| /* |
| * GRUB -- GRand Unified Bootloader |
| * Copyright (c) 1999-2008 Igor Pavlov |
| * Copyright (C) 2008 Free Software Foundation, Inc. |
| * |
| * GRUB is free software: you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 3 of the License, or |
| * (at your option) any later version. |
| * |
| * GRUB is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GRUB. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| /* |
| * This code was taken from LZMA SDK 4.58 beta, and was slightly modified |
| * to adapt it to GRUB's requirement. |
| * |
| * See <http://www.7-zip.org>, for more information about LZMA. |
| */ |
| |
| #include <config.h> |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <grub/lib/LzmaEnc.h> |
| |
| #include <grub/lib/LzFind.h> |
| #ifdef COMPRESS_MF_MT |
| #include <grub/lib/LzFindMt.h> |
| #endif |
| |
| /* #define SHOW_STAT */ |
| /* #define SHOW_STAT2 */ |
| |
| #ifdef SHOW_STAT |
| static int ttt = 0; |
| #endif |
| |
| #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1) |
| |
| #define kBlockSize (9 << 10) |
| #define kUnpackBlockSize (1 << 18) |
| #define kMatchArraySize (1 << 21) |
| #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX) |
| |
| #define kNumMaxDirectBits (31) |
| |
| #define kNumTopBits 24 |
| #define kTopValue ((UInt32)1 << kNumTopBits) |
| |
| #define kNumBitModelTotalBits 11 |
| #define kBitModelTotal (1 << kNumBitModelTotalBits) |
| #define kNumMoveBits 5 |
| #define kProbInitValue (kBitModelTotal >> 1) |
| |
| #define kNumMoveReducingBits 4 |
| #define kNumBitPriceShiftBits 4 |
| #define kBitPrice (1 << kNumBitPriceShiftBits) |
| |
| void LzmaEncProps_Init(CLzmaEncProps *p) |
| { |
| p->level = 5; |
| p->dictSize = p->mc = 0; |
| p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; |
| p->writeEndMark = 0; |
| } |
| |
| void LzmaEncProps_Normalize(CLzmaEncProps *p) |
| { |
| int level = p->level; |
| if (level < 0) level = 5; |
| p->level = level; |
| if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26))); |
| if (p->lc < 0) p->lc = 3; |
| if (p->lp < 0) p->lp = 0; |
| if (p->pb < 0) p->pb = 2; |
| if (p->algo < 0) p->algo = (level < 5 ? 0 : 1); |
| if (p->fb < 0) p->fb = (level < 7 ? 32 : 64); |
| if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); |
| if (p->numHashBytes < 0) p->numHashBytes = 4; |
| if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1); |
| if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1); |
| } |
| |
| UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) |
| { |
| CLzmaEncProps props = *props2; |
| LzmaEncProps_Normalize(&props); |
| return props.dictSize; |
| } |
| |
| /* #define LZMA_LOG_BSR */ |
| /* Define it for Intel's CPU */ |
| |
| |
| #ifdef LZMA_LOG_BSR |
| |
| #define kDicLogSizeMaxCompress 30 |
| |
| #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); } |
| |
| UInt32 GetPosSlot1(UInt32 pos) |
| { |
| UInt32 res; |
| BSR2_RET(pos, res); |
| return res; |
| } |
| #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } |
| #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); } |
| |
| #else |
| |
| #define kNumLogBits (9 + (int)sizeof(size_t) / 2) |
| #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) |
| |
| static void LzmaEnc_FastPosInit(Byte *g_FastPos) |
| { |
| int c = 2, slotFast; |
| g_FastPos[0] = 0; |
| g_FastPos[1] = 1; |
| |
| for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) |
| { |
| UInt32 k = (1 << ((slotFast >> 1) - 1)); |
| UInt32 j; |
| for (j = 0; j < k; j++, c++) |
| g_FastPos[c] = (Byte)slotFast; |
| } |
| } |
| |
| #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \ |
| (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ |
| res = p->g_FastPos[pos >> i] + (i * 2); } |
| /* |
| #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ |
| p->g_FastPos[pos >> 6] + 12 : \ |
| p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } |
| */ |
| |
| #define GetPosSlot1(pos) p->g_FastPos[pos] |
| #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } |
| #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } |
| |
| #endif |
| |
| |
| #define LZMA_NUM_REPS 4 |
| |
| typedef unsigned CState; |
| |
| typedef struct _COptimal |
| { |
| UInt32 price; |
| |
| CState state; |
| int prev1IsChar; |
| int prev2; |
| |
| UInt32 posPrev2; |
| UInt32 backPrev2; |
| |
| UInt32 posPrev; |
| UInt32 backPrev; |
| UInt32 backs[LZMA_NUM_REPS]; |
| } COptimal; |
| |
| #define kNumOpts (1 << 12) |
| |
| #define kNumLenToPosStates 4 |
| #define kNumPosSlotBits 6 |
| #define kDicLogSizeMin 0 |
| #define kDicLogSizeMax 32 |
| #define kDistTableSizeMax (kDicLogSizeMax * 2) |
| |
| |
| #define kNumAlignBits 4 |
| #define kAlignTableSize (1 << kNumAlignBits) |
| #define kAlignMask (kAlignTableSize - 1) |
| |
| #define kStartPosModelIndex 4 |
| #define kEndPosModelIndex 14 |
| #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) |
| |
| #define kNumFullDistances (1 << (kEndPosModelIndex / 2)) |
| |
| #ifdef _LZMA_PROB32 |
| #define CLzmaProb UInt32 |
| #else |
| #define CLzmaProb UInt16 |
| #endif |
| |
| #define LZMA_PB_MAX 4 |
| #define LZMA_LC_MAX 8 |
| #define LZMA_LP_MAX 4 |
| |
| #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) |
| |
| |
| #define kLenNumLowBits 3 |
| #define kLenNumLowSymbols (1 << kLenNumLowBits) |
| #define kLenNumMidBits 3 |
| #define kLenNumMidSymbols (1 << kLenNumMidBits) |
| #define kLenNumHighBits 8 |
| #define kLenNumHighSymbols (1 << kLenNumHighBits) |
| |
| #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) |
| |
| #define LZMA_MATCH_LEN_MIN 2 |
| #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) |
| |
| #define kNumStates 12 |
| |
| typedef struct |
| { |
| CLzmaProb choice; |
| CLzmaProb choice2; |
| CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; |
| CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; |
| CLzmaProb high[kLenNumHighSymbols]; |
| } CLenEnc; |
| |
| typedef struct |
| { |
| CLenEnc p; |
| UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; |
| UInt32 tableSize; |
| UInt32 counters[LZMA_NUM_PB_STATES_MAX]; |
| } CLenPriceEnc; |
| |
| typedef struct _CRangeEnc |
| { |
| UInt32 range; |
| Byte cache; |
| UInt64 low; |
| UInt64 cacheSize; |
| Byte *buf; |
| Byte *bufLim; |
| Byte *bufBase; |
| ISeqOutStream *outStream; |
| UInt64 processed; |
| SRes res; |
| } CRangeEnc; |
| |
| typedef struct _CSeqInStreamBuf |
| { |
| ISeqInStream funcTable; |
| const Byte *data; |
| SizeT rem; |
| } CSeqInStreamBuf; |
| |
| static SRes MyRead(void *pp, void *data, size_t *size) |
| { |
| size_t curSize = *size; |
| CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp; |
| if (p->rem < curSize) |
| curSize = p->rem; |
| memcpy(data, p->data, curSize); |
| p->rem -= curSize; |
| p->data += curSize; |
| *size = curSize; |
| return SZ_OK; |
| } |
| |
| typedef struct |
| { |
| CLzmaProb *litProbs; |
| |
| CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; |
| CLzmaProb isRep[kNumStates]; |
| CLzmaProb isRepG0[kNumStates]; |
| CLzmaProb isRepG1[kNumStates]; |
| CLzmaProb isRepG2[kNumStates]; |
| CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; |
| |
| CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; |
| CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; |
| CLzmaProb posAlignEncoder[1 << kNumAlignBits]; |
