blob: 1f5be951516de5602813d61d0d3e050b9c42d65f [file] [log] [blame]
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Unit tests
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/aes.h>
#include "2sha.h"
#include "2hmac.h"
#include "bdb.h"
#include "bdb_api.h"
#include "bdb_struct.h"
#include "host.h"
#include "test_common.h"
#include "vboot_register.h"
#include "secrets.h"
static struct bdb_header *bdb, *bdb0, *bdb1;
static uint32_t vboot_register;
static uint32_t vboot_register_persist;
static char slot_selected;
static uint8_t aprw_digest[BDB_SHA256_DIGEST_SIZE];
static uint8_t reset_count;
/* NVM-RW image in storage (e.g. EEPROM) */
static uint8_t nvmrw1[NVM_RW_MAX_STRUCT_SIZE];
static uint8_t nvmrw2[NVM_RW_MAX_STRUCT_SIZE];
static struct bdb_secrets secrets = {
.nvm_wp = {0x00, },
.nvm_rw = {0x00, },
.bdb = {0x00, },
.boot_verified = {0x00, },
.boot_path = {0x00, },
.buc = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff},
};
static int vbe_write_nvm_failure = 0;
static struct bdb_header *create_bdb(const char *key_dir,
struct bdb_hash *hash, int num_hashes)
{
struct bdb_header *b;
uint8_t oem_area_0[32] = "Some OEM area.";
uint8_t oem_area_1[64] = "Some other OEM area.";
char filename[1024];
struct bdb_create_params p = {
.bdb_load_address = 0x11223344,
.oem_area_0 = oem_area_0,
.oem_area_0_size = sizeof(oem_area_0),
.oem_area_1 = oem_area_1,
.oem_area_1_size = sizeof(oem_area_1),
.header_sig_description = "The header sig",
.data_sig_description = "The data sig",
.data_description = "Test BDB data",
.data_version = 3,
.hash = hash,
.num_hashes = num_hashes,
};
uint8_t bdbkey_digest[BDB_SHA256_DIGEST_SIZE];
/* Load keys */
snprintf(filename, sizeof(filename), "%s/bdbkey.keyb", key_dir);
p.bdbkey = bdb_create_key(filename, 100, "BDB key");
snprintf(filename, sizeof(filename), "%s/datakey.keyb", key_dir);
p.datakey = bdb_create_key(filename, 200, "datakey");
snprintf(filename, sizeof(filename), "%s/bdbkey.pem", key_dir);
p.private_bdbkey = read_pem(filename);
snprintf(filename, sizeof(filename), "%s/datakey.pem", key_dir);
p.private_datakey = read_pem(filename);
if (!p.bdbkey || !p.datakey || !p.private_bdbkey || !p.private_datakey) {
fprintf(stderr, "Unable to load test keys\n");
exit(2);
}
vb2_digest_buffer((uint8_t *)p.bdbkey, p.bdbkey->struct_size,
VB2_HASH_SHA256,
bdbkey_digest, BDB_SHA256_DIGEST_SIZE);
b = bdb_create(&p);
if (!b) {
fprintf(stderr, "Unable to create test BDB\n");
exit(2);
}
/* Free keys and buffers */
free(p.bdbkey);
free(p.datakey);
RSA_free(p.private_bdbkey);
RSA_free(p.private_datakey);
return b;
}
static void calculate_aprw_digest(const struct bdb_hash *hash, uint8_t *digest)
{
/* Locate AP-RW */
/* Calculate digest as loading AP-RW */
memcpy(digest, aprw_digest, sizeof(aprw_digest));
}
static void verstage_main(void)
{
struct vba_context ctx;
const struct bdb_hash *hash;
uint8_t digest[BDB_SHA256_DIGEST_SIZE];
int rv;
rv = vba_bdb_init(&ctx);
if (rv) {
fprintf(stderr, "Initializing context failed for (%d)\n", rv);
vba_bdb_fail(&ctx);
/* This return is needed for unit test. vba_bdb_fail calls
