blob: df32fc08ddd1415e4f93f6c2e94979b7020d6b2a [file] [log] [blame]
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for loading a kernel from disk.
* (Firmware portion)
*/
#include "sysincludes.h"
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "region.h"
#include "gbb_access.h"
#include "gbb_header.h"
#include "load_kernel_fw.h"
#include "utility.h"
#include "vboot_api.h"
#include "vboot_common.h"
#include "vboot_kernel.h"
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
#define LOWEST_TPM_VERSION 0xffffffff
typedef enum BootMode {
kBootRecovery = 0, /* Recovery firmware, any dev switch position */
kBootNormal = 1, /* Normal boot - kernel must be verified */
kBootDev = 2 /* Developer boot - self-signed kernel ok */
} BootMode;
/**
* Allocate and read GPT data from the drive.
*
* The sector_bytes and drive_sectors fields should be filled on input. The
* primary and secondary header and entries are filled on output.
*
* Returns 0 if successful, 1 if error.
*/
int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
{
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
/* No data to be written yet */
gptdata->modified = 0;
/* Allocate all buffers */
gptdata->primary_header = (uint8_t *)VbExMalloc(gptdata->sector_bytes);
gptdata->secondary_header =
(uint8_t *)VbExMalloc(gptdata->sector_bytes);
gptdata->primary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE);
gptdata->secondary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE);
if (gptdata->primary_header == NULL ||
gptdata->secondary_header == NULL ||
gptdata->primary_entries == NULL ||
gptdata->secondary_entries == NULL)
return 1;
/* Read data from the drive, skipping the protective MBR */
if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header))
return 1;
GptHeader* primary_header = (GptHeader*)gptdata->primary_header;
if (0 != VbExDiskRead(disk_handle, primary_header->entries_lba,
entries_sectors, gptdata->primary_entries))
return 1;
if (0 != VbExDiskRead(disk_handle, gptdata->drive_sectors - 1, 1,
gptdata->secondary_header))
return 1;
GptHeader* secondary_header = (GptHeader*)gptdata->secondary_header;
if (0 != VbExDiskRead(disk_handle, secondary_header->entries_lba,
entries_sectors, gptdata->secondary_entries))
return 1;
return 0;
}
/**
* Write any changes for the GPT data back to the drive, then free the buffers.
*
* Returns 0 if successful, 1 if error.
*/
int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData *gptdata)
{
int legacy = 0;
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
int ret = 1;
/*
* TODO(namnguyen): Preserve padding between primary GPT header and
* its entries.
*/
uint64_t entries_lba = GPT_PMBR_SECTORS + GPT_HEADER_SECTORS;
if (gptdata->primary_header) {
GptHeader *h = (GptHeader *)(gptdata->primary_header);
entries_lba = h->entries_lba;
/*
* Avoid even looking at this data if we don't need to. We
* may in fact not have read it from disk if the read failed,
* and this avoids a valgrind complaint.
*/
if (gptdata->modified) {
legacy = !Memcmp(h->signature, GPT_HEADER_SIGNATURE2,
GPT_HEADER_SIGNATURE_SIZE);
}
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
if (legacy) {
VBDEBUG(("Not updating GPT header 1: "
"legacy mode is enabled.\n"));
} else {
VBDEBUG(("Updating GPT header 1\n"));
if (0 != VbExDiskWrite(disk_handle, 1, 1,
gptdata->primary_header))
goto fail;
}
}
}
if (gptdata->primary_entries) {
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
if (legacy) {
VBDEBUG(("Not updating GPT entries 1: "
"legacy mode is enabled.\n"));
} else {
VBDEBUG(("Updating GPT entries 1\n"));
if (0 != VbExDiskWrite(disk_handle, entries_lba,
entries_sectors,
gptdata->primary_entries))
goto fail;
}
}
}
entries_lba = (gptdata->drive_sectors - entries_sectors -
GPT_HEADER_SECTORS);
if (gptdata->secondary_header) {
GptHeader *h = (GptHeader *)(gptdata->secondary_header);
entries_lba = h->entries_lba;
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
VBDEBUG(("Updating GPT entries 2\n"));
if (0 != VbExDiskWrite(disk_handle,
gptdata->drive_sectors - 1, 1,
gptdata->secondary_header))
goto fail;
}
}
if (gptdata->secondary_entries) {
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
VBDEBUG(("Updating GPT header 2\n"));
if (0 != VbExDiskWrite(disk_handle,