| |
| CLenPriceEnc lenEnc; |
| CLenPriceEnc repLenEnc; |
| |
| UInt32 reps[LZMA_NUM_REPS]; |
| UInt32 state; |
| } CSaveState; |
| |
| typedef struct _CLzmaEnc |
| { |
| IMatchFinder matchFinder; |
| void *matchFinderObj; |
| |
| #ifdef COMPRESS_MF_MT |
| Bool mtMode; |
| CMatchFinderMt matchFinderMt; |
| #endif |
| |
| CMatchFinder matchFinderBase; |
| |
| #ifdef COMPRESS_MF_MT |
| Byte pad[128]; |
| #endif |
| |
| UInt32 optimumEndIndex; |
| UInt32 optimumCurrentIndex; |
| |
| Bool longestMatchWasFound; |
| UInt32 longestMatchLength; |
| UInt32 numDistancePairs; |
| |
| COptimal opt[kNumOpts]; |
| |
| #ifndef LZMA_LOG_BSR |
| Byte g_FastPos[1 << kNumLogBits]; |
| #endif |
| |
| UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; |
| UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; |
| UInt32 numFastBytes; |
| UInt32 additionalOffset; |
| UInt32 reps[LZMA_NUM_REPS]; |
| UInt32 state; |
| |
| UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; |
| UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; |
| UInt32 alignPrices[kAlignTableSize]; |
| UInt32 alignPriceCount; |
| |
| UInt32 distTableSize; |
| |
| unsigned lc, lp, pb; |
| unsigned lpMask, pbMask; |
| |
| CLzmaProb *litProbs; |
| |
| CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; |
| CLzmaProb isRep[kNumStates]; |
| CLzmaProb isRepG0[kNumStates]; |
| CLzmaProb isRepG1[kNumStates]; |
| CLzmaProb isRepG2[kNumStates]; |
| CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; |
| |
| CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; |
| CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; |
| CLzmaProb posAlignEncoder[1 << kNumAlignBits]; |
| |
| CLenPriceEnc lenEnc; |
| CLenPriceEnc repLenEnc; |
| |
| unsigned lclp; |
| |
| Bool fastMode; |
| |
| CRangeEnc rc; |
| |
| Bool writeEndMark; |
| UInt64 nowPos64; |
| UInt32 matchPriceCount; |
| Bool finished; |
| Bool multiThread; |
| |
| SRes result; |
| UInt32 dictSize; |
| UInt32 matchFinderCycles; |
| |
| ISeqInStream *inStream; |
| CSeqInStreamBuf seqBufInStream; |
| |
| CSaveState saveState; |
| } CLzmaEnc; |
| |
| SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2) |
| { |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| CLzmaEncProps props = *props2; |
| LzmaEncProps_Normalize(&props); |
| |
| if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX || |
| props.dictSize > (1U << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30)) |
| return SZ_ERROR_PARAM; |
| p->dictSize = props.dictSize; |
| p->matchFinderCycles = props.mc; |
| { |
| unsigned fb = props.fb; |
| if (fb < 5) |
| fb = 5; |
| if (fb > LZMA_MATCH_LEN_MAX) |
| fb = LZMA_MATCH_LEN_MAX; |
| p->numFastBytes = fb; |
| } |
| p->lc = props.lc; |
| p->lp = props.lp; |
| p->pb = props.pb; |
| p->fastMode = (props.algo == 0); |
| p->matchFinderBase.btMode = props.btMode; |
| { |
| UInt32 numHashBytes = 4; |
| if (props.btMode) |
| { |
| if (props.numHashBytes < 2) |
| numHashBytes = 2; |
| else if (props.numHashBytes < 4) |
| numHashBytes = props.numHashBytes; |
| } |
| p->matchFinderBase.numHashBytes = numHashBytes; |
| } |
| |
| p->matchFinderBase.cutValue = props.mc; |
| |
| p->writeEndMark = props.writeEndMark; |
| |
| #ifdef COMPRESS_MF_MT |
| /* |
| if (newMultiThread != _multiThread) |
| { |
| ReleaseMatchFinder(); |
| _multiThread = newMultiThread; |
| } |
| */ |
| p->multiThread = (props.numThreads > 1); |
| #endif |
| |
| return SZ_OK; |
| } |
| |
| static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; |
| static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; |
| static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; |
| static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; |
| |
| /* |
| void UpdateChar() { Index = kLiteralNextStates[Index]; } |
| void UpdateMatch() { Index = kMatchNextStates[Index]; } |
| void UpdateRep() { Index = kRepNextStates[Index]; } |
| void UpdateShortRep() { Index = kShortRepNextStates[Index]; } |
| */ |
| |
| #define IsCharState(s) ((s) < 7) |
| |
| |
| #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) |
| |
| #define kInfinityPrice (1 << 30) |
| |
| static void RangeEnc_Construct(CRangeEnc *p) |
| { |
| p->outStream = 0; |
| p->bufBase = 0; |
| } |
| |
| #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize) |
| |
| #define RC_BUF_SIZE (1 << 16) |
| static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc) |
| { |
| if (p->bufBase == 0) |
| { |
| p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE); |
| if (p->bufBase == 0) |
| return 0; |
| p->bufLim = p->bufBase + RC_BUF_SIZE; |
| } |
| return 1; |
| } |
| |
| static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc) |
| { |
| alloc->Free(alloc, p->bufBase); |
| p->bufBase = 0; |
| } |
| |
| static void RangeEnc_Init(CRangeEnc *p) |
| { |
| /* Stream.Init(); */ |
| p->low = 0; |
| p->range = 0xFFFFFFFF; |
| p->cacheSize = 1; |
| p->cache = 0; |
| |
| p->buf = p->bufBase; |
| |
| p->processed = 0; |
| p->res = SZ_OK; |
| } |
| |
| static void RangeEnc_FlushStream(CRangeEnc *p) |
| { |
| size_t num; |
| if (p->res != SZ_OK) |
| return; |
| num = p->buf - p->bufBase; |
| if (num != p->outStream->Write(p->outStream, p->bufBase, num)) |
| p->res = SZ_ERROR_WRITE; |
| p->processed += num; |
| p->buf = p->bufBase; |
| } |
| |
| static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p) |
| { |
| if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0) |
| { |
| Byte temp = p->cache; |
| do |
| { |
| Byte *buf = p->buf; |
| *buf++ = (Byte)(temp + (Byte)(p->low >> 32)); |
| p->buf = buf; |
| if (buf == p->bufLim) |
| RangeEnc_FlushStream(p); |
| temp = 0xFF; |
| } |
| while (--p->cacheSize != 0); |
| p->cache = (Byte)((UInt32)p->low >> 24); |
| } |
| p->cacheSize++; |
| p->low = (UInt32)p->low << 8; |
| } |
| |
| static void RangeEnc_FlushData(CRangeEnc *p) |
| { |
| int i; |
| for (i = 0; i < 5; i++) |
| RangeEnc_ShiftLow(p); |
| } |
| |
| static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits) |
| { |
| do |
| { |
| p->range >>= 1; |
| p->low += p->range & (0 - ((value >> --numBits) & 1)); |
| if (p->range < kTopValue) |
| { |
| p->range <<= 8; |
| RangeEnc_ShiftLow(p); |
| } |
| } |
| while (numBits != 0); |
| } |
| |
| static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol) |
| { |
| UInt32 ttt = *prob; |
| UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt; |
| if (symbol == 0) |
| { |
| p->range = newBound; |
| ttt += (kBitModelTotal - ttt) >> kNumMoveBits; |
| } |
| else |
| { |
| p->low += newBound; |
| p->range -= newBound; |
| ttt -= ttt >> kNumMoveBits; |
| } |
| *prob = (CLzmaProb)ttt; |
| if (p->range < kTopValue) |
| { |
| p->range <<= 8; |
| RangeEnc_ShiftLow(p); |
| } |
| } |
| |
| static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol) |
| { |
| symbol |= 0x100; |
| do |
| { |
| RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); |
| symbol <<= 1; |
| } |
| while (symbol < 0x10000); |
| } |
| |
| static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte) |
| { |
| UInt32 offs = 0x100; |
| symbol |= 0x100; |
| do |
| { |
| matchByte <<= 1; |
| RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); |
| symbol <<= 1; |
| offs &= ~(matchByte ^ symbol); |
| } |
| while (symbol < 0x10000); |
| } |
| |