* vbe_reset, which calls verstage_main. If verstage_main
* successfully returns, we return here as well. */
return;
}
fprintf(stderr, "Initialized context. Trying slot %c\n",
ctx.slot ? 'B' : 'A');
/* 1. Locate BDB */
/* 2. Get bdb_hash structure for AP-RW */
hash = bdb_get_hash_by_type(bdb, BDB_DATA_AP_RW);
fprintf(stderr, "Got hash of AP-RW\n");
/* 3. Load & calculate digest of AP-RW */
calculate_aprw_digest(hash, digest);
fprintf(stderr, "Calculated digest\n");
/* 4. Compare digests */
if (memcmp(hash->digest, digest, BDB_SHA256_DIGEST_SIZE)) {
fprintf(stderr, "Digests do not match\n");
vba_bdb_fail(&ctx);
/* This return is needed for unit test. vba_bdb_fail calls
* vbe_reset, which calls verstage_main. If verstage_main
* successfully returns, we return here as well. */
return;
}
/* 5. Record selected slot. This depends on the firmware */
slot_selected = ctx.slot ? 'B' : 'A';
fprintf(stderr, "Selected AP-RW in slot %c\n", slot_selected);
/* X. This should be done upon AP-RW's request after everything is
* successful. We do it here for the unit test. */
vba_bdb_finalize(&ctx);
}
uint32_t vbe_get_vboot_register(enum vboot_register type)
{
switch (type) {
case VBOOT_REGISTER:
return vboot_register;
case VBOOT_REGISTER_PERSIST:
return vboot_register_persist;
default:
fprintf(stderr, "Invalid vboot register type (%d)\n", type);
exit(2);
}
}
void vbe_set_vboot_register(enum vboot_register type, uint32_t val)
{
switch (type) {
case VBOOT_REGISTER:
vboot_register = val;
break;
case VBOOT_REGISTER_PERSIST:
vboot_register_persist = val;
break;
default:
fprintf(stderr, "Invalid vboot register type (%d)\n", type);
exit(2);
}
}
void vbe_reset(void)
{
uint32_t val = vbe_get_vboot_register(VBOOT_REGISTER_PERSIST);
fprintf(stderr, "Booting ...\n");
if (++reset_count > 5) {
fprintf(stderr, "Reset counter exceeded maximum value\n");
exit(2);
}
/* Emulate warm reset */
vboot_register = 0;
if (val & VBOOT_REGISTER_RECOVERY_REQUEST) {
fprintf(stderr, "Recovery requested\n");
return;
}
/* Selected by SP-RO */
bdb = (val & VBOOT_REGISTER_TRY_SECONDARY_BDB) ? bdb1 : bdb0;
verstage_main();
}
static void test_verify_aprw(const char *key_dir)
{
struct bdb_hash hash0 = {
.offset = 0x28000,
.size = 0x20000,
.partition = 1,
.type = BDB_DATA_AP_RW,
.load_address = 0x200000,
.digest = {0x11, 0x11, 0x11, 0x11},
};
struct bdb_hash hash1 = {
.offset = 0x28000,
.size = 0x20000,
.partition = 1,
.type = BDB_DATA_AP_RW,
.load_address = 0x200000,
.digest = {0x22, 0x22, 0x22, 0x22},
};
bdb0 = create_bdb(key_dir, &hash0, 1);
bdb1 = create_bdb(key_dir, &hash1, 1);
memset(aprw_digest, 0, BDB_SHA256_DIGEST_SIZE);
/* (slotA, slotB) = (good, bad) */
reset_count = 0;
vboot_register_persist = 0;
slot_selected = 'X';
memcpy(aprw_digest, hash0.digest, 4);
vbe_reset();
TEST_EQ(reset_count, 1, NULL);
TEST_EQ(slot_selected, 'A', NULL);
TEST_FALSE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_PRIMARY,
NULL);
TEST_FALSE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_SECONDARY,
NULL);
/* (slotA, slotB) = (bad, good) */
reset_count = 0;
vboot_register_persist = 0;
slot_selected = 'X';
