {
fprintf(stderr,
"Usage: %s [info|finalize|umount|factory]\n",
argv[0]);
return 1;
}
}
check_mount_states();
okay = setup_encrypted(mode);
/* If we fail, let chromeos_startup handle the stateful wipe. */
if (okay)
nvram_export(nvram_data, nvram_size);
INFO_DONE("Done.");
/* Continue boot. */
return okay ? EXIT_SUCCESS : EXIT_FAILURE;
}