entries_lba, entries_sectors,
gptdata->secondary_entries))
goto fail;
}
}
ret = 0;
fail:
/* Avoid leaking memory on disk write failure */
if (gptdata->primary_header)
VbExFree(gptdata->primary_header);
if (gptdata->primary_entries)
VbExFree(gptdata->primary_entries);
if (gptdata->secondary_entries)
VbExFree(gptdata->secondary_entries);
if (gptdata->secondary_header)
VbExFree(gptdata->secondary_header);
/* Success */
return ret;
}
VbError_t LoadKernel(LoadKernelParams *params, VbCommonParams *cparams)
{
VbSharedDataHeader *shared =
(VbSharedDataHeader *)params->shared_data_blob;
VbSharedDataKernelCall *shcall = NULL;
VbNvContext* vnc = params->nv_context;
VbPublicKey* kernel_subkey = NULL;
int free_kernel_subkey = 0;
GptData gpt;
uint64_t part_start, part_size;
uint64_t blba;
uint64_t kbuf_sectors;
uint8_t* kbuf = NULL;
int found_partitions = 0;
int good_partition = -1;
int good_partition_key_block_valid = 0;
uint32_t lowest_version = LOWEST_TPM_VERSION;
int rec_switch, dev_switch;
BootMode boot_mode;
uint32_t require_official_os = 0;
VbError_t retval = VBERROR_UNKNOWN;
int recovery = VBNV_RECOVERY_LK_UNSPECIFIED;
/* Sanity Checks */
if (!params->bytes_per_lba ||
!params->ending_lba) {
VBDEBUG(("LoadKernel() called with invalid params\n"));
retval = VBERROR_INVALID_PARAMETER;
goto LoadKernelExit;
}
/* Clear output params in case we fail */
params->partition_number = 0;
params->bootloader_address = 0;
params->bootloader_size = 0;
/* Calculate switch positions and boot mode */
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
if (rec_switch) {
boot_mode = kBootRecovery;
} else if (dev_switch) {
boot_mode = kBootDev;
VbNvGet(vnc, VBNV_DEV_BOOT_SIGNED_ONLY, &require_official_os);
} else {
boot_mode = kBootNormal;
}
/*
* Set up tracking for this call. This wraps around if called many
* times, so we need to initialize the call entry each time.
*/
shcall = shared->lk_calls + (shared->lk_call_count
& (VBSD_MAX_KERNEL_CALLS - 1));
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
shcall->boot_flags = (uint32_t)params->boot_flags;
shcall->boot_mode = boot_mode;
shcall->sector_size = (uint32_t)params->bytes_per_lba;
shcall->sector_count = params->ending_lba + 1;
shared->lk_call_count++;
/* Initialization */
blba = params->bytes_per_lba;
kbuf_sectors = KBUF_SIZE / blba;
if (0 == kbuf_sectors) {
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
retval = VBERROR_INVALID_PARAMETER;
goto LoadKernelExit;
}
if (kBootRecovery == boot_mode) {
/* Use the recovery key to verify the kernel */
retval = VbGbbReadRecoveryKey(cparams, &kernel_subkey);
if (VBERROR_SUCCESS != retval)
goto LoadKernelExit;
free_kernel_subkey = 1;
} else {
/* Use the kernel subkey passed from LoadFirmware(). */
kernel_subkey = &shared->kernel_subkey;
}
/* Read GPT data */
gpt.sector_bytes = (uint32_t)blba;
gpt.drive_sectors = params->ending_lba + 1;
if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) {
VBDEBUG(("Unable to read GPT data\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
goto bad_gpt;
}
/* Initialize GPT library */
if (GPT_SUCCESS != GptInit(&gpt)) {
VBDEBUG(("Error parsing GPT\n"));
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
goto bad_gpt;
}
/* Allocate kernel header buffers */
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
if (!kbuf)
goto bad_gpt;
/* Loop over candidate kernel partitions */
while (GPT_SUCCESS ==
GptNextKernelEntry(&gpt, &part_start, &part_size)) {
VbSharedDataKernelPart *shpart = NULL;
VbKeyBlockHeader *key_block;
VbKernelPreambleHeader *preamble;
RSAPublicKey *data_key = NULL;
uint64_t key_version;
uint32_t combined_version;
uint64_t body_offset;
uint64_t body_offset_sectors;
uint64_t body_sectors;
int key_block_valid = 1;
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
part_start, part_size));
/*
* Set up tracking for this partition. This wraps around if
* called many times, so initialize the partition entry each
* time.
*/
shpart = shcall->parts + (shcall->kernel_parts_found
& (VBSD_MAX_KERNEL_PARTS - 1));
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
shpart->sector_start = part_start;
shpart->sector_count = part_size;
/*
* TODO: GPT partitions start at 1, but cgptlib starts them at
* 0. Adjust here, until cgptlib is fixed.