memcpy(aprw_digest, hash1.digest, 4);
vbe_reset();
TEST_EQ(reset_count, 3, NULL);
TEST_EQ(slot_selected, 'B', NULL);
TEST_TRUE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_PRIMARY,
NULL);
TEST_FALSE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_SECONDARY,
NULL);
/* (slotA, slotB) = (bad, bad) */
reset_count = 0;
vboot_register_persist = 0;
slot_selected = 'X';
memset(aprw_digest, 0, BDB_SHA256_DIGEST_SIZE);
vbe_reset();
TEST_EQ(reset_count, 5, NULL);
TEST_EQ(slot_selected, 'X', NULL);
TEST_TRUE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_PRIMARY,
NULL);
TEST_TRUE(vboot_register_persist & VBOOT_REGISTER_FAILED_RW_SECONDARY,
NULL);
TEST_TRUE(vboot_register_persist & VBOOT_REGISTER_RECOVERY_REQUEST,
NULL);
/* Clean up */
free(bdb0);
free(bdb1);
}
int vbe_read_nvm(enum nvm_type type, uint8_t *buf, uint32_t size)
{
/* Read NVM-RW contents (from EEPROM for example) */
switch (type) {
case NVM_TYPE_RW_PRIMARY:
if (sizeof(nvmrw1) < size)
return -1;
memcpy(buf, nvmrw1, size);
break;
case NVM_TYPE_RW_SECONDARY:
if (sizeof(nvmrw2) < size)
return -1;
memcpy(buf, nvmrw2, size);
break;
default:
return -1;
}
return 0;
}
int vbe_write_nvm(enum nvm_type type, void *buf, uint32_t size)
{
if (vbe_write_nvm_failure > 0) {
fprintf(stderr, "Failed to write NVM (type=%d failure=%d)\n",
type, vbe_write_nvm_failure);
vbe_write_nvm_failure--;
return -1;
}
/* Write NVM-RW contents (to EEPROM for example) */
switch (type) {
case NVM_TYPE_RW_PRIMARY:
memcpy(nvmrw1, buf, size);
break;
case NVM_TYPE_RW_SECONDARY:
memcpy(nvmrw2, buf, size);
break;
default:
return -1;
}
return 0;
}
static void install_nvm(enum nvm_type type,
uint32_t min_kernel_data_key_version,
uint32_t min_kernel_version,
uint32_t update_count)
{
struct nvmrw nvm = {
.struct_magic = NVM_RW_MAGIC,
.struct_major_version = NVM_HEADER_VERSION_MAJOR,
.struct_minor_version = NVM_HEADER_VERSION_MINOR,
.struct_size = sizeof(struct nvmrw),
.min_kernel_data_key_version = min_kernel_data_key_version,
.min_kernel_version = min_kernel_version,
.update_count = update_count,
};
/* Compute HMAC */
hmac(VB2_HASH_SHA256, secrets.nvm_rw, BDB_SECRET_SIZE,
&nvm, nvm.struct_size - sizeof(nvm.hmac),
nvm.hmac, sizeof(nvm.hmac));
/* Install NVM-RWs (in EEPROM for example) */
switch (type) {
case NVM_TYPE_RW_PRIMARY:
memset(nvmrw1, 0, sizeof(nvmrw1));
memcpy(nvmrw1, &nvm, sizeof(nvm));
break;
case NVM_TYPE_RW_SECONDARY:
memset(nvmrw2, 0, sizeof(nvmrw2));
memcpy(nvmrw2, &nvm, sizeof(nvm));
break;
default:
fprintf(stderr, "Unsupported NVM type (%d)\n", type);
exit(2);
return;
}
}
static void test_nvm_read(void)
{
struct vba_context ctx = {
.bdb = NULL,
.secrets = &secrets,
};
struct nvmrw *nvm;
uint8_t nvmrw1_copy[NVM_RW_MAX_STRUCT_SIZE];
uint8_t nvmrw2_copy[NVM_RW_MAX_STRUCT_SIZE];
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 0);
memcpy(nvmrw1_copy, nvmrw1, sizeof(nvmrw1));
memcpy(nvmrw2_copy, nvmrw2, sizeof(nvmrw2));
/* Test nvm_read: both good -> pick primary, no sync */
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
TEST_SUCC(nvmrw_read(&ctx), NULL);
TEST_SUCC(memcmp(&ctx.nvmrw, nvmrw1, sizeof(*nvm)), NULL);
