| /* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| /* |
| * Implementation of RSA signature verification which uses a pre-processed key |
| * for computation. The code extends Android's RSA verification code to support |
| * multiple RSA key lengths and hash digest algorithms. |
| */ |
| |
| #include "2common.h" |
| #include "2rsa.h" |
| #include "2sha.h" |
| #include "2sysincludes.h" |
| #include "vboot_test.h" |
| |
| /** |
| * a[] -= mod |
| */ |
| static void subM(const struct vb2_public_key *key, uint32_t *a) |
| { |
| int64_t A = 0; |
| uint32_t i; |
| for (i = 0; i < key->arrsize; ++i) { |
| A += (uint64_t)a[i] - key->n[i]; |
| a[i] = (uint32_t)A; |
| A >>= 32; |
| } |
| } |
| |
| /** |
| * Return a[] >= mod |
| */ |
| int vb2_mont_ge(const struct vb2_public_key *key, uint32_t *a) |
| { |
| uint32_t i; |
| for (i = key->arrsize; i;) { |
| --i; |
| if (a[i] < key->n[i]) |
| return 0; |
| if (a[i] > key->n[i]) |
| return 1; |
| } |
| return 1; /* equal */ |
| } |
| |
| /** |
| * Montgomery c[] += a * b[] / R % mod |
| */ |
| static void montMulAdd(const struct vb2_public_key *key, |
| uint32_t *c, |
| const uint32_t a, |
| const uint32_t *b) |
| { |
| uint64_t A = (uint64_t)a * b[0] + c[0]; |
| uint32_t d0 = (uint32_t)A * key->n0inv; |
| uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; |
| uint32_t i; |
| |
| for (i = 1; i < key->arrsize; ++i) { |
| A = (A >> 32) + (uint64_t)a * b[i] + c[i]; |
| B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; |
| c[i - 1] = (uint32_t)B; |
| } |
| |
| A = (A >> 32) + (B >> 32); |
| |
| c[i - 1] = (uint32_t)A; |
| |
| if (A >> 32) { |
| subM(key, c); |
| } |
| } |
| |
| /** |
| * Montgomery c[] += 0 * b[] / R % mod |
| */ |
| static void montMulAdd0(const struct vb2_public_key *key, |
| uint32_t *c, |
| const uint32_t *b) |
| { |
| uint32_t d0 = c[0] * key->n0inv; |
| uint64_t B = (uint64_t)d0 * key->n[0] + c[0]; |
| uint32_t i; |
| |
| for (i = 1; i < key->arrsize; ++i) { |
| B = (B >> 32) + (uint64_t)d0 * key->n[i] + c[i]; |
| c[i - 1] = (uint32_t)B; |
| } |
| |
| c[i - 1] = B >> 32; |
| } |
| |
| /** |
| * Montgomery c[] = a[] * b[] / R % mod |
| */ |
| static void montMul(const struct vb2_public_key *key, |
| uint32_t *c, |
| const uint32_t *a, |
| const uint32_t *b) |
| { |
| uint32_t i; |
| for (i = 0; i < key->arrsize; ++i) { |
| c[i] = 0; |
| } |
| for (i = 0; i < key->arrsize; ++i) { |
| montMulAdd(key, c, a[i], b); |
| } |
| } |
| |
| /* Montgomery c[] = a[] * 1 / R % key. */ |
| static void montMul1(const struct vb2_public_key *key, |
| uint32_t *c, |
| const uint32_t *a) |
| { |
| int i; |
| |
| for (i = 0; i < key->arrsize; ++i) |
| c[i] = 0; |
| |
| montMulAdd(key, c, 1, a); |
| for (i = 1; i < key->arrsize; ++i) |
| montMulAdd0(key, c, a); |
| } |
| |
| /** |
| * In-place public exponentiation. |
| * |
| * @param key Key to use in signing |
| * @param inout Input and output big-endian byte array |
| * @param workbuf32 Work buffer; caller must verify this is |
| * (3 * key->arrsize) elements long. |
| * @param exp RSA public exponent: either 65537 (F4) or 3 |
| */ |
| static void modpow(const struct vb2_public_key *key, uint8_t *inout, |
| uint32_t *workbuf32, int exp) |
| { |
| uint32_t *a = workbuf32; |
| uint32_t *aR = a + key->arrsize; |
| uint32_t *aaR = aR + key->arrsize; |
| uint32_t *aaa = aaR; /* Re-use location. */ |
| int i; |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0; i < (int)key->arrsize; ++i) { |
| uint32_t tmp = |
| ((uint32_t)inout[((key->arrsize - 1 - i) * 4) + 0] |
| << 24) | |
| (inout[((key->arrsize - 1 - i) * 4) + 1] << 16) | |
| (inout[((key->arrsize - 1 - i) * 4) + 2] << 8) | |
| (inout[((key->arrsize - 1 - i) * 4) + 3] << 0); |