| static void LzmaEnc_InitPriceTables(UInt32 *ProbPrices) |
| { |
| UInt32 i; |
| for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) |
| { |
| const int kCyclesBits = kNumBitPriceShiftBits; |
| UInt32 w = i; |
| UInt32 bitCount = 0; |
| int j; |
| for (j = 0; j < kCyclesBits; j++) |
| { |
| w = w * w; |
| bitCount <<= 1; |
| while (w >= ((UInt32)1 << 16)) |
| { |
| w >>= 1; |
| bitCount++; |
| } |
| } |
| ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); |
| } |
| } |
| |
| |
| #define GET_PRICE(prob, symbol) \ |
| p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; |
| |
| #define GET_PRICEa(prob, symbol) \ |
| ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; |
| |
| #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] |
| #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] |
| |
| #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] |
| #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] |
| |
| static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices) |
| { |
| UInt32 price = 0; |
| symbol |= 0x100; |
| do |
| { |
| price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); |
| symbol <<= 1; |
| } |
| while (symbol < 0x10000); |
| return price; |
| }; |
| |
| static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices) |
| { |
| UInt32 price = 0; |
| UInt32 offs = 0x100; |
| symbol |= 0x100; |
| do |
| { |
| matchByte <<= 1; |
| price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); |
| symbol <<= 1; |
| offs &= ~(matchByte ^ symbol); |
| } |
| while (symbol < 0x10000); |
| return price; |
| }; |
| |
| |
| static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) |
| { |
| UInt32 m = 1; |
| int i; |
| for (i = numBitLevels; i != 0 ;) |
| { |
| UInt32 bit; |
| i--; |
| bit = (symbol >> i) & 1; |
| RangeEnc_EncodeBit(rc, probs + m, bit); |
| m = (m << 1) | bit; |
| } |
| }; |
| |
| static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) |
| { |
| UInt32 m = 1; |
| int i; |
| for (i = 0; i < numBitLevels; i++) |
| { |
| UInt32 bit = symbol & 1; |
| RangeEnc_EncodeBit(rc, probs + m, bit); |
| m = (m << 1) | bit; |
| symbol >>= 1; |
| } |
| } |
| |
| static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) |
| { |
| UInt32 price = 0; |
| symbol |= (1 << numBitLevels); |
| while (symbol != 1) |
| { |
| price += GET_PRICEa(probs[symbol >> 1], symbol & 1); |
| symbol >>= 1; |
| } |
| return price; |
| } |
| |
| static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) |
| { |
| UInt32 price = 0; |
| UInt32 m = 1; |
| int i; |
| for (i = numBitLevels; i != 0; i--) |
| { |
| UInt32 bit = symbol & 1; |
| symbol >>= 1; |
| price += GET_PRICEa(probs[m], bit); |
| m = (m << 1) | bit; |
| } |
| return price; |
| } |
| |
| |
| static void LenEnc_Init(CLenEnc *p) |
| { |
| unsigned i; |
| p->choice = p->choice2 = kProbInitValue; |
| for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) |
| p->low[i] = kProbInitValue; |
| for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) |
| p->mid[i] = kProbInitValue; |
| for (i = 0; i < kLenNumHighSymbols; i++) |
| p->high[i] = kProbInitValue; |
| } |
| |
| static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState) |
| { |
| if (symbol < kLenNumLowSymbols) |
| { |
| RangeEnc_EncodeBit(rc, &p->choice, 0); |
| RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); |
| } |
| else |
| { |
| RangeEnc_EncodeBit(rc, &p->choice, 1); |
| if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) |
| { |
| RangeEnc_EncodeBit(rc, &p->choice2, 0); |
| RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); |
| } |
| else |
| { |
| RangeEnc_EncodeBit(rc, &p->choice2, 1); |
| RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); |
| } |
| } |
| } |
| |
| static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices) |
| { |
| UInt32 a0 = GET_PRICE_0a(p->choice); |
| UInt32 a1 = GET_PRICE_1a(p->choice); |
| UInt32 b0 = a1 + GET_PRICE_0a(p->choice2); |
| UInt32 b1 = a1 + GET_PRICE_1a(p->choice2); |
| UInt32 i = 0; |
| for (i = 0; i < kLenNumLowSymbols; i++) |
| { |
| if (i >= numSymbols) |
| return; |
| prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); |
| } |
| for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) |
| { |
| if (i >= numSymbols) |
| return; |
| prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); |
| } |
| for (; i < numSymbols; i++) |
| prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); |
| } |
| |
| static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices) |
| { |
| LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); |
| p->counters[posState] = p->tableSize; |
| } |
| |
| static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices) |
| { |
| UInt32 posState; |
| for (posState = 0; posState < numPosStates; posState++) |
| LenPriceEnc_UpdateTable(p, posState, ProbPrices); |
| } |
| |
| static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices) |
| { |
| LenEnc_Encode(&p->p, rc, symbol, posState); |
| if (updatePrice) |
| if (--p->counters[posState] == 0) |
| LenPriceEnc_UpdateTable(p, posState, ProbPrices); |
| } |
| |
| |
| |
| |
| static void MovePos(CLzmaEnc *p, UInt32 num) |
| { |
| #ifdef SHOW_STAT |
| ttt += num; |
| printf("\n MovePos %d", num); |
| #endif |
| if (num != 0) |
| { |
| p->additionalOffset += num; |
| p->matchFinder.Skip(p->matchFinderObj, num); |
| } |
| } |
| |
| static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes) |
| { |
| UInt32 lenRes = 0, numDistancePairs; |
| numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances); |
| #ifdef SHOW_STAT |
| printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2); |
| if (ttt >= 61994) |
| ttt = ttt; |
| |
| ttt++; |
| { |
| UInt32 i; |
| for (i = 0; i < numDistancePairs; i += 2) |
| printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]); |
| } |
| #endif |
| if (numDistancePairs > 0) |
| { |
| lenRes = p->matchDistances[numDistancePairs - 2]; |
| if (lenRes == p->numFastBytes) |
| { |
| UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1; |
| const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; |
| UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1; |
| if (numAvail > LZMA_MATCH_LEN_MAX) |
| numAvail = LZMA_MATCH_LEN_MAX; |
| |
| { |
| const Byte *pby2 = pby - distance; |
| for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++); |
| } |
| } |
| } |
| p->additionalOffset++; |
| *numDistancePairsRes = numDistancePairs; |
| return lenRes; |
| } |
| |
| |
| #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False; |
| #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False; |
| #define IsShortRep(p) ((p)->backPrev == 0) |
| |
| static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState) |
| { |
| return |
| GET_PRICE_0(p->isRepG0[state]) + |
| GET_PRICE_0(p->isRep0Long[state][posState]); |
| } |
| |
| static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState) |
| { |
| UInt32 price; |
| if (repIndex == 0) |
| { |
| price = GET_PRICE_0(p->isRepG0[state]); |
| price += GET_PRICE_1(p->isRep0Long[state][posState]); |
| } |
| else |
| { |
| price = GET_PRICE_1(p->isRepG0[state]); |
| if (repIndex == 1) |
| price += GET_PRICE_0(p->isRepG1[state]); |
| else |
| { |
| price += GET_PRICE_1(p->isRepG1[state]); |
| price += GET_PRICE(p->isRepG2[state], repIndex - 2); |