TEST_SUCC(memcmp(nvmrw1, nvmrw1_copy, sizeof(nvmrw1)), NULL);
TEST_SUCC(memcmp(nvmrw2, nvmrw2_copy, sizeof(nvmrw2)), NULL);
/* Test nvm_read: primary bad -> pick secondary */
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 0);
memcpy(nvmrw2_copy, nvmrw2, sizeof(*nvm));
nvm = (struct nvmrw *)nvmrw1;
nvm->hmac[0] ^= 0xff;
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
TEST_SUCC(nvmrw_read(&ctx), NULL);
TEST_SUCC(memcmp(&ctx.nvmrw, nvmrw2, sizeof(*nvm)), NULL);
TEST_SUCC(memcmp(nvmrw1, nvmrw2_copy, sizeof(nvmrw2)), NULL);
TEST_SUCC(memcmp(nvmrw2, nvmrw2_copy, sizeof(nvmrw2)), NULL);
/* Test nvm_read: secondary bad -> pick primary */
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 0);
memcpy(nvmrw1_copy, nvmrw1, sizeof(*nvm));
nvm = (struct nvmrw *)nvmrw2;
nvm->hmac[0] ^= 0xff;
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
TEST_SUCC(nvmrw_read(&ctx), NULL);
TEST_SUCC(memcmp(&ctx.nvmrw, nvmrw1, sizeof(*nvm)), NULL);
TEST_SUCC(memcmp(nvmrw1, nvmrw1_copy, sizeof(nvmrw1)), NULL);
TEST_SUCC(memcmp(nvmrw2, nvmrw1_copy, sizeof(nvmrw1)), NULL);
/* Test nvm_read: both bad */
nvm = (struct nvmrw *)nvmrw1;
nvm->hmac[0] ^= 0xff;
nvm = (struct nvmrw *)nvmrw2;
nvm->hmac[0] ^= 0xff;
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
TEST_EQ(nvmrw_read(&ctx), BDB_ERROR_NVM_RW_INVALID_HMAC, NULL);
/* Test update count: secondary new -> pick secondary */
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 1);
memcpy(nvmrw2_copy, nvmrw2, sizeof(*nvm));
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
TEST_SUCC(nvmrw_read(&ctx), NULL);
TEST_SUCC(memcmp(&ctx.nvmrw, nvmrw2, sizeof(*nvm)), NULL);
TEST_SUCC(memcmp(nvmrw1, nvmrw2_copy, sizeof(nvmrw1)), NULL);
TEST_SUCC(memcmp(nvmrw2, nvmrw2_copy, sizeof(nvmrw2)), NULL);
/* Test old reader -> minor version downgrade */
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 1);
memset(&ctx.nvmrw, 0, sizeof(ctx.nvmrw));
nvm = (struct nvmrw *)nvmrw1;
nvm->struct_minor_version++;
nvm->struct_size++;
TEST_SUCC(nvmrw_read(&ctx), NULL);
TEST_EQ(ctx.nvmrw.struct_minor_version, NVM_HEADER_VERSION_MINOR, NULL);
TEST_EQ(ctx.nvmrw.struct_size, sizeof(*nvm), NULL);
}
static void verify_nvm_write(struct vba_context *ctx,
int expected_result)
{
struct nvmrw *nvmrw;
struct nvmrw *nvm = &ctx->nvmrw;
TEST_EQ(nvmrw_write(ctx, NVM_TYPE_RW_PRIMARY), expected_result, NULL);
if (expected_result != BDB_SUCCESS)
return;
nvmrw = (struct nvmrw *)nvmrw1;
TEST_EQ(nvmrw->min_kernel_data_key_version,
nvm->min_kernel_data_key_version, NULL);
TEST_EQ(nvmrw->min_kernel_version, nvm->min_kernel_version, NULL);
TEST_EQ(nvmrw->update_count, nvm->update_count, NULL);
}
static void test_nvm_write(void)
{
struct vba_context ctx = {
.bdb = NULL,
.secrets = &secrets,
};
struct nvmrw nvm = {
.struct_magic = NVM_RW_MAGIC,
.struct_major_version = NVM_HEADER_VERSION_MAJOR,
.struct_minor_version = NVM_HEADER_VERSION_MINOR,
.struct_size = sizeof(struct nvmrw),
.min_kernel_data_key_version = 1,
.min_kernel_version = 2,
.update_count = 3,
};
/* Test normal case */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
vbe_write_nvm_failure = 0;
