| /* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * SHA-1 implementation largely based on libmincrypt in the the Android |
| * Open Source Project (platorm/system/core.git/libmincrypt/sha.c |
| */ |
| |
| #include "2common.h" |
| #include "2sha.h" |
| #include "2sysincludes.h" |
| |
| /* |
| * Some machines lack byteswap.h and endian.h. These have to use the |
| * slower code, even if they're little-endian. |
| */ |
| |
| #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) |
| |
| /* |
| * This version is about 28% faster than the generic version below, |
| * but assumes little-endianness. |
| */ |
| static uint32_t ror27(uint32_t val) |
| { |
| return (val >> 27) | (val << 5); |
| } |
| |
| static uint32_t ror2(uint32_t val) |
| { |
| return (val >> 2) | (val << 30); |
| } |
| |
| static uint32_t ror31(uint32_t val) |
| { |
| return (val >> 31) | (val << 1); |
| } |
| |
| static void sha1_transform(struct vb2_sha1_context *ctx) |
| { |
| /* Note that this array uses 80*4=320 bytes of stack */ |
| uint32_t W[80]; |
| register uint32_t A, B, C, D, E; |
| int t; |
| |
| A = ctx->state[0]; |
| B = ctx->state[1]; |
| C = ctx->state[2]; |
| D = ctx->state[3]; |
| E = ctx->state[4]; |
| |
| #define SHA_F1(A,B,C,D,E,t) \ |
| E += ror27(A) + \ |
| (W[t] = bswap_32(ctx->buf.w[t])) + \ |
| (D^(B&(C^D))) + 0x5A827999; \ |
| B = ror2(B); |
| |
| for (t = 0; t < 15; t += 5) { |
| SHA_F1(A,B,C,D,E,t + 0); |
| SHA_F1(E,A,B,C,D,t + 1); |
| SHA_F1(D,E,A,B,C,t + 2); |
| SHA_F1(C,D,E,A,B,t + 3); |
| SHA_F1(B,C,D,E,A,t + 4); |
| } |
| SHA_F1(A,B,C,D,E,t + 0); /* 16th one, t == 15 */ |
| |
| #undef SHA_F1 |
| |
| #define SHA_F1(A,B,C,D,E,t) \ |
| E += ror27(A) + \ |
| (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ |
| (D^(B&(C^D))) + 0x5A827999; \ |
| B = ror2(B); |
| |
| SHA_F1(E,A,B,C,D,t + 1); |
| SHA_F1(D,E,A,B,C,t + 2); |
| SHA_F1(C,D,E,A,B,t + 3); |
| SHA_F1(B,C,D,E,A,t + 4); |
| |
| #undef SHA_F1 |
| |
| #define SHA_F2(A,B,C,D,E,t) \ |
| E += ror27(A) + \ |
| (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ |
| (B^C^D) + 0x6ED9EBA1; \ |
| B = ror2(B); |
| |
| for (t = 20; t < 40; t += 5) { |
| SHA_F2(A,B,C,D,E,t + 0); |
| SHA_F2(E,A,B,C,D,t + 1); |
| SHA_F2(D,E,A,B,C,t + 2); |
| SHA_F2(C,D,E,A,B,t + 3); |
| SHA_F2(B,C,D,E,A,t + 4); |
| } |
| |
| #undef SHA_F2 |
| |
| #define SHA_F3(A,B,C,D,E,t) \ |
| E += ror27(A) + \ |
| (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ |
| ((B&C)|(D&(B|C))) + 0x8F1BBCDC; \ |
| B = ror2(B); |
| |
| for (; t < 60; t += 5) { |
| SHA_F3(A,B,C,D,E,t + 0); |
| SHA_F3(E,A,B,C,D,t + 1); |
| SHA_F3(D,E,A,B,C,t + 2); |
| SHA_F3(C,D,E,A,B,t + 3); |
| SHA_F3(B,C,D,E,A,t + 4); |
| } |
| |
| #undef SHA_F3 |
| |
| #define SHA_F4(A,B,C,D,E,t) \ |
| E += ror27(A) + \ |
| (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ |
| (B^C^D) + 0xCA62C1D6; \ |
| B = ror2(B); |
| |
| for (; t < 80; t += 5) { |
| SHA_F4(A,B,C,D,E,t + 0); |
| SHA_F4(E,A,B,C,D,t + 1); |
| SHA_F4(D,E,A,B,C,t + 2); |
| SHA_F4(C,D,E,A,B,t + 3); |
| SHA_F4(B,C,D,E,A,t + 4); |
| } |
| |
| #undef SHA_F4 |
| |
| ctx->state[0] += A; |
| ctx->state[1] += B; |
| ctx->state[2] += C; |
| ctx->state[3] += D; |
| ctx->state[4] += E; |
| } |
| |
| void vb2_sha1_update(struct vb2_sha1_context *ctx, |
| const uint8_t *data, |
| uint32_t size) |
| { |
| int i = ctx->count % sizeof(ctx->buf); |
| const uint8_t *p = (const uint8_t*)data; |
| |
| ctx->count += size; |
| |
