blob: 41c8317493a7908f2999c15d15be4864af1be776 [file] [log] [blame]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* SHA-1 implementation largely based on libmincrypt in the the Android
* Open Source Project (platorm/system/core.git/libmincrypt/sha.c
*/
#include "2sysincludes.h"
#include "2common.h"
#include "2sha.h"
/*
* Some machines lack byteswap.h and endian.h. These have to use the
* slower code, even if they're little-endian.
*/
#if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
/*
* This version is about 28% faster than the generic version below,
* but assumes little-endianness.
*/
static uint32_t ror27(uint32_t val)
{
return (val >> 27) | (val << 5);
}
static uint32_t ror2(uint32_t val)
{
return (val >> 2) | (val << 30);
}
static uint32_t ror31(uint32_t val)
{
return (val >> 31) | (val << 1);
}
static void sha1_transform(struct vb2_sha1_context *ctx)
{
/* Note that this array uses 80*4=320 bytes of stack */
uint32_t W[80];
register uint32_t A, B, C, D, E;
int t;
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define SHA_F1(A,B,C,D,E,t) \
E += ror27(A) + \
(W[t] = bswap_32(ctx->buf.w[t])) + \
(D^(B&(C^D))) + 0x5A827999; \
B = ror2(B);
for (t = 0; t < 15; t += 5) {
SHA_F1(A,B,C,D,E,t + 0);
SHA_F1(E,A,B,C,D,t + 1);
SHA_F1(D,E,A,B,C,t + 2);
SHA_F1(C,D,E,A,B,t + 3);
SHA_F1(B,C,D,E,A,t + 4);
}
SHA_F1(A,B,C,D,E,t + 0); /* 16th one, t == 15 */
#undef SHA_F1
#define SHA_F1(A,B,C,D,E,t) \
E += ror27(A) + \
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
(D^(B&(C^D))) + 0x5A827999; \
B = ror2(B);
SHA_F1(E,A,B,C,D,t + 1);
SHA_F1(D,E,A,B,C,t + 2);
SHA_F1(C,D,E,A,B,t + 3);
SHA_F1(B,C,D,E,A,t + 4);
#undef SHA_F1
#define SHA_F2(A,B,C,D,E,t) \
E += ror27(A) + \
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
(B^C^D) + 0x6ED9EBA1; \
B = ror2(B);
for (t = 20; t < 40; t += 5) {
SHA_F2(A,B,C,D,E,t + 0);
SHA_F2(E,A,B,C,D,t + 1);
SHA_F2(D,E,A,B,C,t + 2);
SHA_F2(C,D,E,A,B,t + 3);
SHA_F2(B,C,D,E,A,t + 4);
}
#undef SHA_F2
#define SHA_F3(A,B,C,D,E,t) \
E += ror27(A) + \
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
((B&C)|(D&(B|C))) + 0x8F1BBCDC; \
B = ror2(B);
for (; t < 60; t += 5) {
SHA_F3(A,B,C,D,E,t + 0);
SHA_F3(E,A,B,C,D,t + 1);
SHA_F3(D,E,A,B,C,t + 2);
SHA_F3(C,D,E,A,B,t + 3);
SHA_F3(B,C,D,E,A,t + 4);
}
#undef SHA_F3
#define SHA_F4(A,B,C,D,E,t) \
E += ror27(A) + \
(W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
(B^C^D) + 0xCA62C1D6; \
B = ror2(B);
for (; t < 80; t += 5) {
SHA_F4(A,B,C,D,E,t + 0);
SHA_F4(E,A,B,C,D,t + 1);
SHA_F4(D,E,A,B,C,t + 2);
SHA_F4(C,D,E,A,B,t + 3);
SHA_F4(B,C,D,E,A,t + 4);
}
#undef SHA_F4
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
void vb2_sha1_update(struct vb2_sha1_context *ctx,
const uint8_t *data,
uint32_t size)
{
int i = ctx->count % sizeof(ctx->buf);
const uint8_t *p = (const uint8_t*)data;
ctx->count += size;
while (size > sizeof(ctx->buf) - i) {
memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
size -= sizeof(ctx->buf) - i;
p += sizeof(ctx->buf) - i;
sha1_transform(ctx);
i = 0;
}
while (size--) {
ctx->buf.b[i++] = *p++;
if (i == sizeof(ctx->buf)) {
sha1_transform(ctx);
i = 0;
}
}
}
uint8_t *vb2_sha1_finalize(struct vb2_sha1_context *ctx)
{
uint32_t cnt = ctx->count * 8;
int i;
vb2_sha1_update(ctx, (uint8_t*)"\x80", 1);
while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
vb2_sha1_update(ctx, (uint8_t*)"\0", 1);
}
for (i = 0; i < 8; ++i) {
uint8_t tmp = cnt >> ((7 - i) * 8);
vb2_sha1_update(ctx, &tmp, 1);
}
for (i = 0; i < 5; i++) {
ctx->buf.w[i] = bswap_32(ctx->state[i]);
}
return ctx->buf.b;
}
#else /* #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) */
#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
static void sha1_transform(struct vb2_sha1_context *ctx)
{
/* Note that this array uses 80*4=320 bytes of stack */
uint32_t W[80];
uint32_t A, B, C, D, E;
uint8_t *p = ctx->buf;
int t;
for(t = 0; t < 16; ++t) {
uint32_t tmp = *p++ << 24;
tmp |= *p++ << 16;
tmp |= *p++ << 8;
tmp |= *p++;
W[t] = tmp;
}
for(; t < 80; t++) {
W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
for(t = 0; t < 80; t++) {
uint32_t tmp = rol(5,A) + E + W[t];
if (t < 20)
tmp += (D^(B&(C^D))) + 0x5A827999;
else if ( t < 40)
tmp += (B^C^D) + 0x6ED9EBA1;
else if ( t < 60)
tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
else
tmp += (B^C^D) + 0xCA62C1D6;
E = D;
D = C;
C = rol(30,B);
B = A;
A = tmp;
}
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
void vb2_sha1_update(struct vb2_sha1_context *ctx,
const uint8_t *data,
uint32_t size)
{
int i = (int)(ctx->count % sizeof(ctx->buf));
const uint8_t* p = (const uint8_t*) data;
ctx->count += size;
while (size--) {
ctx->buf[i++] = *p++;
if (i == sizeof(ctx->buf)) {
sha1_transform(ctx);
i = 0;
}
}
}
void vb2_sha1_finalize(struct vb2_sha1_context *ctx, uint8_t *digest)
{
uint32_t cnt = ctx->count << 3;
int i;
vb2_sha1_update(ctx, (uint8_t*)"\x80", 1);
while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
vb2_sha1_update(ctx, (uint8_t*)"\0", 1);
}
for (i = 0; i < 8; ++i) {
uint8_t tmp = (uint8_t)((uint64_t)cnt >> ((7 - i) * 8));
vb2_sha1_update(ctx, &tmp, 1);
}
for (i = 0; i < 5; i++) {
uint32_t tmp = ctx->state[i];
*digest++ = (uint8_t)(tmp >> 24);
*digest++ = (uint8_t)(tmp >> 16);
*digest++ = (uint8_t)(tmp >> 8);
*digest++ = (uint8_t)(tmp >> 0);
}
}
#endif /* endianness */
void vb2_sha1_init(struct vb2_sha1_context *ctx)
{
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xc3d2e1f0;
ctx->count = 0;
}