| a[i] = tmp; |
| } |
| |
| montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ |
| if (exp == 3) { |
| montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| montMul(key, a, aaR, aR); /* a = aaR * aR / R mod M */ |
| montMul1(key, aaa, a); /* aaa = a * 1 / R mod M */ |
| } else { |
| /* Exponent 65537 */ |
| for (i = 0; i < 16; i+=2) { |
| montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ |
| } |
| montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ |
| } |
| |
| /* Make sure aaa < mod; aaa is at most 1x mod too large. */ |
| if (vb2_mont_ge(key, aaa)) { |
| subM(key, aaa); |
| } |
| |
| /* Convert to bigendian byte array */ |
| for (i = (int)key->arrsize - 1; i >= 0; --i) { |
| uint32_t tmp = aaa[i]; |
| *inout++ = (uint8_t)(tmp >> 24); |
| *inout++ = (uint8_t)(tmp >> 16); |
| *inout++ = (uint8_t)(tmp >> 8); |
| *inout++ = (uint8_t)(tmp >> 0); |
| } |
| } |
| |
| uint32_t vb2_rsa_sig_size(enum vb2_signature_algorithm sig_alg) |
| { |
| switch (sig_alg) { |
| case VB2_SIG_RSA1024: |
| return 1024 / 8; |
| case VB2_SIG_RSA2048: |
| case VB2_SIG_RSA2048_EXP3: |
| return 2048 / 8; |
| case VB2_SIG_RSA3072_EXP3: |
| return 3072 / 8; |
| case VB2_SIG_RSA4096: |
| return 4096 / 8; |
| case VB2_SIG_RSA8192: |
| return 8192 / 8; |
| default: |
| return 0; |
| } |
| } |
| |
| /** |
| * Return the exponent used by an RSA algorithm |
| * |
| * @param sig_alg Signature algorithm |
| * @return The exponent to use (3 or 65537(F4)), or 0 if error. |
| */ |
| static uint32_t vb2_rsa_exponent(enum vb2_signature_algorithm sig_alg) |
| { |
| switch (sig_alg) { |
| case VB2_SIG_RSA1024: |
| case VB2_SIG_RSA2048: |
| case VB2_SIG_RSA4096: |
| case VB2_SIG_RSA8192: |
| return 65537; |
| case VB2_SIG_RSA2048_EXP3: |
| case VB2_SIG_RSA3072_EXP3: |
| return 3; |
| default: |
| return 0; |
| } |
| } |
| |
| uint32_t vb2_packed_key_size(enum vb2_signature_algorithm sig_alg) |
| { |
| uint32_t sig_size = vb2_rsa_sig_size(sig_alg); |
| |
| if (!sig_size) |
| return 0; |
| |
| /* |
| * Total size needed by a RSAPublicKey buffer is = |
| * 2 * key_len bytes for the n and rr arrays |
| * + sizeof len + sizeof n0inv. |
| */ |
| return 2 * sig_size + 2 * sizeof(uint32_t); |
| } |
| |
| /* |
| * PKCS 1.5 padding (from the RSA PKCS#1 v2.1 standard) |
| * |
| * Depending on the RSA key size and hash function, the padding is calculated |
| * as follows: |
| * |
| * 0x00 || 0x01 || PS || 0x00 || T |
| * |
| * T: DER Encoded DigestInfo value which depends on the hash function used. |
| * |
| * SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H. |
| * SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H. |
| * SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H. |
| * |
| * Length(T) = 35 octets for SHA-1 |
| * Length(T) = 51 octets for SHA-256 |
| * Length(T) = 83 octets for SHA-512 |
| * |
| * PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF |
| */ |
| static const uint8_t sha1_tail[] = { |
| 0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b, |
| 0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14 |
| }; |
| |
| static const uint8_t sha256_tail[] = { |
| 0x00,0x30,0x31,0x30,0x0d,0x06,0x09,0x60, |
| 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, |
| 0x05,0x00,0x04,0x20 |
| }; |
| |
| static const uint8_t sha512_tail[] = { |
| 0x00,0x30,0x51,0x30,0x0d,0x06,0x09,0x60, |
| 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03, |
| 0x05,0x00,0x04,0x40 |
| }; |
| |
| /** |
| * Check pkcs 1.5 padding bytes |
| * |
| * @param sig Signature to verify |
| * @param key Key to take signature and hash algorithms from |
| * @return VB2_SUCCESS, or non-zero if error. |
| */ |
| test_mockable |
| vb2_error_t vb2_check_padding(const uint8_t *sig, |