| } |
| } |
| return price; |
| } |
| |
| static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState) |
| { |
| return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + |
| GetPureRepPrice(p, repIndex, state, posState); |
| } |
| |
| static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur) |
| { |
| UInt32 posMem = p->opt[cur].posPrev; |
| UInt32 backMem = p->opt[cur].backPrev; |
| p->optimumEndIndex = cur; |
| do |
| { |
| if (p->opt[cur].prev1IsChar) |
| { |
| MakeAsChar(&p->opt[posMem]) |
| p->opt[posMem].posPrev = posMem - 1; |
| if (p->opt[cur].prev2) |
| { |
| p->opt[posMem - 1].prev1IsChar = False; |
| p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; |
| p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; |
| } |
| } |
| { |
| UInt32 posPrev = posMem; |
| UInt32 backCur = backMem; |
| |
| backMem = p->opt[posPrev].backPrev; |
| posMem = p->opt[posPrev].posPrev; |
| |
| p->opt[posPrev].backPrev = backCur; |
| p->opt[posPrev].posPrev = cur; |
| cur = posPrev; |
| } |
| } |
| while (cur != 0); |
| *backRes = p->opt[0].backPrev; |
| p->optimumCurrentIndex = p->opt[0].posPrev; |
| return p->optimumCurrentIndex; |
| } |
| |
| #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) |
| |
| #pragma GCC diagnostic ignored "-Wshadow" |
| |
| static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes) |
| { |
| UInt32 numAvailableBytes, lenMain, numDistancePairs; |
| const Byte *data; |
| UInt32 reps[LZMA_NUM_REPS]; |
| UInt32 repLens[LZMA_NUM_REPS]; |
| UInt32 repMaxIndex, i; |
| UInt32 *matchDistances; |
| Byte currentByte, matchByte; |
| UInt32 posState; |
| UInt32 matchPrice, repMatchPrice; |
| UInt32 lenEnd; |
| UInt32 len; |
| UInt32 normalMatchPrice; |
| UInt32 cur; |
| if (p->optimumEndIndex != p->optimumCurrentIndex) |
| { |
| const COptimal *opt = &p->opt[p->optimumCurrentIndex]; |
| UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex; |
| *backRes = opt->backPrev; |
| p->optimumCurrentIndex = opt->posPrev; |
| return lenRes; |
| } |
| p->optimumCurrentIndex = p->optimumEndIndex = 0; |
| |
| numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); |
| |
| if (!p->longestMatchWasFound) |
| { |
| lenMain = ReadMatchDistances(p, &numDistancePairs); |
| } |
| else |
| { |
| lenMain = p->longestMatchLength; |
| numDistancePairs = p->numDistancePairs; |
| p->longestMatchWasFound = False; |
| } |
| |
| data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; |
| if (numAvailableBytes < 2) |
| { |
| *backRes = (UInt32)(-1); |
| return 1; |
| } |
| if (numAvailableBytes > LZMA_MATCH_LEN_MAX) |
| numAvailableBytes = LZMA_MATCH_LEN_MAX; |
| |
| repMaxIndex = 0; |
| for (i = 0; i < LZMA_NUM_REPS; i++) |
| { |
| UInt32 lenTest; |
| const Byte *data2; |
| reps[i] = p->reps[i]; |
| data2 = data - (reps[i] + 1); |
| if (data[0] != data2[0] || data[1] != data2[1]) |
| { |
| repLens[i] = 0; |
| continue; |
| } |
| for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++); |
| repLens[i] = lenTest; |
| if (lenTest > repLens[repMaxIndex]) |
| repMaxIndex = i; |
| } |
| if (repLens[repMaxIndex] >= p->numFastBytes) |
| { |
| UInt32 lenRes; |
| *backRes = repMaxIndex; |
| lenRes = repLens[repMaxIndex]; |
| MovePos(p, lenRes - 1); |
| return lenRes; |
| } |
| |
| matchDistances = p->matchDistances; |
| if (lenMain >= p->numFastBytes) |
| { |
| *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS; |
| MovePos(p, lenMain - 1); |
| return lenMain; |
| } |
| currentByte = *data; |
| matchByte = *(data - (reps[0] + 1)); |
| |
| if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2) |
| { |
| *backRes = (UInt32)-1; |
| return 1; |
| } |
| |
| p->opt[0].state = (CState)p->state; |
| |
| posState = (position & p->pbMask); |
| |
| { |
| const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); |
| p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + |
| (!IsCharState(p->state) ? |
| LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) : |
| LitEnc_GetPrice(probs, currentByte, p->ProbPrices)); |
| } |
| |
| MakeAsChar(&p->opt[1]); |
| |
| matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); |
| repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); |
| |
| if (matchByte == currentByte) |
| { |
| UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); |
| if (shortRepPrice < p->opt[1].price) |
| { |
| p->opt[1].price = shortRepPrice; |
| MakeAsShortRep(&p->opt[1]); |
| } |
| } |
| lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]); |
| |
| if (lenEnd < 2) |
| { |
| *backRes = p->opt[1].backPrev; |
| return 1; |
| } |
| |
| p->opt[1].posPrev = 0; |
| for (i = 0; i < LZMA_NUM_REPS; i++) |
| p->opt[0].backs[i] = reps[i]; |
| |
| len = lenEnd; |
| do |
| p->opt[len--].price = kInfinityPrice; |
| while (len >= 2); |
| |
| for (i = 0; i < LZMA_NUM_REPS; i++) |
| { |
| UInt32 repLen = repLens[i]; |
| UInt32 price; |
| if (repLen < 2) |
| continue; |
| price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); |
| do |
| { |
| UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; |
| COptimal *opt = &p->opt[repLen]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = 0; |
| opt->backPrev = i; |
| opt->prev1IsChar = False; |
| } |
| } |
| while (--repLen >= 2); |
| } |
| |
| normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); |
| |
| len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); |
| if (len <= lenMain) |
| { |
| UInt32 offs = 0; |
| while (len > matchDistances[offs]) |
| offs += 2; |
| for (; ; len++) |
| { |
| COptimal *opt; |
| UInt32 distance = matchDistances[offs + 1]; |
| |
| UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; |
| UInt32 lenToPosState = GetLenToPosState(len); |
| if (distance < kNumFullDistances) |
| curAndLenPrice += p->distancesPrices[lenToPosState][distance]; |
| else |
| { |
| UInt32 slot; |
| GetPosSlot2(distance, slot); |
| curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; |
| } |
| opt = &p->opt[len]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = 0; |
| opt->backPrev = distance + LZMA_NUM_REPS; |
| opt->prev1IsChar = False; |
| } |
| if (len == matchDistances[offs]) |
| { |
| offs += 2; |
| if (offs == numDistancePairs) |
| break; |
| } |
| } |
| } |
| |
| cur = 0; |
| |
| #ifdef SHOW_STAT2 |
| if (position >= 0) |
| { |
| unsigned i; |
| printf("\n pos = %4X", position); |
| for (i = cur; i <= lenEnd; i++) |
| printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); |
| } |
| #endif |
| |
| for (;;) |
| { |
| UInt32 numAvailableBytesFull, newLen, numDistancePairs; |
| COptimal *curOpt; |
| UInt32 posPrev; |
| UInt32 state; |
| UInt32 curPrice; |
| Bool nextIsChar; |
| const Byte *data; |
| Byte currentByte, matchByte; |
| UInt32 posState; |
| UInt32 curAnd1Price; |
| COptimal *nextOpt; |
| UInt32 matchPrice, repMatchPrice; |
| UInt32 numAvailableBytes; |
| UInt32 startLen; |
| |
| cur++; |
| if (cur == lenEnd) |
| return Backward(p, backRes, cur); |
| |
| numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); |
| newLen = ReadMatchDistances(p, &numDistancePairs); |
| if (newLen >= p->numFastBytes) |
| { |
| p->numDistancePairs = numDistancePairs; |
| p->longestMatchLength = newLen; |
| p->longestMatchWasFound = True; |
| return Backward(p, backRes, cur); |
| } |
| position++; |
| curOpt = &p->opt[cur]; |