*/
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
shcall->kernel_parts_found++;
/* Found at least one kernel partition. */
found_partitions++;
/* Read the first part of the kernel partition. */
if (part_size < kbuf_sectors) {
VBDEBUG(("Partition too small to hold kernel.\n"));
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
goto bad_kernel;
}
if (0 != VbExDiskRead(params->disk_handle, part_start,
kbuf_sectors, kbuf)) {
VBDEBUG(("Unable to read start of partition.\n"));
shpart->check_result = VBSD_LKP_CHECK_READ_START;
goto bad_kernel;
}
/* Verify the key block. */
key_block = (VbKeyBlockHeader*)kbuf;
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
kernel_subkey, 0)) {
VBDEBUG(("Verifying key block signature failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
key_block_valid = 0;
/* If not in developer mode, this kernel is bad. */
if (kBootDev != boot_mode)
goto bad_kernel;
/*
* In developer mode, we can explictly disallow
* self-signed kernels
*/
if (require_official_os) {
VBDEBUG(("Self-signed kernels not enabled.\n"));
shpart->check_result =
VBSD_LKP_CHECK_SELF_SIGNED;
goto bad_kernel;
}
/*
* Allow the kernel if the SHA-512 hash of the key
* block is valid.
*/
if (0 != KeyBlockVerify(key_block, KBUF_SIZE,
kernel_subkey, 1)) {
VBDEBUG(("Verifying key block hash failed.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_BLOCK_HASH;
goto bad_kernel;
}
}
/* Check the key block flags against the current boot mode. */
if (!(key_block->key_block_flags &
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
KEY_BLOCK_FLAG_DEVELOPER_0))) {
VBDEBUG(("Key block developer flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
key_block_valid = 0;
}
if (!(key_block->key_block_flags &
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
KEY_BLOCK_FLAG_RECOVERY_0))) {
VBDEBUG(("Key block recovery flag mismatch.\n"));
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
key_block_valid = 0;
}
/* Check for rollback of key version except in recovery mode. */
key_version = key_block->data_key.key_version;
if (kBootRecovery != boot_mode) {
if (key_version < (shared->kernel_version_tpm >> 16)) {
VBDEBUG(("Key version too old.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_ROLLBACK;
key_block_valid = 0;
}
if (key_version > 0xFFFF) {
/*
* Key version is stored in 16 bits in the TPM,
* so key versions greater than 0xFFFF can't be
* stored properly.
*/
VBDEBUG(("Key version > 0xFFFF.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KEY_ROLLBACK;
key_block_valid = 0;
}
}
/* If not in developer mode, key block required to be valid. */
if (kBootDev != boot_mode && !key_block_valid) {
VBDEBUG(("Key block is invalid.\n"));
goto bad_kernel;
}
/* Get key for preamble/data verification from the key block. */
data_key = PublicKeyToRSA(&key_block->data_key);
if (!data_key) {
VBDEBUG(("Data key bad.\n"));
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
goto bad_kernel;
}
/* Verify the preamble, which follows the key block */
preamble = (VbKernelPreambleHeader *)
(kbuf + key_block->key_block_size);
if ((0 != VerifyKernelPreamble(
preamble,
KBUF_SIZE - key_block->key_block_size,
data_key))) {
VBDEBUG(("Preamble verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
goto bad_kernel;
}
/*
* If the key block is valid and we're not in recovery mode,
* check for rollback of the kernel version.
*/
combined_version = (uint32_t)(
(key_version << 16) |
(preamble->kernel_version & 0xFFFF));
shpart->combined_version = combined_version;
if (key_block_valid && kBootRecovery != boot_mode) {
if (combined_version < shared->kernel_version_tpm) {
VBDEBUG(("Kernel version too low.\n"));
shpart->check_result =
VBSD_LKP_CHECK_KERNEL_ROLLBACK;
/*
* If not in developer mode, kernel version
* must be valid.
*/
if (kBootDev != boot_mode)
goto bad_kernel;
}
}
VBDEBUG(("Kernel preamble is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
/* Check for lowest version from a valid header. */
if (key_block_valid && lowest_version > combined_version)
lowest_version = combined_version;
else {
VBDEBUG(("Key block valid: %d\n", key_block_valid));
VBDEBUG(("Combined version: %u\n",
(unsigned) combined_version));
}
/*
* If we already have a good kernel, no need to read another
* one; we only needed to look at the versions to check for
* rollback. So skip to the next kernel preamble.