| const struct vb2_public_key *key) |
| { |
| /* Determine padding to use depending on the signature type */ |
| uint32_t sig_size = vb2_rsa_sig_size(key->sig_alg); |
| uint32_t hash_size = vb2_digest_size(key->hash_alg); |
| uint32_t pad_size = sig_size - hash_size; |
| const uint8_t *tail; |
| uint32_t tail_size; |
| int result = 0; |
| int i; |
| |
| if (!sig_size || !hash_size || hash_size > sig_size) |
| return VB2_ERROR_RSA_PADDING_SIZE; |
| |
| switch (key->hash_alg) { |
| case VB2_HASH_SHA1: |
| tail = sha1_tail; |
| tail_size = sizeof(sha1_tail); |
| break; |
| case VB2_HASH_SHA256: |
| tail = sha256_tail; |
| tail_size = sizeof(sha256_tail); |
| break; |
| case VB2_HASH_SHA512: |
| tail = sha512_tail; |
| tail_size = sizeof(sha512_tail); |
| break; |
| default: |
| return VB2_ERROR_RSA_PADDING_ALGORITHM; |
| } |
| |
| /* First 2 bytes are always 0x00 0x01 */ |
| result |= *sig++ ^ 0x00; |
| result |= *sig++ ^ 0x01; |
| |
| /* Then 0xff bytes until the tail */ |
| for (i = 0; i < pad_size - tail_size - 2; i++) |
| result |= *sig++ ^ 0xff; |
| |
| /* |
| * Then the tail. Even though there are probably no timing issues |
| * here, we use vb2_safe_memcmp() just to be on the safe side. |
| */ |
| result |= vb2_safe_memcmp(sig, tail, tail_size); |
| |
| return result ? VB2_ERROR_RSA_PADDING : VB2_SUCCESS; |
| } |
| |
| vb2_error_t vb2_rsa_verify_digest(const struct vb2_public_key *key, |
| uint8_t *sig, const uint8_t *digest, |
| const struct vb2_workbuf *wb) |
| { |
| struct vb2_workbuf wblocal = *wb; |
| uint32_t *workbuf32; |
| uint32_t key_bytes; |
| int sig_size; |
| int pad_size; |
| int exp; |
| vb2_error_t rv = VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED; |
| |
| if (!key || !sig || !digest) |
| return VB2_ERROR_RSA_VERIFY_PARAM; |
| |
| sig_size = vb2_rsa_sig_size(key->sig_alg); |
| exp = vb2_rsa_exponent(key->sig_alg); |
| if (!sig_size || !exp) { |
| VB2_DEBUG("Invalid signature type!\n"); |
| return VB2_ERROR_RSA_VERIFY_ALGORITHM; |
| } |
| |
| /* Signature length should be same as key length */ |
| key_bytes = key->arrsize * sizeof(uint32_t); |
| if (key_bytes != sig_size) { |
| VB2_DEBUG("Signature is of incorrect length!\n"); |
| return VB2_ERROR_RSA_VERIFY_SIG_LEN; |
| } |
| |
| workbuf32 = vb2_workbuf_alloc(&wblocal, 3 * key_bytes); |
| if (!workbuf32) { |
| VB2_DEBUG("ERROR - vboot2 work buffer too small!\n"); |
| return VB2_ERROR_RSA_VERIFY_WORKBUF; |
| } |
| |
| if (key->allow_hwcrypto) { |
| rv = vb2ex_hwcrypto_modexp(key, sig, workbuf32, exp); |
| |
| if (rv == VB2_SUCCESS) |
| VB2_DEBUG("Using HW modexp engine for sig_alg %d\n", |
| key->sig_alg); |
| else |
| VB2_DEBUG("HW modexp for sig_alg %d not supported, using SW\n", |
| key->sig_alg); |
| } else { |
| VB2_DEBUG("HW modexp forbidden, using SW\n"); |
| } |
| |
| if (rv != VB2_SUCCESS) { |
| modpow(key, sig, workbuf32, exp); |
| } |
| |
| vb2_workbuf_free(&wblocal, 3 * key_bytes); |
| |
| /* |
| * Check padding. Only fail immediately if the padding size is bad. |
| * Otherwise, continue on to check the digest to reduce the risk of |
| * timing based attacks. |
| */ |
| rv = vb2_check_padding(sig, key); |
| if (rv == VB2_ERROR_RSA_PADDING_SIZE) |
| return rv; |
| |
| /* |
| * Check digest. Even though there are probably no timing issues here, |
| * use vb2_safe_memcmp() just to be on the safe side. (That's also why |
| * we don't return before this check if the padding check failed.) |
| */ |
| pad_size = sig_size - vb2_digest_size(key->hash_alg); |
| if (vb2_safe_memcmp(sig + pad_size, digest, key_bytes - pad_size)) { |
| VB2_DEBUG("Digest check failed!\n"); |
| if (!rv) |
| rv = VB2_ERROR_RSA_VERIFY_DIGEST; |
| } |
| |
| return rv; |
| } |