| posPrev = curOpt->posPrev; |
| if (curOpt->prev1IsChar) |
| { |
| posPrev--; |
| if (curOpt->prev2) |
| { |
| state = p->opt[curOpt->posPrev2].state; |
| if (curOpt->backPrev2 < LZMA_NUM_REPS) |
| state = kRepNextStates[state]; |
| else |
| state = kMatchNextStates[state]; |
| } |
| else |
| state = p->opt[posPrev].state; |
| state = kLiteralNextStates[state]; |
| } |
| else |
| state = p->opt[posPrev].state; |
| if (posPrev == cur - 1) |
| { |
| if (IsShortRep(curOpt)) |
| state = kShortRepNextStates[state]; |
| else |
| state = kLiteralNextStates[state]; |
| } |
| else |
| { |
| UInt32 pos; |
| const COptimal *prevOpt; |
| if (curOpt->prev1IsChar && curOpt->prev2) |
| { |
| posPrev = curOpt->posPrev2; |
| pos = curOpt->backPrev2; |
| state = kRepNextStates[state]; |
| } |
| else |
| { |
| pos = curOpt->backPrev; |
| if (pos < LZMA_NUM_REPS) |
| state = kRepNextStates[state]; |
| else |
| state = kMatchNextStates[state]; |
| } |
| prevOpt = &p->opt[posPrev]; |
| if (pos < LZMA_NUM_REPS) |
| { |
| UInt32 i; |
| reps[0] = prevOpt->backs[pos]; |
| for (i = 1; i < pos + 1; i++) |
| reps[i] = prevOpt->backs[i - 1]; |
| for (; i < LZMA_NUM_REPS; i++) |
| reps[i] = prevOpt->backs[i]; |
| } |
| else |
| { |
| UInt32 i; |
| reps[0] = (pos - LZMA_NUM_REPS); |
| for (i = 1; i < LZMA_NUM_REPS; i++) |
| reps[i] = prevOpt->backs[i - 1]; |
| } |
| } |
| curOpt->state = (CState)state; |
| |
| curOpt->backs[0] = reps[0]; |
| curOpt->backs[1] = reps[1]; |
| curOpt->backs[2] = reps[2]; |
| curOpt->backs[3] = reps[3]; |
| |
| curPrice = curOpt->price; |
| nextIsChar = False; |
| data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; |
| currentByte = *data; |
| matchByte = *(data - (reps[0] + 1)); |
| |
| posState = (position & p->pbMask); |
| |
| curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); |
| { |
| const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); |
| curAnd1Price += |
| (!IsCharState(state) ? |
| LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) : |
| LitEnc_GetPrice(probs, currentByte, p->ProbPrices)); |
| } |
| |
| nextOpt = &p->opt[cur + 1]; |
| |
| if (curAnd1Price < nextOpt->price) |
| { |
| nextOpt->price = curAnd1Price; |
| nextOpt->posPrev = cur; |
| MakeAsChar(nextOpt); |
| nextIsChar = True; |
| } |
| |
| matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); |
| repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); |
| |
| if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) |
| { |
| UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); |
| if (shortRepPrice <= nextOpt->price) |
| { |
| nextOpt->price = shortRepPrice; |
| nextOpt->posPrev = cur; |
| MakeAsShortRep(nextOpt); |
| nextIsChar = True; |
| } |
| } |
| |
| { |
| UInt32 temp = kNumOpts - 1 - cur; |
| if (temp < numAvailableBytesFull) |
| numAvailableBytesFull = temp; |
| } |
| numAvailableBytes = numAvailableBytesFull; |
| |
| if (numAvailableBytes < 2) |
| continue; |
| if (numAvailableBytes > p->numFastBytes) |
| numAvailableBytes = p->numFastBytes; |
| if (!nextIsChar && matchByte != currentByte) /* speed optimization */ |
| { |
| /* try Literal + rep0 */ |
| UInt32 temp; |
| UInt32 lenTest2; |
| const Byte *data2 = data - (reps[0] + 1); |
| UInt32 limit = p->numFastBytes + 1; |
| if (limit > numAvailableBytesFull) |
| limit = numAvailableBytesFull; |
| |
| for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++); |
| lenTest2 = temp - 1; |
| if (lenTest2 >= 2) |
| { |
| UInt32 state2 = kLiteralNextStates[state]; |
| UInt32 posStateNext = (position + 1) & p->pbMask; |
| UInt32 nextRepMatchPrice = curAnd1Price + |
| GET_PRICE_1(p->isMatch[state2][posStateNext]) + |
| GET_PRICE_1(p->isRep[state2]); |
| /* for (; lenTest2 >= 2; lenTest2--) */ |
| { |
| UInt32 curAndLenPrice; |
| COptimal *opt; |
| UInt32 offset = cur + 1 + lenTest2; |
| while (lenEnd < offset) |
| p->opt[++lenEnd].price = kInfinityPrice; |
| curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); |
| opt = &p->opt[offset]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = cur + 1; |
| opt->backPrev = 0; |
| opt->prev1IsChar = True; |
| opt->prev2 = False; |
| } |
| } |
| } |
| } |
| |
| startLen = 2; /* speed optimization */ |
| { |
| UInt32 repIndex; |
| for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) |
| { |
| UInt32 lenTest; |
| UInt32 lenTestTemp; |
| UInt32 price; |
| const Byte *data2 = data - (reps[repIndex] + 1); |
| if (data[0] != data2[0] || data[1] != data2[1]) |
| continue; |
| for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++); |
| while (lenEnd < cur + lenTest) |
| p->opt[++lenEnd].price = kInfinityPrice; |
| lenTestTemp = lenTest; |
| price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); |
| do |
| { |
| UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; |
| COptimal *opt = &p->opt[cur + lenTest]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = cur; |
| opt->backPrev = repIndex; |
| opt->prev1IsChar = False; |
| } |
| } |
| while (--lenTest >= 2); |
| lenTest = lenTestTemp; |
| |
| if (repIndex == 0) |
| startLen = lenTest + 1; |
| |
| /* if (_maxMode) */ |
| { |
| UInt32 lenTest2 = lenTest + 1; |
| UInt32 limit = lenTest2 + p->numFastBytes; |
| UInt32 nextRepMatchPrice; |
| if (limit > numAvailableBytesFull) |
| limit = numAvailableBytesFull; |
| for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); |
| lenTest2 -= lenTest + 1; |
| if (lenTest2 >= 2) |
| { |
| UInt32 state2 = kRepNextStates[state]; |
| UInt32 posStateNext = (position + lenTest) & p->pbMask; |
| UInt32 curAndLenCharPrice = |
| price + p->repLenEnc.prices[posState][lenTest - 2] + |
| GET_PRICE_0(p->isMatch[state2][posStateNext]) + |
| LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), |
| data[lenTest], data2[lenTest], p->ProbPrices); |
| state2 = kLiteralNextStates[state2]; |
| posStateNext = (position + lenTest + 1) & p->pbMask; |
| nextRepMatchPrice = curAndLenCharPrice + |
| GET_PRICE_1(p->isMatch[state2][posStateNext]) + |
| GET_PRICE_1(p->isRep[state2]); |
| |
| /* for (; lenTest2 >= 2; lenTest2--) */ |
| { |
| UInt32 curAndLenPrice; |
| COptimal *opt; |
| UInt32 offset = cur + lenTest + 1 + lenTest2; |
| while (lenEnd < offset) |
| p->opt[++lenEnd].price = kInfinityPrice; |
| curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); |
| opt = &p->opt[offset]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = cur + lenTest + 1; |
| opt->backPrev = 0; |
| opt->prev1IsChar = True; |
| opt->prev2 = True; |
| opt->posPrev2 = cur; |
| opt->backPrev2 = repIndex; |
| } |
| } |
| } |
| } |
| } |
| } |
| /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */ |
| if (newLen > numAvailableBytes) |
| { |
| newLen = numAvailableBytes; |
| for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2); |
| matchDistances[numDistancePairs] = newLen; |
| numDistancePairs += 2; |
| } |
| if (newLen >= startLen) |
| { |
| UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); |
| UInt32 offs, curBack, posSlot; |
| UInt32 lenTest; |
| while (lenEnd < cur + newLen) |
| p->opt[++lenEnd].price = kInfinityPrice; |
| |
| offs = 0; |
| while (startLen > matchDistances[offs]) |
| offs += 2; |
| curBack = matchDistances[offs + 1]; |
| GetPosSlot2(curBack, posSlot); |
| for (lenTest = /*2*/ startLen; ; lenTest++) |
| { |
| UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; |
| UInt32 lenToPosState = GetLenToPosState(lenTest); |
| COptimal *opt; |
| if (curBack < kNumFullDistances) |
| curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; |
| else |
| curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; |
| |
| opt = &p->opt[cur + lenTest]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = cur; |
| opt->backPrev = curBack + LZMA_NUM_REPS; |
| opt->prev1IsChar = False; |
| } |
| |
| if (/*_maxMode && */lenTest == matchDistances[offs]) |
| { |
| /* Try Match + Literal + Rep0 */ |
| const Byte *data2 = data - (curBack + 1); |
| UInt32 lenTest2 = lenTest + 1; |
| UInt32 limit = lenTest2 + p->numFastBytes; |
| UInt32 nextRepMatchPrice; |
| if (limit > numAvailableBytesFull) |
| limit = numAvailableBytesFull; |
| for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); |
| lenTest2 -= lenTest + 1; |
| if (lenTest2 >= 2) |
| { |
| UInt32 state2 = kMatchNextStates[state]; |
| UInt32 posStateNext = (position + lenTest) & p->pbMask; |
| UInt32 curAndLenCharPrice = curAndLenPrice + |
| GET_PRICE_0(p->isMatch[state2][posStateNext]) + |
| LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), |
| data[lenTest], data2[lenTest], p->ProbPrices); |
| state2 = kLiteralNextStates[state2]; |
| posStateNext = (posStateNext + 1) & p->pbMask; |
| nextRepMatchPrice = curAndLenCharPrice + |
| GET_PRICE_1(p->isMatch[state2][posStateNext]) + |
| GET_PRICE_1(p->isRep[state2]); |
| |
| /* for (; lenTest2 >= 2; lenTest2--) */ |
| { |
| UInt32 offset = cur + lenTest + 1 + lenTest2; |
| UInt32 curAndLenPrice; |
| COptimal *opt; |
| while (lenEnd < offset) |
| p->opt[++lenEnd].price = kInfinityPrice; |
| curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); |
| opt = &p->opt[offset]; |
| if (curAndLenPrice < opt->price) |
| { |
| opt->price = curAndLenPrice; |
| opt->posPrev = cur + lenTest + 1; |
| opt->backPrev = 0; |
| opt->prev1IsChar = True; |
| opt->prev2 = True; |
| opt->posPrev2 = cur; |
| opt->backPrev2 = curBack + LZMA_NUM_REPS; |
| } |
| } |
| } |
| offs += 2; |
| if (offs == numDistancePairs) |
| break; |
| curBack = matchDistances[offs + 1]; |
| if (curBack >= kNumFullDistances) |
| GetPosSlot2(curBack, posSlot); |
| } |
| } |
| } |
| } |
| } |
| |
| #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) |
| |
| static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes) |
| { |
| UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); |
| UInt32 lenMain, numDistancePairs; |
| const Byte *data; |
| UInt32 repLens[LZMA_NUM_REPS]; |
| UInt32 repMaxIndex, i; |
| UInt32 *matchDistances; |
| UInt32 backMain; |
| |
| if (!p->longestMatchWasFound) |
| { |
| lenMain = ReadMatchDistances(p, &numDistancePairs); |
| } |
| else |
| { |
| lenMain = p->longestMatchLength; |
| numDistancePairs = p->numDistancePairs; |
| p->longestMatchWasFound = False; |
| } |
| |
| data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; |
| if (numAvailableBytes > LZMA_MATCH_LEN_MAX) |
| numAvailableBytes = LZMA_MATCH_LEN_MAX; |
| if (numAvailableBytes < 2) |
| { |
| *backRes = (UInt32)(-1); |
| return 1; |
| } |
| |
| repMaxIndex = 0; |
| |
| for (i = 0; i < LZMA_NUM_REPS; i++) |
| { |
| const Byte *data2 = data - (p->reps[i] + 1); |
| UInt32 len; |
| if (data[0] != data2[0] || data[1] != data2[1]) |
| { |
| repLens[i] = 0; |
| continue; |
| } |
| for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++); |
| if (len >= p->numFastBytes) |
| { |
| *backRes = i; |
| MovePos(p, len - 1); |
| return len; |
| } |
| repLens[i] = len; |
| if (len > repLens[repMaxIndex]) |
| repMaxIndex = i; |
| } |
| matchDistances = p->matchDistances; |
| if (lenMain >= p->numFastBytes) |
| { |
| *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS; |
| MovePos(p, lenMain - 1); |
| return lenMain; |
| } |
| |
| backMain = 0; /* for GCC */ |
| if (lenMain >= 2) |
| { |
| backMain = matchDistances[numDistancePairs - 1]; |
| while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1) |
| { |
| if (!ChangePair(matchDistances[numDistancePairs - 3], backMain)) |
| break; |
| numDistancePairs -= 2; |
| lenMain = matchDistances[numDistancePairs - 2]; |
| backMain = matchDistances[numDistancePairs - 1]; |
| } |
| if (lenMain == 2 && backMain >= 0x80) |
| lenMain = 1; |
| } |
| |
| if (repLens[repMaxIndex] >= 2) |
| { |
| if (repLens[repMaxIndex] + 1 >= lenMain || |
| (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) || |
| (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15)))) |
| { |
| UInt32 lenRes; |
| *backRes = repMaxIndex; |
| lenRes = repLens[repMaxIndex]; |
| MovePos(p, lenRes - 1); |
| return lenRes; |
| } |
| } |
| |
| if (lenMain >= 2 && numAvailableBytes > 2) |
| { |
| UInt32 i; |
| numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); |
| p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs); |
| if (p->longestMatchLength >= 2) |
| { |
| UInt32 newDistance = matchDistances[p->numDistancePairs - 1]; |
| if ((p->longestMatchLength >= lenMain && newDistance < backMain) || |
| (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) || |
| (p->longestMatchLength > lenMain + 1) || |
| (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain))) |
| { |
| p->longestMatchWasFound = True; |
| *backRes = (UInt32)(-1); |
| return 1; |
| } |
| } |
| data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; |
| for (i = 0; i < LZMA_NUM_REPS; i++) |
| { |
| UInt32 len; |
| const Byte *data2 = data - (p->reps[i] + 1); |
| if (data[1] != data2[1] || data[2] != data2[2]) |
| { |
| repLens[i] = 0; |
| continue; |
| } |
| for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++); |
| if (len + 1 >= lenMain) |
| { |
| p->longestMatchWasFound = True; |
| *backRes = (UInt32)(-1); |
| return 1; |
| } |
| } |
| *backRes = backMain + LZMA_NUM_REPS; |
| MovePos(p, lenMain - 2); |
| return lenMain; |
| } |
| *backRes = (UInt32)(-1); |
| return 1; |
| } |
| |
| static void WriteEndMarker(CLzmaEnc *p, UInt32 posState) |
| { |
| UInt32 len; |
| RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); |
| RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); |
| p->state = kMatchNextStates[p->state]; |
| len = LZMA_MATCH_LEN_MIN; |
| LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); |
| RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); |
| RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); |
| RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); |
| } |
| |
| static SRes CheckErrors(CLzmaEnc *p) |
| { |
| if (p->result != SZ_OK) |
| return p->result; |
| if (p->rc.res != SZ_OK) |
| p->result = SZ_ERROR_WRITE; |
| if (p->matchFinderBase.result != SZ_OK) |
| p->result = SZ_ERROR_READ; |
| if (p->result != SZ_OK) |
| p->finished = True; |
| return p->result; |
| } |
| |
| static SRes Flush(CLzmaEnc *p, UInt32 nowPos) |
| { |
| /* ReleaseMFStream(); */ |
| p->finished = True; |
| if (p->writeEndMark) |
| WriteEndMarker(p, nowPos & p->pbMask); |
| RangeEnc_FlushData(&p->rc); |
| RangeEnc_FlushStream(&p->rc); |
| return CheckErrors(p); |
| } |
| |
| static void FillAlignPrices(CLzmaEnc *p) |
| { |
| UInt32 i; |
| for (i = 0; i < kAlignTableSize; i++) |
| p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); |
| p->alignPriceCount = 0; |
| } |
| |