*/
if (-1 != good_partition)
continue;
/* Verify kernel body starts at multiple of sector size. */
body_offset = key_block->key_block_size +
preamble->preamble_size;
if (0 != body_offset % blba) {
VBDEBUG(("Kernel body not at multiple of "
"sector size.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
goto bad_kernel;
}
body_offset_sectors = body_offset / blba;
body_sectors =
(preamble->body_signature.data_size + blba - 1) / blba;
if (!params->kernel_buffer) {
/* Get kernel load address and size from the header. */
params->kernel_buffer =
(void *)((long)preamble->body_load_address);
params->kernel_buffer_size = body_sectors * blba;
} else {
/* Verify kernel body fits in the buffer */
if (body_sectors * blba > params->kernel_buffer_size) {
VBDEBUG(("Kernel body doesn't "
"fit in memory.\n"));
shpart->check_result =
VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
goto bad_kernel;
}
}
/* Verify kernel body fits in the partition */
if (body_offset_sectors + body_sectors > part_size) {
VBDEBUG(("Kernel body doesn't fit in partition.\n"));
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART;
goto bad_kernel;
}
/* Read the kernel data */
if (0 != VbExDiskRead(params->disk_handle,
part_start + body_offset_sectors,
body_sectors, params->kernel_buffer)) {
VBDEBUG(("Unable to read kernel data.\n"));
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
goto bad_kernel;
}
/* Verify kernel data */
if (0 != VerifyData((const uint8_t *)params->kernel_buffer,
params->kernel_buffer_size,
&preamble->body_signature, data_key)) {
VBDEBUG(("Kernel data verification failed.\n"));
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
goto bad_kernel;
}
/* Done with the kernel signing key, so can free it now */
RSAPublicKeyFree(data_key);
data_key = NULL;
/*
* If we're still here, the kernel is valid. Save the first
* good partition we find; that's the one we'll boot.
*/
VBDEBUG(("Partition is good.\n"));
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
if (key_block_valid)
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
good_partition_key_block_valid = key_block_valid;
/*
* TODO: GPT partitions start at 1, but cgptlib starts them at
* 0. Adjust here, until cgptlib is fixed.
*/
good_partition = gpt.current_kernel + 1;
params->partition_number = gpt.current_kernel + 1;
GetCurrentKernelUniqueGuid(&gpt, &params->partition_guid);
/*
* TODO: GetCurrentKernelUniqueGuid() should take a destination
* size, or the dest should be a struct, so we know it's big
* enough.
*/
params->bootloader_address = preamble->bootloader_address;
params->bootloader_size = preamble->bootloader_size;
/* Update GPT to note this is the kernel we're trying */
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
/*
* If we're in recovery mode or we're about to boot a
* dev-signed kernel, there's no rollback protection, so we can
* stop at the first valid kernel.
*/
if (kBootRecovery == boot_mode || !key_block_valid) {
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
break;
}
/*
* Otherwise, we do care about the key index in the TPM. If
* the good partition's key version is the same as the tpm,
* then the TPM doesn't need updating; we can stop now.
* Otherwise, we'll check all the other headers to see if they
* contain a newer key.
*/
if (combined_version == shared->kernel_version_tpm) {
VBDEBUG(("Same kernel version\n"));
break;
}
/* Continue, so that we skip the error handling code below */
continue;
bad_kernel:
/* Handle errors parsing this kernel */
if (NULL != data_key)
RSAPublicKeyFree(data_key);
VBDEBUG(("Marking kernel as invalid.\n"));
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
} /* while(GptNextKernelEntry) */
bad_gpt:
/* Free kernel buffer */
if (kbuf)
VbExFree(kbuf);
/* Write and free GPT data */
WriteAndFreeGptData(params->disk_handle, &gpt);
/* Handle finding a good partition */
if (good_partition >= 0) {
VBDEBUG(("Good_partition >= 0\n"));
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
shared->kernel_version_lowest = lowest_version;
/*
* Sanity check - only store a new TPM version if we found one.
* If lowest_version is still at its initial value, we didn't
* find one; for example, we're in developer mode and just
* didn't look.
*/
if (lowest_version != LOWEST_TPM_VERSION &&
lowest_version > shared->kernel_version_tpm)
shared->kernel_version_tpm = lowest_version;
/* Success! */
retval = VBERROR_SUCCESS;
} else if (found_partitions > 0) {
shcall->check_result = VBSD_LKC_CHECK_INVALID_PARTITIONS;
recovery = VBNV_RECOVERY_RW_INVALID_OS;
retval = VBERROR_INVALID_KERNEL_FOUND;
} else {
shcall->check_result = VBSD_LKC_CHECK_NO_PARTITIONS;
recovery = VBNV_RECOVERY_RW_NO_OS;
retval = VBERROR_NO_KERNEL_FOUND;
}
LoadKernelExit:
/* Store recovery request, if any */
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, VBERROR_SUCCESS != retval ?
recovery : VBNV_RECOVERY_NOT_REQUESTED);
/*
* If LoadKernel() was called with bad parameters, shcall may not be
* initialized.
*/
if (shcall)
shcall->return_code = (uint8_t)retval;
/* Save whether the good partition's key block was fully verified */
if (good_partition_key_block_valid)
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
/* Store how much shared data we used, if any */
params->shared_data_size = shared->data_used;
if (free_kernel_subkey)
VbExFree(kernel_subkey);
return retval;
}