| while (size > sizeof(ctx->buf) - i) { |
| memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i); |
| size -= sizeof(ctx->buf) - i; |
| p += sizeof(ctx->buf) - i; |
| sha1_transform(ctx); |
| i = 0; |
| } |
| |
| while (size--) { |
| ctx->buf.b[i++] = *p++; |
| if (i == sizeof(ctx->buf)) { |
| sha1_transform(ctx); |
| i = 0; |
| } |
| } |
| } |
| |
| uint8_t *vb2_sha1_finalize(struct vb2_sha1_context *ctx) |
| { |
| uint32_t cnt = ctx->count * 8; |
| int i; |
| |
| vb2_sha1_update(ctx, (uint8_t*)"\x80", 1); |
| while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { |
| vb2_sha1_update(ctx, (uint8_t*)"\0", 1); |
| } |
| |
| for (i = 0; i < 8; ++i) { |
| uint8_t tmp = cnt >> ((7 - i) * 8); |
| vb2_sha1_update(ctx, &tmp, 1); |
| } |
| |
| for (i = 0; i < 5; i++) { |
| ctx->buf.w[i] = bswap_32(ctx->state[i]); |
| } |
| |
| return ctx->buf.b; |
| } |
| |
| #else /* #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) */ |
| |
| #define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
| |
| static void sha1_transform(struct vb2_sha1_context *ctx) |
| { |
| /* Note that this array uses 80*4=320 bytes of stack */ |
| uint32_t W[80]; |
| uint32_t A, B, C, D, E; |
| uint8_t *p = ctx->buf; |
| int t; |
| |
| for(t = 0; t < 16; ++t) { |
| uint32_t tmp = (uint32_t)*p++ << 24; |
| tmp |= *p++ << 16; |
| tmp |= *p++ << 8; |
| tmp |= *p++; |
| W[t] = tmp; |
| } |
| |
| for(; t < 80; t++) { |
| W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); |
| } |
| |
| A = ctx->state[0]; |
| B = ctx->state[1]; |
| C = ctx->state[2]; |
| D = ctx->state[3]; |
| E = ctx->state[4]; |
| |
| for(t = 0; t < 80; t++) { |
| uint32_t tmp = rol(5,A) + E + W[t]; |
| |
| if (t < 20) |
| tmp += (D^(B&(C^D))) + 0x5A827999; |
| else if ( t < 40) |
| tmp += (B^C^D) + 0x6ED9EBA1; |
| else if ( t < 60) |
| tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC; |
| else |
| tmp += (B^C^D) + 0xCA62C1D6; |
| |
| E = D; |
| D = C; |
| C = rol(30,B); |
| B = A; |
| A = tmp; |
| } |
| |
| ctx->state[0] += A; |
| ctx->state[1] += B; |
| ctx->state[2] += C; |
| ctx->state[3] += D; |
| ctx->state[4] += E; |
| } |
| |
| void vb2_sha1_update(struct vb2_sha1_context *ctx, |
| const uint8_t *data, |
| uint32_t size) |
| { |
| int i = (int)(ctx->count % sizeof(ctx->buf)); |
| const uint8_t* p = (const uint8_t*) data; |
| |
| ctx->count += size; |
| |
| while (size--) { |
| ctx->buf[i++] = *p++; |
| if (i == sizeof(ctx->buf)) { |
| sha1_transform(ctx); |
| i = 0; |
| } |
| } |
| } |
| |
| void vb2_sha1_finalize(struct vb2_sha1_context *ctx, uint8_t *digest) |
| { |
| uint32_t cnt = ctx->count << 3; |
| int i; |
| |
| vb2_sha1_update(ctx, (uint8_t*)"\x80", 1); |
| while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { |
| vb2_sha1_update(ctx, (uint8_t*)"\0", 1); |
| } |
| for (i = 0; i < 8; ++i) { |
| uint8_t tmp = (uint8_t)((uint64_t)cnt >> ((7 - i) * 8)); |
| vb2_sha1_update(ctx, &tmp, 1); |
| } |
| |
| for (i = 0; i < 5; i++) { |
| uint32_t tmp = ctx->state[i]; |
| *digest++ = (uint8_t)(tmp >> 24); |
| *digest++ = (uint8_t)(tmp >> 16); |
| *digest++ = (uint8_t)(tmp >> 8); |
| *digest++ = (uint8_t)(tmp >> 0); |
| } |
| } |
| |
| #endif /* endianness */ |
| |
| void vb2_sha1_init(struct vb2_sha1_context *ctx) |
| { |
| ctx->state[0] = 0x67452301; |
| ctx->state[1] = 0xefcdab89; |
| ctx->state[2] = 0x98badcfe; |
| ctx->state[3] = 0x10325476; |
| ctx->state[4] = 0xc3d2e1f0; |
| ctx->count = 0; |
| } |