| static void FillDistancesPrices(CLzmaEnc *p) |
| { |
| UInt32 tempPrices[kNumFullDistances]; |
| UInt32 i, lenToPosState; |
| for (i = kStartPosModelIndex; i < kNumFullDistances; i++) |
| { |
| UInt32 posSlot = GetPosSlot1(i); |
| UInt32 footerBits = ((posSlot >> 1) - 1); |
| UInt32 base = ((2 | (posSlot & 1)) << footerBits); |
| tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); |
| } |
| |
| for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) |
| { |
| UInt32 posSlot; |
| const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState]; |
| UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState]; |
| for (posSlot = 0; posSlot < p->distTableSize; posSlot++) |
| posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); |
| for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) |
| posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); |
| |
| { |
| UInt32 *distancesPrices = p->distancesPrices[lenToPosState]; |
| UInt32 i; |
| for (i = 0; i < kStartPosModelIndex; i++) |
| distancesPrices[i] = posSlotPrices[i]; |
| for (; i < kNumFullDistances; i++) |
| distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; |
| } |
| } |
| p->matchPriceCount = 0; |
| } |
| |
| static void LzmaEnc_Construct(CLzmaEnc *p) |
| { |
| RangeEnc_Construct(&p->rc); |
| MatchFinder_Construct(&p->matchFinderBase); |
| #ifdef COMPRESS_MF_MT |
| MatchFinderMt_Construct(&p->matchFinderMt); |
| p->matchFinderMt.MatchFinder = &p->matchFinderBase; |
| #endif |
| |
| { |
| CLzmaEncProps props; |
| LzmaEncProps_Init(&props); |
| LzmaEnc_SetProps(p, &props); |
| } |
| |
| #ifndef LZMA_LOG_BSR |
| LzmaEnc_FastPosInit(p->g_FastPos); |
| #endif |
| |
| LzmaEnc_InitPriceTables(p->ProbPrices); |
| p->litProbs = 0; |
| p->saveState.litProbs = 0; |
| } |
| |
| CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc) |
| { |
| void *p; |
| p = alloc->Alloc(alloc, sizeof(CLzmaEnc)); |
| if (p != 0) |
| LzmaEnc_Construct((CLzmaEnc *)p); |
| return p; |
| } |
| |
| static void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc) |
| { |
| alloc->Free(alloc, p->litProbs); |
| alloc->Free(alloc, p->saveState.litProbs); |
| p->litProbs = 0; |
| p->saveState.litProbs = 0; |
| } |
| |
| static void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| #ifdef COMPRESS_MF_MT |
| MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); |
| #endif |
| MatchFinder_Free(&p->matchFinderBase, allocBig); |
| LzmaEnc_FreeLits(p, alloc); |
| RangeEnc_Free(&p->rc, alloc); |
| } |
| |
| void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig); |
| alloc->Free(alloc, p); |
| } |
| |
| static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize) |
| { |
| UInt32 nowPos32, startPos32; |
| if (p->inStream != 0) |
| { |
| p->matchFinderBase.stream = p->inStream; |
| p->matchFinder.Init(p->matchFinderObj); |
| p->inStream = 0; |
| } |
| |
| if (p->finished) |
| return p->result; |
| RINOK(CheckErrors(p)); |
| |
| nowPos32 = (UInt32)p->nowPos64; |
| startPos32 = nowPos32; |
| |
| if (p->nowPos64 == 0) |
| { |
| UInt32 numDistancePairs; |
| Byte curByte; |
| if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) |
| return Flush(p, nowPos32); |
| ReadMatchDistances(p, &numDistancePairs); |
| RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); |
| p->state = kLiteralNextStates[p->state]; |
| curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset); |
| LitEnc_Encode(&p->rc, p->litProbs, curByte); |
| p->additionalOffset--; |
| nowPos32++; |
| } |
| |
| if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) |
| for (;;) |
| { |
| UInt32 pos, len, posState; |
| |
| if (p->fastMode) |
| len = GetOptimumFast(p, &pos); |
| else |
| len = GetOptimum(p, nowPos32, &pos); |
| |
| #ifdef SHOW_STAT2 |
| printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); |
| #endif |
| |
| posState = nowPos32 & p->pbMask; |
| if (len == 1 && pos == 0xFFFFFFFF) |
| { |
| Byte curByte; |
| CLzmaProb *probs; |
| const Byte *data; |
| |
| RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); |
| data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; |
| curByte = *data; |
| probs = LIT_PROBS(nowPos32, *(data - 1)); |
| if (IsCharState(p->state)) |
| LitEnc_Encode(&p->rc, probs, curByte); |
| else |
| LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); |
| p->state = kLiteralNextStates[p->state]; |
| } |
| else |
| { |
| RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); |
| if (pos < LZMA_NUM_REPS) |
| { |
| RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); |
| if (pos == 0) |
| { |
| RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); |
| RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); |
| } |
| else |
| { |
| UInt32 distance = p->reps[pos]; |
| RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); |
| if (pos == 1) |
| RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); |
| else |
| { |
| RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); |
| RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); |
| if (pos == 3) |
| p->reps[3] = p->reps[2]; |
| p->reps[2] = p->reps[1]; |
| } |
| p->reps[1] = p->reps[0]; |
| p->reps[0] = distance; |
| } |
| if (len == 1) |
| p->state = kShortRepNextStates[p->state]; |
| else |
| { |
| LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); |
| p->state = kRepNextStates[p->state]; |
| } |
| } |
| else |
| { |
| UInt32 posSlot; |
| RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); |
| p->state = kMatchNextStates[p->state]; |
| LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); |
| pos -= LZMA_NUM_REPS; |
| GetPosSlot(pos, posSlot); |
| RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); |
| |
| if (posSlot >= kStartPosModelIndex) |
| { |
| UInt32 footerBits = ((posSlot >> 1) - 1); |
| UInt32 base = ((2 | (posSlot & 1)) << footerBits); |
| UInt32 posReduced = pos - base; |
| |
| if (posSlot < kEndPosModelIndex) |
| RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); |
| else |
| { |
| RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); |
| RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); |
| p->alignPriceCount++; |
| } |
| } |
| p->reps[3] = p->reps[2]; |
| p->reps[2] = p->reps[1]; |
| p->reps[1] = p->reps[0]; |
| p->reps[0] = pos; |
| p->matchPriceCount++; |
| } |
| } |
| p->additionalOffset -= len; |
| nowPos32 += len; |
| if (p->additionalOffset == 0) |
| { |
| UInt32 processed; |
| if (!p->fastMode) |
| { |
| if (p->matchPriceCount >= (1 << 7)) |
| FillDistancesPrices(p); |
| if (p->alignPriceCount >= kAlignTableSize) |
| FillAlignPrices(p); |
| } |
| if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) |
| break; |
| processed = nowPos32 - startPos32; |
| if (useLimits) |
| { |
| if (processed + kNumOpts + 300 >= maxUnpackSize || |
| RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize) |
| break; |
| } |
| else if (processed >= (1 << 15)) |
| { |
| p->nowPos64 += nowPos32 - startPos32; |
| return CheckErrors(p); |
| } |
| } |
| } |
| p->nowPos64 += nowPos32 - startPos32; |
| return Flush(p, nowPos32); |
| } |
| |
| #define kBigHashDicLimit ((UInt32)1 << 24) |
| |
| static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| UInt32 beforeSize = kNumOpts; |
| #ifdef COMPRESS_MF_MT |
| Bool btMode; |
| #endif |
| if (!RangeEnc_Alloc(&p->rc, alloc)) |
