blob: 962558df19dfc20c8e5dd31966d3478214dfbac0 [file] [log] [blame] [edit]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* Implementation of RSA signature verification which uses a pre-processed key
* for computation. The code extends Android's RSA verification code to support
* multiple RSA key lengths and hash digest algorithms.
*/
#include "2common.h"
#include "2rsa.h"
#include "2sha.h"
#include "2sysincludes.h"
#include "vboot_test.h"
/**
* a[] -= mod
*/
static void subM(const struct vb2_public_key *key, uint32_t *a)
{
int64_t A = 0;
uint32_t i;
for (i = 0; i < key->arrsize; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
/**
* Return a[] >= mod
*/
int vb2_mont_ge(const struct vb2_public_key *key, uint32_t *a)
{
uint32_t i;
for (i = key->arrsize; i;) {
--i;
if (a[i] < key->n[i])
return 0;
if (a[i] > key->n[i])
return 1;
}
return 1; /* equal */
}
/**
* Montgomery c[] += a * b[] / R % mod
*/
static void montMulAdd(const struct vb2_public_key *key,
uint32_t *c,
const uint32_t a,
const uint32_t *b)
{
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
uint32_t i;
for (i = 1; i < key->arrsize; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
/**
* Montgomery c[] += 0 * b[] / R % mod
*/
static void montMulAdd0(const struct vb2_public_key *key,
uint32_t *c,
const uint32_t *b)
{
uint32_t d0 = c[0] * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + c[0];
uint32_t i;
for (i = 1; i < key->arrsize; ++i) {
B = (B >> 32) + (uint64_t)d0 * key->n[i] + c[i];
c[i - 1] = (uint32_t)B;
}
c[i - 1] = B >> 32;
}
/**
* Montgomery c[] = a[] * b[] / R % mod
*/
static void montMul(const struct vb2_public_key *key,
uint32_t *c,
const uint32_t *a,
const uint32_t *b)
{
uint32_t i;
for (i = 0; i < key->arrsize; ++i) {
c[i] = 0;
}
for (i = 0; i < key->arrsize; ++i) {
montMulAdd(key, c, a[i], b);
}
}
/* Montgomery c[] = a[] * 1 / R % key. */
static void montMul1(const struct vb2_public_key *key,
uint32_t *c,
const uint32_t *a)
{
int i;
for (i = 0; i < key->arrsize; ++i)
c[i] = 0;
montMulAdd(key, c, 1, a);
for (i = 1; i < key->arrsize; ++i)
montMulAdd0(key, c, a);
}
/**
* In-place public exponentiation.
*
* @param key Key to use in signing
* @param inout Input and output big-endian byte array
* @param workbuf32 Work buffer; caller must verify this is
* (3 * key->arrsize) elements long.
* @param exp RSA public exponent: either 65537 (F4) or 3
*/
static void modpow(const struct vb2_public_key *key, uint8_t *inout,
uint32_t *workbuf32, int exp)
{
uint32_t *a = workbuf32;
uint32_t *aR = a + key->arrsize;
uint32_t *aaR = aR + key->arrsize;
uint32_t *aaa = aaR; /* Re-use location. */
int i;
/* Convert from big endian byte array to little endian word array. */
for (i = 0; i < (int)key->arrsize; ++i) {
uint32_t tmp =
((uint32_t)inout[((key->arrsize - 1 - i) * 4) + 0]
<< 24) |
(inout[((key->arrsize - 1 - i) * 4) + 1] << 16) |
(inout[((key->arrsize - 1 - i) * 4) + 2] << 8) |
(inout[((key->arrsize - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
if (exp == 3) {
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, a, aaR, aR); /* a = aaR * aR / R mod M */
montMul1(key, aaa, a); /* aaa = a * 1 / R mod M */
} else {
/* Exponent 65537 */
for (i = 0; i < 16; i+=2) {
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
}
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
}
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
if (vb2_mont_ge(key, aaa)) {
subM(key, aaa);
}
/* Convert to bigendian byte array */
for (i = (int)key->arrsize - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = (uint8_t)(tmp >> 24);
*inout++ = (uint8_t)(tmp >> 16);
*inout++ = (uint8_t)(tmp >> 8);
*inout++ = (uint8_t)(tmp >> 0);
}
}
uint32_t vb2_rsa_sig_size(enum vb2_signature_algorithm sig_alg)
{
switch (sig_alg) {
case VB2_SIG_RSA1024:
return 1024 / 8;
case VB2_SIG_RSA2048:
case VB2_SIG_RSA2048_EXP3:
return 2048 / 8;
case VB2_SIG_RSA3072_EXP3:
return 3072 / 8;
case VB2_SIG_RSA4096:
return 4096 / 8;
case VB2_SIG_RSA8192:
return 8192 / 8;
default:
return 0;
}
}
/**
* Return the exponent used by an RSA algorithm
*
* @param sig_alg Signature algorithm
* @return The exponent to use (3 or 65537(F4)), or 0 if error.
*/
static uint32_t vb2_rsa_exponent(enum vb2_signature_algorithm sig_alg)
{
switch (sig_alg) {
case VB2_SIG_RSA1024:
case VB2_SIG_RSA2048:
case VB2_SIG_RSA4096:
case VB2_SIG_RSA8192:
return 65537;
case VB2_SIG_RSA2048_EXP3:
case VB2_SIG_RSA3072_EXP3:
return 3;
default:
return 0;
}
}
uint32_t vb2_packed_key_size(enum vb2_signature_algorithm sig_alg)
{
uint32_t sig_size = vb2_rsa_sig_size(sig_alg);
if (!sig_size)
return 0;
/*
* Total size needed by a RSAPublicKey buffer is =
* 2 * key_len bytes for the n and rr arrays
* + sizeof len + sizeof n0inv.