verify_nvm_write(&ctx, BDB_SUCCESS);
/* Test write failure: once */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
vbe_write_nvm_failure = 1;
verify_nvm_write(&ctx, BDB_SUCCESS);
/* Test write failure: twice */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
vbe_write_nvm_failure = 2;
verify_nvm_write(&ctx, BDB_ERROR_NVM_WRITE);
/* Test invalid struct magic */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
ctx.nvmrw.struct_magic ^= 0xff;
verify_nvm_write(&ctx, BDB_ERROR_NVM_RW_MAGIC);
/* Test struct size too small */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
ctx.nvmrw.struct_size = NVM_RW_MIN_STRUCT_SIZE - 1;
verify_nvm_write(&ctx, BDB_ERROR_NVM_STRUCT_SIZE);
/* Test struct size too large */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
ctx.nvmrw.struct_size = NVM_RW_MAX_STRUCT_SIZE + 1;
verify_nvm_write(&ctx, BDB_ERROR_NVM_STRUCT_SIZE);
/* Test invalid struct version */
memcpy(&ctx.nvmrw, &nvm, sizeof(nvm));
ctx.nvmrw.struct_major_version = NVM_HEADER_VERSION_MAJOR - 1;
verify_nvm_write(&ctx, BDB_ERROR_NVM_STRUCT_VERSION);
vbe_write_nvm_failure = 0;
}
static void verify_kernel_version(uint32_t min_kernel_data_key_version,
uint32_t new_kernel_data_key_version,
uint32_t min_kernel_version,
uint32_t new_kernel_version,
int expected_result)
{
struct vba_context ctx = {
.bdb = NULL,
.secrets = &secrets,
};
struct nvmrw *nvm = (struct nvmrw *)nvmrw1;
uint32_t expected_kernel_data_key_version = min_kernel_data_key_version;
uint32_t expected_kernel_version = min_kernel_version;
int should_update = 0;
if (min_kernel_data_key_version < new_kernel_data_key_version) {
expected_kernel_data_key_version = new_kernel_data_key_version;
should_update = 1;
}
if (min_kernel_version < new_kernel_version) {
expected_kernel_version = new_kernel_version;
should_update = 1;
}
install_nvm(NVM_TYPE_RW_PRIMARY, min_kernel_data_key_version,
min_kernel_version, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 0, 0, 0);
TEST_EQ(vba_update_kernel_version(&ctx, new_kernel_data_key_version,
new_kernel_version),
expected_result, NULL);
if (expected_result != BDB_SUCCESS)
return;
/* Check data key version */
TEST_EQ(nvm->min_kernel_data_key_version,
expected_kernel_data_key_version, NULL);
/* Check kernel version */
TEST_EQ(nvm->min_kernel_version, expected_kernel_version, NULL);
/* Check update_count */
TEST_EQ(nvm->update_count, 0 + should_update, NULL);
/* Check sync if update is expected */
if (should_update)
TEST_SUCC(memcmp(nvmrw2, nvmrw1, sizeof(nvmrw1)), NULL);
}
static void test_update_kernel_version(void)
{
/* Test update: data key version */
verify_kernel_version(0, 1, 0, 0, BDB_SUCCESS);
/* Test update: kernel version */
verify_kernel_version(0, 0, 0, 1, BDB_SUCCESS);
/* Test no update: data key version */
verify_kernel_version(1, 0, 0, 0, BDB_SUCCESS);
/* Test no update: kernel version */
verify_kernel_version(0, 0, 1, 0, BDB_SUCCESS);
}
int vbe_aes256_encrypt(const uint8_t *msg, uint32_t len, const uint8_t *key,
uint8_t *out)
{
int i;
for (i = 0; i < len; i++)
out[i] = msg[i] ^ key[i % 256/8];
return BDB_SUCCESS;