| return SZ_ERROR_MEM; |
| #ifdef COMPRESS_MF_MT |
| btMode = (p->matchFinderBase.btMode != 0); |
| p->mtMode = (p->multiThread && !p->fastMode && btMode); |
| #endif |
| |
| { |
| unsigned lclp = p->lc + p->lp; |
| if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp) |
| { |
| LzmaEnc_FreeLits(p, alloc); |
| p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); |
| p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); |
| if (p->litProbs == 0 || p->saveState.litProbs == 0) |
| { |
| LzmaEnc_FreeLits(p, alloc); |
| return SZ_ERROR_MEM; |
| } |
| p->lclp = lclp; |
| } |
| } |
| |
| p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit); |
| |
| if (beforeSize + p->dictSize < keepWindowSize) |
| beforeSize = keepWindowSize - p->dictSize; |
| |
| #ifdef COMPRESS_MF_MT |
| if (p->mtMode) |
| { |
| RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)); |
| p->matchFinderObj = &p->matchFinderMt; |
| MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); |
| } |
| else |
| #endif |
| { |
| if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)) |
| return SZ_ERROR_MEM; |
| p->matchFinderObj = &p->matchFinderBase; |
| MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder); |
| } |
| return SZ_OK; |
| } |
| |
| static void LzmaEnc_Init(CLzmaEnc *p) |
| { |
| UInt32 i; |
| p->state = 0; |
| for(i = 0 ; i < LZMA_NUM_REPS; i++) |
| p->reps[i] = 0; |
| |
| RangeEnc_Init(&p->rc); |
| |
| |
| for (i = 0; i < kNumStates; i++) |
| { |
| UInt32 j; |
| for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) |
| { |
| p->isMatch[i][j] = kProbInitValue; |
| p->isRep0Long[i][j] = kProbInitValue; |
| } |
| p->isRep[i] = kProbInitValue; |
| p->isRepG0[i] = kProbInitValue; |
| p->isRepG1[i] = kProbInitValue; |
| p->isRepG2[i] = kProbInitValue; |
| } |
| |
| { |
| UInt32 num = 0x300 << (p->lp + p->lc); |
| for (i = 0; i < num; i++) |
| p->litProbs[i] = kProbInitValue; |
| } |
| |
| { |
| for (i = 0; i < kNumLenToPosStates; i++) |
| { |
| CLzmaProb *probs = p->posSlotEncoder[i]; |
| UInt32 j; |
| for (j = 0; j < (1 << kNumPosSlotBits); j++) |
| probs[j] = kProbInitValue; |
| } |
| } |
| { |
| for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) |
| p->posEncoders[i] = kProbInitValue; |
| } |
| |
| LenEnc_Init(&p->lenEnc.p); |
| LenEnc_Init(&p->repLenEnc.p); |
| |
| for (i = 0; i < (1 << kNumAlignBits); i++) |
| p->posAlignEncoder[i] = kProbInitValue; |
| |
| p->longestMatchWasFound = False; |
| p->optimumEndIndex = 0; |
| p->optimumCurrentIndex = 0; |
| p->additionalOffset = 0; |
| |
| p->pbMask = (1 << p->pb) - 1; |
| p->lpMask = (1 << p->lp) - 1; |
| } |
| |
| static void LzmaEnc_InitPrices(CLzmaEnc *p) |
| { |
| if (!p->fastMode) |
| { |
| FillDistancesPrices(p); |
| FillAlignPrices(p); |
| } |
| |
| p->lenEnc.tableSize = |
| p->repLenEnc.tableSize = |
| p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; |
| LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); |
| LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); |
| } |
| |
| static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| UInt32 i; |
| for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++) |
| if (p->dictSize <= ((UInt32)1 << i)) |
| break; |
| p->distTableSize = i * 2; |
| |
| p->finished = False; |
| p->result = SZ_OK; |
| RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)); |
| LzmaEnc_Init(p); |
| LzmaEnc_InitPrices(p); |
| p->nowPos64 = 0; |
| return SZ_OK; |
| } |
| |
| static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream, |
| ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| p->inStream = inStream; |
| p->rc.outStream = outStream; |
| return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); |
| } |
| |
| static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen) |
| { |
| p->seqBufInStream.funcTable.Read = MyRead; |
| p->seqBufInStream.data = src; |
| p->seqBufInStream.rem = srcLen; |
| } |
| |
| static void LzmaEnc_Finish(CLzmaEncHandle pp) |
| { |
| #ifdef COMPRESS_MF_MT |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| if (p->mtMode) |
| MatchFinderMt_ReleaseStream(&p->matchFinderMt); |
| #else |
| (void)pp; |
| #endif |
| } |
| |
| typedef struct _CSeqOutStreamBuf |
| { |
| ISeqOutStream funcTable; |
| Byte *data; |
| SizeT rem; |
| Bool overflow; |
| } CSeqOutStreamBuf; |
| |
| static size_t MyWrite(void *pp, const void *data, size_t size) |
| { |
| CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp; |
| if (p->rem < size) |
| { |
| size = p->rem; |
| p->overflow = True; |
| } |
| memcpy(p->data, data, size); |
| p->rem -= size; |
| p->data += size; |
| return size; |
| } |
| |
| SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress, |
| ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| SRes res = SZ_OK; |
| |
| #ifdef COMPRESS_MF_MT |
| Byte allocaDummy[0x300]; |
| int i = 0; |
| for (i = 0; i < 16; i++) |
| allocaDummy[i] = (Byte)i; |
| #endif |
| |
| RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig)); |
| |
| for (;;) |
| { |
| res = LzmaEnc_CodeOneBlock(pp, False, 0, 0); |
| if (res != SZ_OK || p->finished != 0) |
| break; |
| if (progress != 0) |
| { |
| res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); |
| if (res != SZ_OK) |
| { |
| res = SZ_ERROR_PROGRESS; |
| break; |
| } |
| } |
| } |
| LzmaEnc_Finish(pp); |
| return res; |
| } |
| |
| SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size) |
| { |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| int i; |
| UInt32 dictSize = p->dictSize; |
| if (*size < LZMA_PROPS_SIZE) |
| return SZ_ERROR_PARAM; |
| *size = LZMA_PROPS_SIZE; |
| props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); |
| |
| for (i = 11; i <= 30; i++) |
| { |
| if (dictSize <= ((UInt32)2 << i)) |
| { |
| dictSize = (2 << i); |
| break; |
| } |
| if (dictSize <= ((UInt32)3 << i)) |
| { |
| dictSize = (3 << i); |
| break; |
| } |
| } |
| |
| for (i = 0; i < 4; i++) |
| props[1 + i] = (Byte)(dictSize >> (8 * i)); |
| return SZ_OK; |
| } |
| |
| SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, |
| int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| SRes res; |
| CLzmaEnc *p = (CLzmaEnc *)pp; |
| |
| CSeqOutStreamBuf outStream; |
| |
| LzmaEnc_SetInputBuf(p, src, srcLen); |
| |
| outStream.funcTable.Write = MyWrite; |
| outStream.data = dest; |
| outStream.rem = *destLen; |
| outStream.overflow = False; |
| |
| p->writeEndMark = writeEndMark; |
| res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable, |
| progress, alloc, allocBig); |
| |
| *destLen -= outStream.rem; |
| if (outStream.overflow) |
| return SZ_ERROR_OUTPUT_EOF; |
| return res; |
| } |
| |
| SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, |
| const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, |
| ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) |
| { |
| CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc); |
| SRes res; |
| if (p == 0) |
| return SZ_ERROR_MEM; |
| |
| res = LzmaEnc_SetProps(p, props); |
| if (res == SZ_OK) |
| { |
| res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); |
| if (res == SZ_OK) |
| res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, |
| writeEndMark, progress, alloc, allocBig); |
| } |
| |
| LzmaEnc_Destroy(p, alloc, allocBig); |
| return res; |
| } |