*/
return 2 * sig_size + 2 * sizeof(uint32_t);
}
/*
* PKCS 1.5 padding (from the RSA PKCS#1 v2.1 standard)
*
* Depending on the RSA key size and hash function, the padding is calculated
* as follows:
*
* 0x00 || 0x01 || PS || 0x00 || T
*
* T: DER Encoded DigestInfo value which depends on the hash function used.
*
* SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H.
* SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H.
* SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H.
*
* Length(T) = 35 octets for SHA-1
* Length(T) = 51 octets for SHA-256
* Length(T) = 83 octets for SHA-512
*
* PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF
*/
static const uint8_t sha1_tail[] = {
0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b,
0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14
};
static const uint8_t sha256_tail[] = {
0x00,0x30,0x31,0x30,0x0d,0x06,0x09,0x60,
0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01,
0x05,0x00,0x04,0x20
};
static const uint8_t sha512_tail[] = {
0x00,0x30,0x51,0x30,0x0d,0x06,0x09,0x60,
0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03,
0x05,0x00,0x04,0x40
};
/**
* Check pkcs 1.5 padding bytes
*
* @param sig Signature to verify
* @param key Key to take signature and hash algorithms from
* @return VB2_SUCCESS, or non-zero if error.
*/
test_mockable
vb2_error_t vb2_check_padding(const uint8_t *sig,
const struct vb2_public_key *key)
{
/* Determine padding to use depending on the signature type */
uint32_t sig_size = vb2_rsa_sig_size(key->sig_alg);
uint32_t hash_size = vb2_digest_size(key->hash_alg);
uint32_t pad_size = sig_size - hash_size;
const uint8_t *tail;
uint32_t tail_size;
int result = 0;
int i;
if (!sig_size || !hash_size || hash_size > sig_size)
return VB2_ERROR_RSA_PADDING_SIZE;
switch (key->hash_alg) {
case VB2_HASH_SHA1:
tail = sha1_tail;
tail_size = sizeof(sha1_tail);
break;
case VB2_HASH_SHA256:
tail = sha256_tail;
tail_size = sizeof(sha256_tail);
break;
case VB2_HASH_SHA512:
tail = sha512_tail;
tail_size = sizeof(sha512_tail);
break;
default:
return VB2_ERROR_RSA_PADDING_ALGORITHM;
}
/* First 2 bytes are always 0x00 0x01 */
result |= *sig++ ^ 0x00;
result |= *sig++ ^ 0x01;
/* Then 0xff bytes until the tail */
for (i = 0; i < pad_size - tail_size - 2; i++)
result |= *sig++ ^ 0xff;
/*
* Then the tail. Even though there are probably no timing issues
* here, we use vb2_safe_memcmp() just to be on the safe side.
*/
result |= vb2_safe_memcmp(sig, tail, tail_size);
return result ? VB2_ERROR_RSA_PADDING : VB2_SUCCESS;
}
vb2_error_t vb2_rsa_verify_digest(const struct vb2_public_key *key,
uint8_t *sig, const uint8_t *digest,
const struct vb2_workbuf *wb)
{
struct vb2_workbuf wblocal = *wb;
uint32_t *workbuf32;
uint32_t key_bytes;
int sig_size;
int pad_size;
int exp;
vb2_error_t rv = VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED;
if (!key || !sig || !digest)
return VB2_ERROR_RSA_VERIFY_PARAM;
sig_size = vb2_rsa_sig_size(key->sig_alg);
exp = vb2_rsa_exponent(key->sig_alg);
if (!sig_size || !exp) {
VB2_DEBUG("Invalid signature type!\n");
return VB2_ERROR_RSA_VERIFY_ALGORITHM;
}
/* Signature length should be same as key length */
key_bytes = key->arrsize * sizeof(uint32_t);
if (key_bytes != sig_size) {
VB2_DEBUG("Signature is of incorrect length!\n");
return VB2_ERROR_RSA_VERIFY_SIG_LEN;
}
workbuf32 = vb2_workbuf_alloc(&wblocal, 3 * key_bytes);
if (!workbuf32) {
VB2_DEBUG("ERROR - vboot2 work buffer too small!\n");
return VB2_ERROR_RSA_VERIFY_WORKBUF;
}
if (key->allow_hwcrypto) {
rv = vb2ex_hwcrypto_modexp(key, sig, workbuf32, exp);
if (rv == VB2_SUCCESS)
VB2_DEBUG("Using HW modexp engine for sig_alg %d\n",
key->sig_alg);
else
VB2_DEBUG("HW modexp for sig_alg %d not supported, using SW\n",
key->sig_alg);
} else {
VB2_DEBUG("HW modexp forbidden, using SW\n");
}
if (rv != VB2_SUCCESS) {
modpow(key, sig, workbuf32, exp);
}
vb2_workbuf_free(&wblocal, 3 * key_bytes);
/*
* Check padding. Only fail immediately if the padding size is bad.
* Otherwise, continue on to check the digest to reduce the risk of
* timing based attacks.
*/
rv = vb2_check_padding(sig, key);
if (rv == VB2_ERROR_RSA_PADDING_SIZE)
return rv;
/*
* Check digest. Even though there are probably no timing issues here,
* use vb2_safe_memcmp() just to be on the safe side. (That's also why
* we don't return before this check if the padding check failed.)
*/
pad_size = sig_size - vb2_digest_size(key->hash_alg);
if (vb2_safe_memcmp(sig + pad_size, digest, key_bytes - pad_size)) {
VB2_DEBUG("Digest check failed!\n");
if (!rv)
rv = VB2_ERROR_RSA_VERIFY_DIGEST;
}
return rv;
}