}
int vbe_aes256_decrypt(const uint8_t *msg, uint32_t len, const uint8_t *key,
uint8_t *out)
{
int i;
for (i = 0; i < len; i++)
out[i] = msg[i] ^ key[i % 256/8];
return BDB_SUCCESS;
}
static void test_update_buc(void)
{
uint8_t new_buc[BUC_ENC_DIGEST_SIZE];
uint8_t enc_buc[BUC_ENC_DIGEST_SIZE];
struct nvmrw *nvm = (struct nvmrw *)nvmrw1;
struct vba_context ctx = {
.bdb = NULL,
.secrets = &secrets,
};
install_nvm(NVM_TYPE_RW_PRIMARY, 0, 1, 0);
install_nvm(NVM_TYPE_RW_SECONDARY, 1, 0, 0);
TEST_SUCC(vba_update_buc(&ctx, new_buc), NULL);
vbe_aes256_encrypt(new_buc, sizeof(new_buc), ctx.secrets->buc,
enc_buc);
TEST_SUCC(memcmp(nvm->buc_enc_digest, enc_buc, sizeof(new_buc)), NULL);
}
static void test_derive_secrets(void)
{
uint8_t test_key[sizeof(struct bdb_key) + BDB_RSA4096_KEY_DATA_SIZE];
struct bdb_key *key = (struct bdb_key *)test_key;
struct vba_context ctx = {
.bdb = NULL,
.secrets = &secrets,
};
const struct bdb_secrets expected = {
.bdb = {
0x75, 0xb6, 0x24, 0xaa, 0x72, 0x50, 0xf9, 0x33,
0x59, 0x45, 0x8d, 0xbf, 0xfa, 0x42, 0xc4, 0xb7,
0x1b, 0xff, 0xc6, 0x02, 0x02, 0x35, 0xc5, 0x1a,
0x6c, 0xdc, 0x3a, 0x63, 0xfb, 0x8b, 0xac, 0x53},
.boot_verified = {
0x40, 0xf3, 0x9b, 0xdc, 0xf6, 0xb4, 0xe8, 0xdf,
0x48, 0xc4, 0xfe, 0x02, 0xdd, 0x34, 0x06, 0xd9,
0xed, 0xd9, 0x55, 0x79, 0xf4, 0x48, 0x58, 0xbf,
0x32, 0x55, 0xba, 0x21, 0xca, 0xcc, 0x8c, 0xd1},
.boot_path = {
0xfb, 0x58, 0x89, 0x58, 0x2f, 0x54, 0xa2, 0xf7,
0x96, 0x5b, 0x69, 0x77, 0x9b, 0x67, 0x80, 0x39,
0x7a, 0xd4, 0xc5, 0x3b, 0xcf, 0x95, 0x3f, 0xec,
0x28, 0x49, 0x55, 0x49, 0x38, 0x27, 0x5d, 0x3c},
.buc = {
0x63, 0xa5, 0x30, 0xd7, 0xca, 0xe1, 0x3e, 0x2e,
0x72, 0x7e, 0x29, 0xc9, 0x37, 0x66, 0x6a, 0x63,
0x91, 0xd4, 0x8e, 0x8b, 0xbc, 0x1a, 0x7a, 0xcf,
0xc3, 0x19, 0xa0, 0x87, 0xfc, 0x4d, 0xe1, 0xe8},
};
memset(test_key, 0, sizeof(test_key));
key->struct_magic = BDB_KEY_MAGIC;
key->struct_major_version = BDB_KEY_VERSION_MAJOR;
key->struct_minor_version = BDB_KEY_VERSION_MINOR;
key->struct_size = sizeof(test_key);
key->hash_alg = BDB_HASH_ALG_SHA256;
key->sig_alg = BDB_SIG_ALG_RSA4096;
key->key_version = 1;
TEST_SUCC(vba_derive_secret(&ctx, BDB_SECRET_TYPE_BDB, NULL,
test_key, sizeof(test_key)), NULL);
TEST_SUCC(memcmp(ctx.secrets->bdb, expected.bdb, BDB_SECRET_SIZE),
NULL);
TEST_SUCC(vba_derive_secret(&ctx, BDB_SECRET_TYPE_BOOT_VERIFIED, NULL,
NULL, 0), NULL);
TEST_SUCC(memcmp(ctx.secrets->boot_verified, expected.boot_verified,
BDB_SECRET_SIZE), NULL);
TEST_SUCC(vba_derive_secret(&ctx, BDB_SECRET_TYPE_BOOT_PATH, NULL,
test_key, sizeof(test_key)), NULL);
TEST_SUCC(memcmp(ctx.secrets->boot_path, expected.boot_path,
BDB_SECRET_SIZE), NULL);
TEST_SUCC(vba_derive_secret(&ctx, BDB_SECRET_TYPE_BUC, NULL, NULL, 0),
NULL);
TEST_SUCC(memcmp(ctx.secrets->buc, expected.buc,
BDB_SECRET_SIZE), NULL);
}
int main(int argc, char *argv[])
{
if (argc != 2) {
fprintf(stderr, "Usage: %s <keys_dir>", argv[0]);
return -1;
}
printf("Running BDB SP-RW tests...\n");
test_verify_aprw(argv[1]);
test_nvm_read();
test_nvm_write();
test_update_kernel_version();
test_update_buc();
test_derive_secrets();
return gTestSuccess ? 0 : 255;
}